
Logzip: Extracting Hidden Structures via Iterative
Clustering for Log Compression

Jinyang Liu‖†, Jieming Zhu¶, Shilin He†, Pinjia He§∗, Zibin Zheng‖, Michael R. Lyu†

‖Sun Yat-Sen University, Guangzhou, China ¶Huawei Noah’s Ark Lab, Shenzhen, China
†The Chinese University of Hong Kong, Hong Kong, China §ETH Zurich, Switzerland

liujy57@mail2.sysu.edu.cn, jmzhu@ieee.org, {slhe, lyu}@cse.cuhk.edu.hk,

pinjia.he@inf.ethz.ch, zhzibin@mail.sysu.edu.cn

Abstract—System logs record detailed runtime information of
software systems and are used as the main data source for many
tasks around software engineering. As modern software systems
are evolving into large scale and complex structures, logs have
become one type of fast-growing big data in industry. In partic-
ular, such logs often need to be stored for a long time in practice
(e.g., a year), in order to analyze recurrent problems or track
security issues. However, archiving logs consumes a large amount
of storage space and computing resources, which in turn incurs
high operational cost. Data compression is essential to reduce
the cost of log storage. Traditional compression tools (e.g., gzip)
work well for general texts, but are not tailed for system logs.
In this paper, we propose a novel and effective log compression
method, namely logzip. Logzip is capable of extracting hidden
structures from raw logs via fast iterative clustering and further
generating coherent intermediate representations that allow for
more effective compression. We evaluate logzip on five large log
datasets of different system types, with a total of 63.6 GB in size.
The results show that logzip can save about half of the storage
space on average over traditional compression tools. Meanwhile,
the design of logzip is highly parallel and only incurs negligible
overhead. In addition, we share our industrial experience of
applying logzip to Huawei’s real products.

Index Terms—Logs, structure extraction, log compression, log
management, iterative clustering

I. INTRODUCTION

System logs typically comprise a series of log messages,

each recording a specific event or state during the execution

of both user applications and components of a large system.

These logs have widespread use in many software engineering

tasks. They are not only critical for system operators to

diagnose runtime failures [1], [2], to identify performance

bottlenecks [3], [4], and to detect security issues [5], [6], but

also potentially valuable for service providers to track usage

statistics and to predict market trends [7], [8].

Nowadays, logs have become one type of fast-growing big

data in industry [9]. As systems grow in scale and complexity,

logs are being generated at an ever-increasing rate. For exam-

ple, either in the cloud side (e.g., a data center hosts thousands

of machines) or in the client side (e.g., a smartphone vendor

with millions of smart devices worldwide), it is common for

these systems to generate tens of TBs of logs in a single

day [10]. The massive logs could easily lead to several PBs of

∗Pinjia He is the corresponding author.

data growth a year. In addition, each log is usually replicated

into several copies, such as in HDFS, for storage resilience.

Some important parts of log data are even synchronized across

at least two separate data centers for disaster recovery. This

imposes severe pressure on the capacity of storage systems.

What’s more, many logs require long-term storage, usually

a year or more according to the development lifecycle of

software products. Historical logs are amenable to discovering

fault patterns and identifying recurrent problems [11]. For

example, many users often rediscover old problems because

they have not installed fix packs [9]. Meanwhile, auditing

logs, which record sensitive operations performed by users

and administrators, are often required to be kept for at least

two years for possible tracking of system misuse in future.

Although storage has become much cheaper than before,

archiving logs in such a huge volume is still quite costly. It not

only takes up a great amount of storage space and electrical

power, but also consumes network bandwidth for transmission

and replication.

To reduce the heavy storage cost of log data, our engineering

team seeks two directions of data reduction: 1) reducing

logs from the source, and 2) log compression. Logs can be

largely reduced by requesting developers to print less logging

statements and setting appropriate verbosity levels (e.g., INFO
and ERROR). Yet, logging too little might miss some key

information and result in unintended consequences [12], [13].

How to set up an optimal logging standard is still an open

problem [14], [15]. Instead, we focus on log compression

in this paper. It is a common practice to apply compression

before storing the data on disks. Mainstream compression

schemes (e.g., gzip and bzip) can usually reduce the size of

logs by a factor of 10 [16]. These general-purpose compression

algorithms allow for encoding arbitrary binary sequences, but

can only exploit redundant information within a short sliding

window (e.g., 32KB in gzip’s Deflate algorithm). As such,

they cannot take advantage of the inherent structure of log

messages that might enable more effective compression.

To address this problem, in this paper, we present logzip,

a novel log compression method. In contrast to traditional

compression methods, logzip can compress large log files

with a much higher compression ratio by harnessing the

inherent structures of system logs. Log messages are printed

863

2019 34th IEEE/ACM International Conference on Automated Software Engineering (ASE)

978-1-7281-2508-4/19/$31.00 ©2019 IEEE
DOI 10.1109/ASE.2019.00085

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 01,2020 at 06:35:34 UTC from IEEE Xplore. Restrictions apply.

by specific logging statements, thus each has a fixed message

template. The core idea of logzip is to automatically extract

such message templates from raw logs and then structurize

them into coherent intermediate representations that are bet-

ter suitable for general-purpose compression algorithms. To

achieve this, we propose the iterative clustering algorithm for

structure extraction, following an iterative process of sampling,

clustering, and matching. Logzip further generates three-level

intermediate representations with field extraction, template

extraction, and parameter mapping. These transformed repre-

sentations are further fed to a traditional compression method

for final compression. The whole logzip process is designed to

be efficient and highly parallel. As a side effect, the structured

intermediate representations of logzip can be directly utilized

in many downstream tasks, such as log searching and anomaly

detection, without further processing.

We evaluate logzip on five real-world log datasets (i.e.,

HDFS, Spark, Andriod, Windows, and Thunderbird) from the

loghub repository [17]. They are chosen to span multiple types

of systems, including distributed systems, mobile systems,

operating systems, and supercomputing systems, and also

have different sizes ranging from 1.58 GB to 29.6 GB. The

experimental results confirm the effectiveness of logzip, which

achieves high compression ratios: 16.2∼813.2. Compared to
traditional compression schemes (i.e., gzip, bzip2, lzma),

logzip achieves additional 1.3X∼15.1X compression ratios.

This leads to a reduction of 47.9% storage cost on average. Ad-

ditionally, logzip is highly efficient since the proposed iterative

clustering algorithm can be embarrassingly parallelized. We

have successfully applied logzip to a real product of Huawei

and also share some of our experiences. We emphasize that

logzip is generally applicable to all system-generated textual

logs, and we leave its use for binary logs for future research.

