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Abstract
Community detection is of crucial importance in
understanding structures of complex networks. In
many real-world networks, communities naturally
overlap since a node usually has multiple com-
munity memberships. One popular technique to
cope with overlapping community detection is Ma-
trix Factorization (MF). However, existing MF-
based models have ignored the fact that besides
neighbors, “local non-neighbors” (e.g., my friend’s
friend but not my direct friend) are helpful when
discovering communities. In this paper, we pro-
pose a Locality-based Non-negative Matrix Factor-
ization (LNMF) model to refine a preference-based
model by incorporating locality into learning ob-
jective. We define a subgraph called “k-degree lo-
cal network” to set a boundary between local non-
neighbors and other non-neighbors. By discrim-
inately treating these two class of non-neighbors,
our model is able to capture the process of commu-
nity formation. We propose a fast sampling strategy
within the stochastic gradient descent based learn-
ing algorithm. We compare our LNMF model with
several baseline methods on various real-world net-
works, including large ones with ground-truth com-
munities. Results show that our model outperforms
state-of-the-art approaches.

1 Introduction
An individual in a social network can not only be regarded
as an individual. One’s behaviors are influenced by peo-
ple around her, especially close friends. And her activi-
ties will influence others as well. A person always appears
in a social network with multiple social identities, e.g., a
(former) graduate student, a family member, a club mem-
ber, a star fan, a company employer, etc. In most cases,
her behaviors are related to one or several of these identi-
ties. Since identities can be defined by communities, dis-
covering such overlapping communities in social networks
becomes an important task for understanding social rela-
tionships and activities. This task is known as overlapping
community detection [Fortunato, 2010; Gavin et al., 2002;
Newman, 2001].

Figure 1: Community is actually the reason behind links.

Unlike classic community detection assuming that commu-
nities are mutually exclusive, overlapping community detec-
tion cannot be directly turned into the traditional graph clus-
tering (i.e., node clustering) problem. Thus, many heuris-
tic methods have been proposed in the past decade to deal
with this task. Early approaches pay more attention on
links. Clique Percolation [Palla et al., 2005; Kumpula et
al., 2008] tries to find all k-cliques (a complete graph with
k nodes) and combine those sharing k − 1 nodes to be
communities. Link clustering [Ahn et al., 2010], on the
other hand, cluster links instead of nodes and assign each
node to all communities that its corresponding links be-
long to. Other recent works such as [Coscia et al., 2012;
Whang et al., 2013] select some seed node and use links to
expand communities. These methods aim to seek communi-
ties via links, but do not address the issue that communities
are the actual reason behind links (see Figure 1). Considering
a user’s ego network [McAuley and Leskovec, 2012], i.e., a
network of connections between her friends where communi-
ties are social circles categorized manually, the reason for two
nodes to build a link is that they are in the same category. For
example, the probability of one’s college mates to be friends
are usually much higher than that of one’s random friends.

Based on the idea that “communities generate links”, Ma-
trix Factorization based model has been employed for over-
lapping community detection. To apply this model, we need
to set the number of communities and randomly assign users
to each community in advance. Then a particular objective
function will be adopted to update the community member-
ship for each node. Previously, a typical objective function
is to minimize ||A − FFT ||, where A is the adjacency ma-
trix of the network and F is the node-community member-
ship matrix. However, this value-approximation based ob-
jective function is problematic in that A only has 0 or 1 in
its entry, which is more like a label (i.e., whether there is
a link or not) than a real value. In order to tackle this is-
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sue, a Preference-based Non-negative Matrix Factorization
(PNMF) model [Zhang et al., 2015] has been proposed very
recently. Instead of approximating the value, it maintains a
pairwise preference order for each node. To be specific, we
assume that Ai,j = 1 and Ai,k = 0. Previous models try to
make FiFTj close to 1 and FiFTk close to 0 while the prefer-
ence based model only expects FiFTj to be larger than FiFTk
without considering their actual values.

However, PNMF simply separates nodes into two parts,
i.e., neighbors and non-neighbors, ignoring the fact that all
non-neighbors are not supposed to be treated equally. In-
spired by the famous saying “my friend’s friend is also my
friend”, in this paper, we propose a Locality-based Non-
negative Matrix Factorization (LNMF) model to refine the
PNMF model by further splitting the non-neighbors into
two parts, namely “local non-neighbors” and “distant non-
neighbors”. We define a “k-degree local network” to dis-
tinguish these two kinds of non-neighbors. Given the two
assumptions that (1) neighbors are preferred to local non-
neighbors and (2) local non-neighbors are preferred to dis-
tant non-neighbors, we obtain the objective function by max-
imizing a product of likelihood. We use the popular stochas-
tic gradient descent as our learning method and provide an
efficient sampling strategy. Experiments conducted on real-
world datasets show that our LNMF model does outperform
the state-of-the-art approaches, indicating that our model as-
sumption makes sense.