In summary, our paper makes the following contributions:

• We propose an effective compression method, logzip,

which leverages the hidden structures of logs extracted

by iterative clustering.

• Extensive experiments are conducted on a range of log

datasets to validate the effectiveness and the general

applicability of logzip.

• We not only share our success story of deploying logzip

in industry, but also open the source code of logzip1 to

allow for future research and practice.

The remainder of this paper is organized as follows. Sec-

tion II introduces the structure of system logs. We present our

iterative structure extraction approach in Section III and then

describe its use in log compression in Section IV. The exper-

imental results are reported in Section V. The industrial case

study is described in Section VI. We review the related work

in Section VII and finally conclude the paper in Section VIII.

II. LOG STRUCTURE

In this section, we introduce the structures of execution logs,

which will be utilized to facilitate log compression. Fig. 1

1https://github.com/logpai/logzip

// A logging statement code snippet extracted from
spark/storage/BlockManager.scala
logInfo(s"Found block $blockId remotely")

Found block rdd_2_3 locally

17/06/09 20:10:46 INFO storage.BlockManager: Found
block rdd_2_0 locally
17/06/09 20:10:46 INFO storage.BlockManager: Found
block rdd_2_3 locally

Found block * locally rdd_2_0
rdd_2_3

17/06/09 20:10:46 INFO storage.BlockManager:

Fig. 1. An Example of Extracted Log Structure

shows the outputs of the logging statement logInfo(s“Found

block $blockId locally”) in the source code of Spark. “logInfo”

is a logging framework in Scala, and the free text within the

brackets are written by developers. This logging framework

automatically records information like logging date, time,

verbosity level, component, etc. When the logging statement

is executed, it outputs a log line like “17/06/09 20:10:46

INFO storage.BlockManager: Found block rdd 2 0 locally.”.

The cluster-computing framework Spark uses logs like this

to monitor its execution. In practice, a large-scale software

system such as Spark records a great deal of information. To

reduce the storage cost, we focus on optimizing compression

of logs by exploring the structure of logs.

Specifically, hidden structures can be observed in the exam-

ple in Fig. 1. The log message contains two parts, the message
header automatically generated by the logging framework, and
the message content recorded by developers.
There are several fields in the message header, such as

“Date”, “Time”, “Level”, “Component”. The format is gen-

erally fixed for a system since developers barely change the

logging framework they use. Therefore, it is possible to easily

extract these fields from each log of a system by using

manually defined regular expressions. If more than one logging

frameworks are involved, users could define different regular

expressions according to different log formats, which only

takes minutes for a developer.

Unlike the message header, the message content is unstruc-

tured because developers are allowed to write free-form texts

to describe system operations. However, it is possible to find

hidden structures in the message content. For example, in

Fig 1, “$blockId” in the logging statement is a variable that

may change in every execution (i.e., variable part), whereas
other parts remain unchanged (i.e., constant part). We propose
to automatically extract the constant part from raw logs as

hidden structure via iterative structure extraction (ISE) . In

the process, the constant part and variable part of a given raw

log message can be distinguished. In this paper we denote the

constant part as event template (or template in short), and the

variable part as parameters.

864

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 01,2020 at 06:35:34 UTC from IEEE Xplore. Restrictions apply.

III. ITERATIVE STRUCTURE EXTRACTION

Our proposed approach logzip mainly leverages the hidden

structures of logs to facilitate log compression. In this section,

we introduce the iterative clustering algorithm for hidden

structure extraction.

A. Overview
There are three major ways to extract templates2 from

logs: (1) manual construction from logs; (2) extraction from

logging statements in source code; and (3) extraction from

raw logs. In practice, software logs have complex hidden

structures and are large-scale. Thus, manual construction of

templates is labor-intensive and error-prone. Additionally, the

source code of specific components of the system is often

inaccessible (e.g., third-party libraries). Therefore, template

extraction from software logs is the most widely-applicable

approach and thus logzip proposes an iterative clustering

algorithm to extract templates from logs automatically. Ac-

cording to the benchmark by Zhu et al [17], existing template

extraction approaches could perform accurately on software

logs. However, these methods require all the historical logs as

input, leading to severe inefficiency and hindering them from

adoption in practice. Inspired by the cascading clustering by

He et al. [18], we propose iterative structure extraction (ISE),

which effectively extracts templates from only a fraction of

the historical logs.
Figure 2 illustrates the overview of ISE. ISE is an iterative

algorithm containing 3 steps in each iteration: sampling, clus-

tering, and matching. The input of ISE is a log file consisting

of raw log messages, and the output is extracted templates and

structured logs. Specifically, in an iteration, we first sample a

portion of the input logs. A hierarchical division method is

then applied to the sample logs to generate multiple clusters,

from which templates can be extracted automatically. In the

matching step, we try to match all the unsampled raw logs

with these templates, collect unmatched logs, and feed them

into the next iteration as input. By iterating these steps, all log

messages could be matched accurately and efficiently with a

proper template assignment. The reason behind this is that the

sampled logs can often cover the templates hidden in most of

the input logs in each iteration. In particular, a fraction of the

logging statements could be executed much more frequently

than the others. Therefore, templates generated from a small

portion of logs can generally match most raw logs at the first

several iterations. In the following, we introduce each step of

ISE in detail.

B. Sampling
We first randomly sample a portion of logs from the given

raw log file with a ratio p. Thus, each log line has an equal
probability p (e.g., 0.01) to be selected. If the input contains
L log lines, the sampling step results in S = p × L sampled

log lines. This step is inspired by the insight that dominant

templates in the original input logs are still dominant in the

sampled logs.

2We use hidden structure and template interchangeably in this paper.

Fig. 2. Overview of Iterative Structure Extraction

C. Clustering

These sampled log lines are then grouped into clusters.

ISE extracts a template from each cluster by hierarchical

divisive clustering in a top-down manner, where we start

with a single cluster that consists of all sampled log lines.

We observed that execution logs have multiple features (i.e.,

verbosity level, component name, and most frequent tokens)

that can be utilized to distinguish the clusters they belong

to. Thus, we hierarchically divide logs into coarse-grained

clusters by using one feature at each division. After that,

an efficient clustering algorithm is applied to each of these

clusters to further divide logs into fine-grained clusters. To

facilitate efficient log compression, the fine-grained clustering

algorithm is designed to be highly parallel. We detail the

coarse-grained clustering (i.e., divisions by level, component

name, most frequent tokens) and the fine-grained clustering

algorithms as follows:

1) Divide by level: Intuitively, logs in the same cluster

should share the same level, e.g., INFO logs are generally quite

different from DEBUG logs because they are recorded for

different purposes. Therefore, we first divide logs into clusters

according to their levels.