The rest of this paper is organized as follows. In Section 2,
we formally define the community detection problem and in-
troduce some most related work in more details. OurLNMF
model and parameter learning process are illustrated in Sec-
tion 3. Section 4 includes experimental details and interpre-
tation of results, followed by the conclusions in Section 5.

2 Problem Definition and Related Work
In this section, we first define the problem of overlapping
community detection and then provide an overview of Ma-
trix Factorization based approaches to which our proposed
solution belongs. In addition, we will particularly take a
look at a Preference-based Non-negative Matrix Factoriza-
tion (PNMF) model on which our proposed model builds.

2.1 Problem Definition
To formally define the problem of community detection, we
need to have a graph in the first place. We denote the graph
as G(V,E), where V is the node set and E is the link or edge
set.

Definition 2.1 (Community). A community C is a subset of
V which consists of all nodes with a certain feature.

Since all nodes in a community share a common feature,
they are more likely to make friends with each other. There-
fore, a community usually has stronger internal connections
and weaker external connection, which matches another def-
inition proposed in [Girvan and Newman, 2002].

Definition 2.2 (Community Detection). Given a graph
G(V,E), community detection aims to find a set of commu-
nities S = {Ci|Ci 6= ∅, Ci 6= Cj , 1 ≤ i, j ≤ p}, which

maximizes a particular objective function f , i.e.,

arg max
S

f(G,S), (1)

where p is the number of communities.
While traditional community detection finds exhaustive

and disjoint communities, i.e., C1

⋃
· · ·

⋃
Cp = V and

Ci
⋂
Cj = ∅ for any i 6= j, overlapping community detection

has no such constraints, which is more general and realistic
in real world.

2.2 Matrix Factorization Based Approaches
As we mentioned, matrix factorization is a popular class of
methods to deal with overlapping community detection prob-
lem. It sets the number of communities in advance and then
learns to assign each node to its corresponding communities.
The objective can be formally defined as follows.
Definition 2.3 (Overlapping Community Detection via
Matrix Factorization). Given a graph G(V,E) with its ad-
jacency matrix A ∈ {0, 1}n×n, the objective of overlap-
ping community detection via matrix factorization is to find
a node-community membership matrix F ∈ Rn×p whose en-
try Fu,c represents the weight of node u ∈ V in community
c ∈ C so that F can minimize a particular loss function l,
i.e.,

arg min
F

l(A,FFT ), (2)

where n is the number of nodes, p is the number of commu-
nities and C is the set of communities. In the end, we obtain
the final set of communities C according to F .

Here we would like to review several important work in
this class. [Psorakis et al., 2011] is the earliest method which
uses the basic ||A − WHT || as its optimization objective.
Due to the vague social meaning of W and H , [Wang et al.,
2011] refines the objective function to ||A − FFT ||. [Zhang
and Yeung, 2012] extends the matrix factorization model to
matrix tri-factorization model by incorporating a community
interaction matrix B, which results in a objective function of
||A − FBFT ||. [Yang and Leskovec, 2013] explicitly de-
fines the probability of having an edge between u and v by a
function of Fu and Fv , then generates the likelihood function
by fitting the original graph. Though these objective func-
tions are different, they are all based on value-approximation,
which is problematic because the 0/1 value in adjacency ma-
trix is more like a label than a value.

2.3 A Preference-based NMF Model
The Preference-based Non-negative Matrix Factorization
model [Zhang et al., 2015] is based on the intuitive idea
that two nodes are more likely to become friends if they
share more common communities. Recall the aforementioned
“communities generate links” assumption, this model wants
to obtain communities by extracting node preference infor-
mation from links.

The basic assumption of this model can be represented as

ru,i ≥ ru,j , if Au,i = 1 and Au,j = 0, (3)

where ru,i is the preference of node u on node i, i.e., how
much u wants to build a link with i, and Au,i is the corre-
sponding entry in adjacency matrix A.
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Notation Meaning
G(V,E) Graph G with node set V and edge set E
Lk(u) u’s k-degree local network in G
Vk(u) node set of Lk(u) except u itself
Sk(u) node set of u’s k-degree local non-neighbors
Tk(u) node set of u’s k-degree distant non-neighbors
N+(u) node set of u’s neighbors
N−(u) node set of u’s non-neighbors

Table 1: A summary of notations.