2) Divide by component name: Similar to the reason for

using the level feature, logs generated by different components

in a system are barely in the same cluster. So we further

separate logs with the same level by their components.

3) Divide by frequent tokens: Intuitively, the constant parts
of a log generally have higher occurrences than its parameter

parts, because the parameter parts may vary in executions of a

logging statement while the constant parts do not. Therefore, it

is reasonable to group logs that share the same frequent tokens

into the same cluster. To achieve this, we first tokenize each

log message to a list of tokens by using system defined (or as

user input) delimiters (e.g., comma and space). Then, we count

the frequency of each token in the sampled logs. After that,

we find the top-1 frequent token for each log line, according

to which we further divide the clusters obtained from the

last division using component names. Thus, in this step, logs

grouped to the same cluster share the same top-1 frequent

tokens. Moreover, top-2, top-3,..top-N frequent tokens can be

applied in the same way to further divide the clusters, where

N is a tunable parameter that is normally set to 3.

865

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 01,2020 at 06:35:34 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. Workflow of Sequential Clustering

4) Divide by fine-grained clustering: The hierarchical divi-
sion by log features results in coarse-grained clusters. Logs

in the same cluster share the same features as described

above. However, these features are not sufficient to determine

fine-grained clusters from which we could extract accurate

templates. Therefore, we further conduct fine-grained cluster-

ing on each of the clusters. Inspired by Spell [19], we use

longest common subsequence (LCS) to compute the similarity

between log messages. Importantly, we also improve the

original LCS for speedup. We define the improved similarity

as

φ(a, b) = |a ∩ b|

where a and b are tokenized log messages, | · | denotes the
number of tokens in a sequence. In other words, φ(a, b) is the
number of common tokens of a and b.

We perform the fine-grained clustering in a streaming

manner. Fig. 3 describes the workflow of our method. Given

a log message m, we first tokenize it, then assign it to an

existing cluster. To be more specific, we compute the similarity

between the input log message with the representative template

of each existing cluster, while we keep the largest similarity

and the corresponding cluster. If the kept similarity is greater

than a threshold of θ, we assign the input log message to

the cluster. Note that θ = |m|/2 by default, where |m|
denotes the number of tokens contained in the input log.

After the assignment, we update the template of the cluster

as LCS(m, t), where t is the old template representing the

cluster. Note when computing LCS, we mark “*” at the places

where the two sequences disagree. For example, the LCS of the

two logs “Delete block: blk-231, blk-12” and “Delete block:

blk-76” is “Delete block: *”. If the largest similarity could

not reach θ, we create a cluster for m, with m itself as the

representative template.

The time-consuming step is the computation of similarity

between the given log and each template of existing clusters.

We propose to use the number of common tokens instead

of LCS to measure similarity, which is much more efficient

yet effective for two reasons: (1) logs with same tokens but

different orderings rarely occur in logs. (2) we have utilized

obvious log features to divide logs into coarse-grained clusters.

In each of the clusters, logs are expected to share only a

few templates, i.e., there are few opportunities for conflicts

to occur.

As described above, the sampled logs are divided into

clusters hierarchically, each of which has a template to repre-

sent logs within the cluster. We emphasize that the clustering

algorithm is highly parallel. In particular, the clusters after

each division are independent so they could be dispatched

to different nodes for parallel computation on the subsequent

steps.

D. Matching

After collecting all templates from clusters, we use the

templates to match each unsampled log message as described

in Fig. 2. By matching, each log message is assigned a

template thus the hidden structure is extracted. We use the

hidden structure to facilitate log compression.

A traditional matching strategy is to transform templates

into regular expressions by replacing “*” with “.*?”, then ap-

ply regular expressions matching between every combination

of log messages and templates, which may explode because

of the large number of templates. To mitigate this efficiency

issue, we propose to build all candidate templates as a prefix

tree [20], and perform matching by searching through it.

We build all templates as a prefix tree before searching.

The prefix tree starts with a START node. When a template

arrives, we tokenize it as is done to a log message. The first

token of the log is inserted as a child node of the START node.

Then we pass through the token sequence while the previous

token is the parent node of the current one. At the end of

the last node, we add an END node that contains the whole

template for convenience. Intuitively, each template sequence

is mapped as a path in the prefix tree. We put all templates into

the same tree, and since different templates can have several

prefix tokens in common, their paths may overlap.

Because of sharing the prefix tokens, a log message is

compared with all templates at the same time while searching

in the compact tree. Specifically, given a log message, we

tokenize it and read from the first token to the last while

comparing with nodes in the tree. For the first token, we

search if it exists in the second layer of the tree (the first

layer is a START node). If the first token matches a node, we

continue to check the second token and the children of the

node. We stop when all tokens are read. If an END node is

reached, we return the template, or we return NONE to denote

mismatching. Note that “*” in a template denotes parameters

with variable length, thus we allow “*” in the tree to hold more

than one tokens if no child node of “*” matches the next log

token. For example “Delete block:“*” can successfully match

“Delete block: blk-231, blk-12”. In addition, parameters of

a log could be extracted while matching by keeping tokens

that match “*”. In the above example, “blk-231, blk-12” is

the parameter. As a result of the matching step, the template

and parameters of a log message are extracted if it matches

successfully.

The intuition of the tree matching scheme is to compress

all templates into a prefix tree by overlapping paths. There-

fore, the comparison between log message and all templates

becomes one-pass searching. Moreover, checking whether a

866

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 01,2020 at 06:35:34 UTC from IEEE Xplore. Restrictions apply.

Fig. 4. Overall Framework of Logzip Compression

token matches a node can be done in O(1) by hashing, which
makes the tree based strategy a lot more efficient in compar-

ison with regular expression matching. More importantly, the

matching step is highly parallel because the search for different

log lines on the tree is independent.

E. Iteration

At the end of each iteration, ISE obtains several templates

that could cover all sampled logs. These templates are suffi-

cient to match the majority of all the input log messages in

this iteration while some log messages may remain unmatched.

Therefore, we repeat the above procedures (i.e., sampling,

clustering, and matching) for the unmatched log messages as

shown in Fig. 2. To this end, new templates are extracted from

these log messages, and new unmatched data is generated

in each iteration. We keep iterating until the percentage of

matched log messages reaches a user-defined threshold (em-

pirically, 90%).

In practice, logging statements of a system evolve slowly.

Therefore, ISE could be considered as a one-off procedure for

a specific system. To be more specific, we can perform ISE on

a portion of logs of the system, and collect templates for future

use. After having templates, we could extract structures of new

logs from the system through matching instead of running the

ISE.

IV. LOG COMPRESSION

In this section, we present our log compression method,

logzip. We first summarize the workflow of logzip. Then the

detail of the compression approach is introduced.

A. Overview of Logzip

The main idea behind logzip is to reduce the redundant

information contained in the original log file. Fig. 4 depicts

the overall framework of logzip. For each raw log message

in the log data, it is firstly structurized into message header

and message content via manually defined regular expressions.

Then, the message header is split into multiple objects accord-

ing to their fields and further sub-fields. Regarding message

content, hidden structures are extracted by applying ISE. After

that, we represent each log message as a template, an event

ID as well as the corresponding parameter. In addition, each

item in the parameter list is split into sub-fields. Then, those

logs that share the same event ID are stored into the same

object in a compact manner. At last, all generated objects are

compressed to a compact file by existing compression tools.

Details are described as follows.

B. Approach

Logzip can perform compression in 3 levels, and achieve

different effectiveness and efficiency. Fig. 5 is an example of

logzip workflow.

Level 1: Field Extraction. We first extract fields of given
raw logs by applying a user-defined regular expression. For

the example in Fig. 5, “DATA”, “TIME” and “LEVEL” could

be extracted by identifying the white space delimiter. “COM-

PONENT” and “MESSAGE CONTENT” are separated by a

colon. We emphasize that it is easy to manually construct the

regular expression, which generally remains unchanged for

a specific system since the message header is automatically

recorded by the logging framework (e.g., log4j in Java, logging

in Python). Then, each field is further split into sub-field ac-

cording to special characters (e.g., non-alphabetic characters)

to increase the coherence in a sub-field. These sub-fields are

then stored into separate objects. For level 1, we do not process

the message content and store it into an object.

Level 2: Template Extraction. The message content is

further processed by extracting the hidden structures, i.e.,

message templates. We directly apply ISE as described in

Section III. After that, the message content could be repre-

sented as its template and parameters, and we assign auto-

incremental EventID initialized to 0 for unique templates,

which forms a template mapping dictionary (EventID is the

key and the corresponding template is the value). In fact, a

template may be shared by many log messages. For example,

The HDFS logs that we studied contain around 11.2 million

log messages, but they share only 39 templates. Therefore, we

use the corresponding EventId to denote the template of each

log message. In doing this, log messages are transformed into

a compact form containing short EventId and parameters. At

last, the template mapping dictionary is stored into an object

867

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 01,2020 at 06:35:34 UTC from IEEE Xplore. Restrictions apply.

Fig. 5. An Example of Logzip Workflow in Three Levels

alone, while the EventIds are stored in an EventId object. For

the parameters extracted from the message content, we split

each item of parameters in a similar manner as in level 1.

Clearly, each parameter is split with non-alphabetic characters

as delimiters. Then each generated sub-field within a group

constitutes one object separately. Here a group represents all

logs that share the same template. The intuition behind is that

parameters within a group may be duplicated or similar, and

putting similar items into a file could make the best of existing

tools, e.g., gzip.

Level 3: Parameter Mapping. We further optimize the rep-
resentation of parameters in level 3. Based on our observation,

some inseparable and very long parameters (i.e., no delimiter

inside) waste too much space. For example, the block ID (e.g.,

“blk -5974833545991408899”) is space-consuming and may

have high occurrence. To sidestep the problem, as shown in

Fig. 5, we encode unique sub-field values to sequential 64-

base numbers (ParaID), which forms a parameter mapping

dictionary (ParaID is the key and the corresponding parameter

is the value). For the sake of saving more space, parameters

from all groups share the same parameter mapping dictionary.

To conclude, in level 3, parameters are encoded into ParaIDs.

At last, one parameter mapping dictionary object and ParaID

objects for each group are generated separately.

Compression. After three levels of splitting, encoding and
mapping, several objects are generated. The last step is to pack

all these objects to be a compressed file without losing any

information. Since our main interest lies in the aforementioned

three levels of processing, we directly utilize those off-the-

shelf compression algorithms and tools in this step, e.g., gzip,

bzip2, and lzma. In this way, our logzip is compatible with

existing compression tools and algorithms. It is worth noting

that most log analysis algorithms (e.g., anomaly detection [21],

[22]) take templates as input without parameters. Therefore,

logzip could perform lossy compression in this case by dis-

carding all parameter objects before compression with existing

tools, which could be more effective.

Decompression. As the reverse process of log compression,
decompression should be able to recover the original dataset

without losing any information. At first, multiple objects

are generated after unzipping the compressed file. Then, we

recover the message header by simply merging all the sub-

fields values extracted in level 1 in order. As for recovering

the message content, we first get the templates by indexing

the event encoding dictionary with the EventID. Similar, the

parameter list is retrieved by indexing the parameter encoding

dictionary using the ParaID. By replacing the “*” in the

template using parameters in order, the message content can

be completely recovered.

V. EVALUATION

In this section, we conduct comprehensive experiments by

applying logzip to a variety of log datasets and report the

results. We aim to answer the following research questions.

RQ1: What is the effectiveness of logzip?

RQ2: How effective is logzip in different levels?

RQ3: What is the efficiency of logzip?

A. Experimental Setup

Log Datasets: We use five representative log datasets to

evaluate logzip, as presented in Table I. These log datasets are

generated by various systems spanning Distributed Systems

(HDFS, Spark), Operating System (Windows), Mobile System

(Android) and Supercomputer (Thunderbird). Some datasets

(HDFS [25], Thunderbird [26]) are released by previous log

research, while the other (Spark, Windows, Android) are

868

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 01,2020 at 06:35:34 UTC from IEEE Xplore. Restrictions apply.

TABLE I
SUMMARY OF LOG DATASETS

collected from real systems in our lab environment. Moreover,

the total size of all datasets is around 63.6 GB, which contains

a total amount of more than 400 million log messages. All the

datasets that we use are available on our Github.

Evaluation Metrics: To measure the effectiveness of logzip,
we use Compression Ratio (CR), which is widely utilized in
the evaluation of compression methods. The definition is given

below:

CR =
Original F ile Size

Compressed F ile Size

Note that the original size of a given log dataset is always fixed

while the compressed file size may vary. When reducing the

compressed file size, a higher compression can be achieved,

which indicates more effective compression.

Compression Kernels: As introduced in Section IV, logzip
utilizes existing compression utilities as the compression ker-

nel in the last step. In the experiments, three prevalent and

effective compression algorithms (i.e., gzip, bzip2, lzma) are

selected. Note that these compression algorithms can also be

employed to compress log files solely, which will serve as

baselines in our experiments.

Experimental Environment: We run all experiments on a
Linux server with Intel Xeon E7-4830 @ 2.20GHZ CPU and

1TB RAM, running Red Hat 4.8.5 with Linux kernel 3.10.0.

B. RQ1: Effectiveness of Logzip

To study the effectiveness of logzip, we use logzip it to

compress all five collected log datasets. As introduced before,

we use these existing popular compression tools (i.e., gzip,

bzip2, lzma) as well as two log compression algorithms (i.e.,

Cowic [23], LogArchive [24]) as baselines for a fair compari-

son. Since logzip can be equipped with different compression

kernels, it also has three variants, i.e., logzip (gzip), logzip

(bzip2), logzip (lzma). We report both the compressed file

size and the compression ratio (CR) in Table II. Note that

all results of logzip are obtained in level 3.

We first make brief comparisons among gzip, bzip2 and

lzma. lzma is generally the most effective one on most datasets

while gizp performs the worst. As for the two algorithms

specifically designed for log data, Cowic and LogArchive,

LogArchive could achieve higher CR than gzip but is generally

less effective than bzip2 and lzma. Cowic is even worse than

gzip, since Cowic is designed for a quick query on compressed

data instead of pursuing high CR.

Logzip variants with different compression kernels result

in different compressed size, which is determined by the

effectiveness of the kernels. Compared with the three baseline

methods, logzip equipped with the corresponding compression

kernel achieves higher CR on all five datasets. In particular,

logzip can achieve a CR of 4.56x on average and 15.1x at best

over the gzip traditional mature compression algorithm. For

example, the compressed file is around 149MB by gzip while

72MB by logzip (gzip), and our method can save around half

of the storage, which is crucial in practice. Logzip equipped

with other compression kernels achieves similar results.

C. RQ2: Effectiveness of Logzip in Different Levels

As introduced in Section IV, logzip is designed in three

levels, splitting the original log message into multiple objects

with different fineness. In this section, we evaluate the effec-

tiveness of logzip at each level. In practice, logs are generated

and collected in a streaming manner, and stored as a file when

they grow to a proper size, e.g., 1GB. For the simplicity of

comparison, our experiments are conducted on the first 1GB

logs of all five datasets. Besides, since our focus lies in varying

different levels and compression kernel is not a major concern,

we conduct experiments by taking gzip as the baseline method

and logzip (gzip) as our compression approach. Based on this,

we vary the level of logzip (gzip) to evaluate the effectiveness

of an individual level, and the experimental results should also

apply to other compression kernels.

Fig. 6 shows compressed file sizes on five datasets in

different levels. We can find that level 1 field extraction works

well on all datasets, compressing the original 1GB log files to

files of less than 100MB. It is because generally most fields

of a log file have limited unique values, and gzip is able to

compress such text data into a file of small size. Moreover,

compared to the baseline gzip compression, logzip with only

level 1 already achieves much better compression results.

Considering the structure extraction of message content in

level 2, it sharply reduces the compressed size on almost

every dataset. In particular, after applying logzip (level 2), the

compressed log file of Android takes up only 1
3 of the baseline

gzip-compressed file, and similarly, the fraction is even less

than 1
10 on Windows. The results confirm the effectiveness of

level 2 in log compression. The reason is also straightforward.

In level 2, ISE extracts the invariant templates out of log

message content and replace it with an event ID. Hence,

only keeping event IDs instead of original template strings

saves a large amount of storage space. Besides, parameters are

also split in a similar way as level 1 field extraction, which

contributes to reducing the compressed file size. However, we

also observe that the improvement is not obvious on the HDFS

log file. After close analysis on the HDFS logs, we find that the

major part of HDFS log message content is parameters instead

of the template. Parameters such as “Block Id” (e.g., “blk -

5974833545991408899”) are too long and cannot be separated

in level 2. Therefore, the compressed file size of the HDFS

data is not as small as other log files.

In level 3, we map parameters into 64-base numbers. As

shown in Fig. 6, logzip gets at least half the compressed

size compared with gzip on all five datasets. In particular,

869

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 01,2020 at 06:35:34 UTC from IEEE Xplore. Restrictions apply.

TABLE II
COMPRESSION RESULTS W.R.T. SIZE (IN MB) AND COMPRESSION RATIO (CR) OF DIFFERENT COMPRESSION METHODS

(COWIC [23] AND LOGARCHIVE [24] ARE BASELINE ALGORITHMS FOR LOG COMPRESSION.)

Fig. 6. Compressed File Size (MB) in Different Levels

comparing to logzip (level 2), the compressed file size is

greatly reduced on HDFS dataset, which confirms the im-

portance of encoding the long and duplicate parameters as

aforementioned. Comparable or slightly worse results show

on other datasets. This is caused by introducing extra ParaIDs

for these logs without many space-consuming parameters. In

fact, these extra ParaIDs cost little space, which is tolerable.

That is, users could directly apply logzip (level 3) to their

dataset to achieve the best performance without considering

whether the log contains such parameters.

To conclude, logzip is effective in every level for the log

dataset that we study. More importantly, logzip theoretically

generalizes well for the text log data of other types for 2

reasons: (1) Only a little prior knowledge is required when

formatting raw logs. Once set up, no more manual effort is

required unless a system updates greatly. (2) Logs generated

by logging statements naturally contain hidden structures.

The key step of logzip, ISE, is able to automatically extract

the hidden information used for log compression. Note that

logzip is designed for logs stored in text form, which is the

most common case. Those in a binary format are beyond our

consideration, and we will explore the case in future work.

D. RQ3: Efficiency of Logzip

In this section, we evaluate the efficiency of logzip (gzip)

(in short, logzip). Logzip is designed to be highly parallel,

thus we would like to know the efficiency achieved by

utilizing different numbers of workers. Gzip is known as an

efficient compression tool thus used as a baseline. We apply

both algorithms on the first 1GB log data of HDFS, Spark,

Thunderbird and Windows, for the same reason mentioned in

section V-C. We exclude Android dataset for saving space.

In addition, we vary the worker number of logzip in range

[1, 2, 4, 8, 16, 32].

Fig. 7 depicts the execution time and compressed size

achieved by logzip and gzip, on four datasets. Note that the

execution time consists of all steps including ISE (Sec III) and

compression (Sec IV). As for logzip, the time cost halved after

doubling the number of workers. More importantly, it is worth

noting that the time cost by using 32 workers is comparable

with that of gzip, even better in HDFS and Spark. The result

shows the parallelizability and efficiency of logzip, which can

be explained by the design of logzip: (1) We extract high-

quality templates from only a small portion of logs in ISE,

e.g., 1% log messages are sufficient to generate templates that

870

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 01,2020 at 06:35:34 UTC from IEEE Xplore. Restrictions apply.

(a) HDFS (b) Spark (c) Thunderbird (d) Windows

Fig. 7. Compression Time & Size vs #Worker

match 90%∼100% logs messages. (2) The top-down manner

clustering are higly parallel since fine-grained clustering could

be performed simultaneously and independently. (3) We build

all templates into a compact prefix tree, the one-pass matching

scheme is efficient. (4) A log file could be split into several

chunks, and performing logzip on each chunk at the same time

is possible to reduce time consumption.

In addition, the compressed size slightly increases with more

workers involved. This is the result of chunking of logs. A

whole log file is split into chunks before feeding to a worker,

as a result, each worker only sees a part of the data, which

slightly hinders logzip to utilize the global information for

compression.

To conclude, logzip is highly parallel and could achieve

comparable or better efficiency than gzip. Note that, after

chucking the input log file, the compressed size may increase

a little bit, but it is tolerable in practice.

VI. INDUSTRIAL CASE STUDY

At Huawei, logs are continuously collected during the

whole product lifecycle. With the rapid growth of scale and

complexity of industrial systems, logs become a representative

type of big data for software engineering teams at Huawei.

For example, System X (anonymized for confidential issues),

which is one of the popular products at Huawei, generates

about 2 TB of log data daily. Storage of logs at such a scale

has become a challenging task. Most of the logs need to be

stored for a long time, usually 1∼2 years, considering the

product lifecycle of System X is about two years. In particular,

historical logs are kept for the following practical tasks: 1)

root cause analysis: identification of similar failures or faults
that happened before; 2) failure categorization: categorization
of similar failures for the development planning of next

software version; and 3) automated log analysis tools: acting
as experimental data for the research and development of

automated log analysis tools.

Log storage currently takes up over PBs of disk space in

a cluster, which indicates a huge cost of power consumption.

Meanwhile, log data is regularly replicated to one or two data

centers (according to different importance levels) at different

locations for disaster tolerance. This results in another type

of expensive cost, i.e. bandwidth consumption. Reducing the

storage cost of log data has become a main objective of

the product team because their storage budget is limited but

the number of products is growing. With close collaboration

with the product team, we have recently transferred logzip

into System X. Logzip is deployed on a 64-core Linux

server with Ubuntu 16.04 installed to compress raw log files.

When logzip is parallelized with 32 processors, it achieves

comparable compression time with the traditional gzip method.

The product team accepts the performance of logzip, since

most of the old logs are rarely accessed and can be archived

at one time. Yet, the use of logzip successfully reduces the

size of logs, saving about 40% of space compared to the gzip

algorithm that is previously used. It not only reduces the cost

of log storage but also cuts the cost on network consumption

during replication. This has become a successful use case of

logzip.

VII. RELATED WORK

Log Management for SE. Logs are critical runtime in-

formation recorded by developers, which are widely analyzed

for all sorts of tasks. 1) Log analysis is conducted for various
targets, such as code testing [27], problem identification [28],

[29], user behavior analysis [30], [31], security monitoring

[32], etc. Most of these tasks use data mining models to extract

critical features or patterns from a large volume of software

logs. Therefore, we believe our work on log compression could

benefit log data storage and save the cost of dumping the

large volume of logs. 2) Log parsing. is generally utilized

as the first step of downstream tasks. In recent years, various

log parsers have been proposed. SLCT [33] is the first work

on automated log parsing based on token frequency, to the

best of our knowledge. Then data mining-based methods

(LKE [21], IPLoM [34], Spell [19], Drain [35], [36]) are

proposed. LKE and IPLoM are offline parsers, and SHISO

and Drain could parse online in a streaming manner. These

parsers are evaluated and compared in the benchmark by Zhu

et al. [17]. The parsers could extract hidden structures but they

take all logs as input thus are not efficient compared with the

proposed ISE.

Text Compression. File compression algorithms have been
developed for years [37], [38], and some of them are utilized

in compressing tools (gzip, lzma, bzip2). These general tools

are commonly used and achieve satisfactory CR. To further

improve CR specific for text files, Lempel-Ziv-Welch (LZW)

based methods are widely studied [39]–[41]. Oswald et al. [42]

explore text compression in the perspective of Data Mining.

They enhance Huffman Encoding by frequent pattern mining.

871

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 01,2020 at 06:35:34 UTC from IEEE Xplore. Restrictions apply.

Since log data as a kind of text data is more structured, we

propose logzip to use the information to facilitate compression.

Log Compression. Due to the inherent structure of log data,
it’s possible to compress log files with higher CR, thus some

log-specific algorithms are proposed. CLC [43] and DSLC [44]

utilize prior knowledge and manual pre-treatment to compress

log files. LogArchive [24] adaptively distributes log messages

to different buckets and track most recent log messages in each

bucket with a sliding window. Finally, buckets are compressed

separately in parallel. Cowic introduced by Lin et al. [16]

divides log messages into fields and manually build a model

for each field, but Cowic targets query efficiency instead

of high CR. MLC [45] explores data redundancy of log

file and divides logs into buckets based on similarities, then

apply existing compression tools as we do in logzip. These

algorithms explore hidden structures of logs to compress logs,

which could outperform general compression tools. But they

are limited by the trade-off between high CR and efficiency.

Compared with them, we extract hidden structures via ISE,

which is efficient and highly parallel. As a result, logzip

achieves high CR without loss of efficiency.

Log Analytics Powered by AI (LogPAI). LogPAI is a
research project originating from CUHK. The ultimate goal

of LogPAI is to build an open-source AI platform for auto-

mated log analysis. Towards this goal, we have built open

benchmarks over a set of research work as well as release

open datasets and tools for log analysis research. In partic-

ular, loghub hosts a large collection of system log datasets.

Logparser provides a toolkit and benchmarks for automated

log parsing [17], [46], [47]. Loglizer implements a number of

machine-learning based log analysis techniques for automated

anomaly detection [18], [48]. LogAdvisor is a framework for

determining optimal logging points in source code [12], [14],

[49]. In this work, logzip provides an tool for effective log

compression. With both datasets and source code available, we

hope that our LogPAI project could benefit both researchers

and practitioners in the community.

VIII. CONCLUSION

In this paper, we propose logzip, a log compression ap-

proach that largely reduces the operational cost for log storage.

Logzip extracts and utilizes the inherent structures of logs via

a novel iterative clustering technique. Logzip is designed to

be seamlessly integrated with the existing data compression

utilities (e.g., gzip). Furthermore, the semi-structure inter-

mediate representations generated by logzip can be directly

used for a variety of downstream log mining tasks (e.g.,

anomaly detection). Extensive experiments on five real-world

system log datasets have been conducted to evaluate the

effectiveness of logzip. The experimental results show that

logzip significantly enhances the compression ratios over three

widely-used data compression tools and also outperforms the

state-of-the-art log compression approaches. Moreover, logzip

is highly parallel and achieves comparable efficiency as gzip

on a 32-core machine. We believe that our work, together with

the open-source logzip tool, could benefit engineering teams

facing the same problem.

IX. ACKNOWLEDGEMENT

The work described in this paper was supported by

the National Key Research and Development Program

(2016YFB1000101), the National Natural Science Foundation

of China (61722214), the Research Grants Council of the

Hong Kong Special Administrative Region, China (No. CUHK

14210717 of the General Research Fund), and Microsoft

Research Asia (2018 Microsoft Research Asia Collaborative

Research Award).

REFERENCES

[1] D. Yuan, S. Park, P. Huang, Y. Liu, M. M. Lee, X. Tang, Y. Zhou, and
S. Savage, “Be conservative: Enhancing failure diagnosis with proactive
logging,” in Proceedings of the 10th USENIX Symposium on Operating
Systems Design and Implementation (OSDI), 2012, pp. 293–306.

[2] Y. Zhang, S. Makarov, X. Ren, D. Lion, and D. Yuan, “Pensieve: Non-
intrusive failure reproduction for distributed systems using the event
chaining approach,” in Proceedings of the 26th Symposium on Operating
Systems Principles (SOSP), 2017, pp. 19–33.

[3] M. Chow, D. Meisner, J. Flinn, D. Peek, and T. F. Wenisch, “The mys-
tery machine: End-to-end performance analysis of large-scale internet
services,” in OSDI, 2014, pp. 217–231.

[4] K. Nagaraj, C. E. Killian, and J. Neville, “Structured comparative anal-
ysis of systems logs to diagnose performance problems,” in Proceedings
of the 9th USENIX Symposium on Networked Systems Design and
Implementation (NSDI), 2012, pp. 353–366.

[5] M. Du, F. Li, G. Zheng, and V. Srikumar, “Deeplog: Anomaly detection
and diagnosis from system logs through deep learning,” in Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communica-
tions Security (CCS), 2017, pp. 1285–1298.

[6] A. Oprea, Z. Li, T. Yen, S. H. Chin, and S. A. Alrwais, “Detection of
early-stage enterprise infection by mining large-scale log data,” in DSN,
2015, pp. 45–56.

[7] G. Lee, J. J. Lin, C. Liu, A. Lorek, and D. V. Ryaboy, “The unified
logging infrastructure for data analytics at twitter,” PVLDB, vol. 5,
no. 12, pp. 1771–1780, 2012.

[8] A. J. Oliner, A. Ganapathi, and W. Xu, “Advances and challenges in log
analysis,” Commun. ACM, vol. 55, no. 2, pp. 55–61, 2012.

[9] A. V. Miranskyy, A. Hamou-Lhadj, E. Cialini, and A. Larsson,
“Operational-log analysis for big data systems: Challenges and solu-
tions,” IEEE Software, vol. 33, no. 2, pp. 52–59, 2016.

[10] D. Logothetis, C. Trezzo, K. C. Webb, and K. Yocum, “In-situ mapre-
duce for log processing,” in Proceedings of the 2011 USENIX Confer-
ence on USENIX Annual Technical Conference (ATC), 2011.

[11] M. Lim, J. Lou, H. Zhang, Q. Fu, A. B. J. Teoh, Q. Lin, R. Ding, and
D. Zhang, “Identifying recurrent and unknown performance issues,” in
IEEE International Conference on Data Mining (ICDM), 2014, pp. 320–
329.

[12] J. Zhu, P. He, Q. Fu, H. Zhang, M. R. Lyu, and D. Zhang, “Learning
to log: Helping developers make informed logging decisions,” in Pro-
ceedings of the 37th International Conference on Software Engineering
(ICSE), 2015, pp. 415–425.

[13] H. Li, W. Shang, and A. E. Hassan, “Which log level should developers
choose for a new logging statement?” Empirical Software Engineering
(EMSE), vol. 22, no. 4, pp. 1684–1716, 2017.

[14] Q. Fu, J. Zhu, W. Hu, J. Lou, R. Ding, Q. Lin, D. Zhang, and T. Xie,
“Where do developers log? an empirical study on logging practices
in industry,” in Proceedings of the 36th International Conference on
Software Engineering (ICSE), 2014, pp. 24–33.

[15] X. Zhao, K. Rodrigues, Y. Luo, M. Stumm, D. Yuan, and Y. Zhou,
“Log20: Fully automated optimal placement of log printing statements
under specified overhead threshold,” in Proceedings of the 26th Sympo-
sium on Operating Systems Principles (SOSP), 2017, pp. 565–581.

[16] H. Lin, J. Zhou, B. Yao, M. Guo, and J. Li, “Cowic: A column-wise
independent compression for log stream analysis,” in Proceedings of the
15th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGrid), 2015, pp. 21–30.

872

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 01,2020 at 06:35:34 UTC from IEEE Xplore. Restrictions apply.

[17] J. Zhu, S. He, J. Liu, P. He, Q. Xie, Z. Zheng, and M. R. Lyu, “Tools
and benchmarks for automated log parsing,” in Proceedings of the 41th
International Conference on Software Engineering (ICSE), SEIP track,
2019.

[18] S. He, Q. Lin, J. Lou, H. Zhang, M. R. Lyu, and D. Zhang, “Identifying
impactful service system problems via log analysis,” in Proceedings
of the 2018 ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
ESEC/SIGSOFT (FSE), 2018, pp. 60–70.

[19] M. Du and F. Li, “Spell: Streaming parsing of system event logs,” in
Proceedings of the IEEE 16th International Conference on Data Mining
(ICDM), 2016, pp. 859–864.

[20] Wikipedia contributors, “Trie — Wikipedia, the free encyclopedia,”
2019, [Online; accessed 11-May-2019]. [Online]. Available: https:
//en.wikipedia.org/w/index.php?title=Trie&oldid=890445171

[21] Q. Fu, J. Lou, Y. Wang, and J. Li, “Execution anomaly detection in
distributed systems through unstructured log analysis,” in Proceedings
of the 9th IEEE International Conference on Data Mining (ICDM), 2009,
pp. 149–158.

[22] W. Xu, L. Huang, A. Fox, D. A. Patterson, and M. I. Jordan, “Detecting
large-scale system problems by mining console logs,” in Proceedings of
the 27th International Conference on Machine Learning (ICML), 2010,
pp. 37–46.

[23] H. Lin, J. Zhou, B. Yao, M. Guo, and J. Li, “Cowic: A column-wise
independent compression for log stream analysis,” in Proceedings of the
15th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGrid), 2015, pp. 21–30.

[24] R. Christensen and F. Li, “Adaptive log compression for massive log
data,” in Proceedings of the ACM SIGMOD International Conference
on Management of Data (SIGMOD), 2013, pp. 1283–1284.

[25] W. Xu, L. Huang, A. Fox, D. A. Patterson, and M. I. Jordan, “Detecting
large-scale system problems by mining console logs,” in Proceedings
of the ACM SIGOPS 22nd symposium on Operating systems principles
(SOSP), 2009, pp. 117–132.

[26] A. Oliner and J. Stearley, “What supercomputers say: A study of five
system logs,” in Proceedings of the 37th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN), 2007.

[27] B. Chen, J. Song, P. Xu, X. Hu, and Z. M. J. Jiang, “An automated
approach to estimating code coverage measures via execution logs,”
in Proceedings of the 33rd ACM/IEEE International Conference on
Automated Software Engineering (ASE), 2018, pp. 305–316.

[28] Q. Lin, H. Zhang, J. Lou, Y. Zhang, and X. Chen, “Log clustering based
problem identification for online service systems,” in Proceedings of the
38th International Conference on Software Engineering (ICSE), SEIP
track, 2016, pp. 102–111.

[29] B. Chen and Z. M. J. Jiang, “Characterizing and detecting anti-patterns
in the logging code,” in Proceedings of the 39th International Confer-
ence on Software Engineering (ICSE), 2017, pp. 71–81.

[30] X. Yu, M. Li, I. Paik, and K. H. Ryu, “Prediction of web user behavior by
discovering temporal relational rules from web log data,” in Proceedings
of the 23rd International Conference on Database and Expert Systems
Applications (DEXA), Part II, 2012, pp. 31–38.

[31] N. Poggi, V. Muthusamy, D. Carrera, and R. Khalaf, “Business process
mining from e-commerce web logs,” in Proceedings of the 11th Interna-
tional Conference on Business Process Management (BPM), 2013, pp.
65–80.

[36] P. He, J. Zhu, P. Xu, Z. Zheng, and M. R. Lyu, “A directed acyclic
graph approach to online log parsing,” CoRR, vol. abs/1806.04356,
2018. [Online]. Available: http://arxiv.org/abs/1806.04356

[32] M. Montanari, J. H. Huh, D. Dagit, R. Bobba, and R. H. Campbell,
“Evidence of log integrity in policy-based security monitoring,” in
Proceedings of the IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN) Workshops, 2012, pp. 1–6.

[33] R. Vaarandi, “A data clustering algorithm for mining patterns from event
logs,” in Proceedings of the 3rd IEEE Workshop on IP Operations &
Management (IPOM). IEEE, 2003, pp. 119–126.

[34] A. Makanju, A. N. Zincir-Heywood, and E. E. Milios, “Clustering
event logs using iterative partitioning,” in Proceedings of the 15th ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD), 2009, pp. 1255–1264.

[35] P. He, J. Zhu, Z. Zheng, and M. R. Lyu, “Drain: An online log parsing
approach with fixed depth tree,” in Proceedings of the 2017 IEEE
International Conference on Web Services (ICWS), 2017, pp. 33–40.

[37] J. Ziv and A. Lempel, “A universal algorithm for sequential data
compression,” IEEE Trans. Information Theory (TIT), vol. 23, no. 3,
pp. 337–343, 1977.

[38] ——, “Compression of individual sequences via variable-rate coding,”
IEEE Trans. Information Theory (TIT), vol. 24, no. 5, pp. 530–536,
1978.

[39] R. Pizzolante, B. Carpentieri, A. Castiglione, A. Castiglione, and
F. Palmieri, “Text compression and encryption through smart devices
for mobile communication,” in Proceedings of the 7th International
Conference on Innovative Mobile and Internet Services in Ubiquitous
Computing (IMIS), 2013, pp. 672–677.

[40] M. Mauer, T. Beller, and E. Ohlebusch, “A lempel-ziv-style compression
method for repetitive texts,” in Proceedings of the Prague Stringology
Conference, 2017, pp. 96–107.

[41] E. Rivals, J.-P. Delahaye, M. Dauchet, and O. Delgrange, “A guaranteed
compression scheme for repetitive dna sequences,” in Proceedings of the
Data Compression Conference (DCC). IEEE, 1996, p. 453.

[42] C. Oswald and B. Sivaselvan, “An optimal text compression algorithm
based on frequent pattern mining,” J. Ambient Intelligence and Human-
ized Computing, vol. 9, no. 3, pp. 803–822, 2018.

[43] K. Hätönen, J. Boulicaut, M. Klemettinen, M. Miettinen, and C. Masson,
“Comprehensive log compression with frequent patterns,” in Proceed-
ings of the Data Warehousing and Knowledge Discovery, 5th Interna-
tional Conference (DaWaK), 2003, pp. 360–370.

[44] B. Rácz and A. Lukács, “High density compression of log files,” in
Proceedings of the Data Compression Conference (DCC), 2004, p. 557.

[45] B. Feng, C. Wu, and J. Li, “MLC: an efficient multi-level log com-
pression method for cloud backup systems,” in 2016 IEEE Trust-
com/BigDataSE/ISPA, 2016, pp. 1358–1365.

[46] P. He, J. Zhu, S. He, J. Li, and M. R. Lyu, “Towards automated log
parsing for large-scale log data analysis,” IEEE Trans. Dependable Sec.
Comput., vol. 15, no. 6, pp. 931–944, 2018.

[47] ——, “An evaluation study on log parsing and its use in log mining,”
in 46th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks, DSN 2016, Toulouse, France, June 28 - July
1, 2016, 2016, pp. 654–661.

[48] S. He, J. Zhu, P. He, and M. R. Lyu, “Experience report: System log
analysis for anomaly detection,” in 27th IEEE International Symposium
on Software Reliability Engineering (ISSRE), 2016, pp. 207–218.

[49] P. He, Z. Chen, S. He, and M. R. Lyu, “Characterizing the natural
language descriptions in software logging statements,” in Proceedings of
the 33rd International Conference on Automated Software Engineering
(ASE), 2018, pp. 178–189.

873

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 01,2020 at 06:35:34 UTC from IEEE Xplore. Restrictions apply.