For each node u, the objective function is to maintain
a preference order of all the other nodes given the node-
community membership matrix, which is denoted as

P(>u |F ).

By applying the results from [Rendle et al., 2009] and de-
noting the set of u’s neighbors as N+(u) and the set of u’s
non-neighbors asN−(u), the above objective function can be
simplified to the form of∏

i∈N+(u),j∈N−(u)

P(ru,i > ru,j |F ). (4)

P(ru,i > ru,j |F ) are defined as σ(Fi · FTj − Fi · FTk ),
where σ(·) is the sigmoid function. The rest steps are quite
standard so we will not go through details.

3 A Locality-based Non-negative Matrix
Factorization (LNMF) Model

In this section, we first define the concept of k-degree local-
ity and then formalize our LPNMF model in the scenario of
community detection. We will also briefly talk about the pro-
cess of parameters learning and provide several candidates of
sampling strategy.

3.1 Preliminaries
Definition 3.1 (k-Degree Local Network). Given an undi-
rected and unweighted graph G, for a node u ∈ G, u’s k-
degree local network Lk(u) is the subgraph consisting of all
nodes whose shortest path length to u is less than or equal to
k.

According to the definition above, L0(u) consists of only
node u, L1(u) is the subgraph including node u and all its
neighbors, L∞(u) is the whole graph, etc. We denote the
node set of Lt(u) except u itself as Vt(u), where t = 1, 2, · · ·.

Now we further define the terms of “local non-neighbors”
and “distant non-neighbors”.

Definition 3.2 (k-Degree Local Non-neighbors). Given a
k-degree local network Lk(u), the set of k-degree local non-
neighbors Sk(u) is defined as Sk(u) := Lk(u)\L1(u), where
k ≥ 1.

Definition 3.3 (k-Degree Distant Non-neighbors). Given
a k-degree local network Lk(u), the set of k-degree distant
non-neighbors Tk(u) is defined as Tk(u) := L∞(u)\Lk(u),
where k ≥ 1.

We can see that when k = 1, Sk(u) = ∅ and Tk(u) =
N−(u). In this case, our model degrades to the PNMF model.
When k ≥ 2, our model will have a new class of nodes in
preference system. Thus, our model is actually a generaliza-
tion of the PNMF model.

A summary of notations is shown in Table 1. Four simple
propositions can be drawn from the above notations.
Proposition 3.1. Vk(u) = N+(u)

⋃
Sk(u).

Proposition 3.2. N+(u)
⋂
Sk(u) = ∅.

Proposition 3.3. N−(u) = Sk(u)
⋃
Tk(u).

Proposition 3.4. Sk(u)
⋂
Tk(u) = ∅.

3.2 Model Assumption
Recall the basic assumption of PNMF in Equation 3. Incorpo-
rating the concept of k-degree local network, we can exploit
k-degree local non-neighbors to enhance the old model as-
sumption. The new model assumption for our LNMF model
can be represented as

ru,i ≥ ru,j , ru,j ≥ ru,d, i ∈ N+(u), j ∈ Sk(u), d ∈ Tk(u),
(5)

where ru,p is still the preference of node u on node p. It
means (1) neighbors are preferred to local non-neighbors; (2)
local non-neighbors are preferred to distant non-neighbors.
These two assumptions are quite intuitive. Notice that when
k = 1, the new model assumption degrades to the old one.

We also adopt two independence assumptions, i.e., node
independence and pair independence assumptions, listed in
[Zhang et al., 2015] in order to formalize our model.
• Node independence. The preference order of each node

is independent with that of any other node. There will be
a link between u and v if and only if u prefers to build
relationship with v and symmetrically v prefers to build
relationship with u.
• Pair independence. For a fixed node i, its preference

on j and k is independent with its preference on u and v
when j, u ∈ N+(i) and k, v ∈ N−(i).

3.3 Model Formulation
Given the above model assumptions, we are ready to present
our LNMF model in a formal way. Since nodes are indepen-
dent of each other, we can consider one node at first.

For each node u, the optimization criterion is to maximize
the likelihood of preference order which can be represented
as a product of pairwise preferences, i.e.,∏

i,j∈Vk(u)

[P(ru,i ≥ ru,j |F )δ(u,i,j)

(1− P(ru,i ≥ ru,j |F ))1−δ(u,i,j)]·∏
j,d∈N−(u)

[P(ru,j ≥ ru,d|F )ξ(u,j,d)

(1− P(ru,j ≥ ru,d|F ))1−ξ(u,j,d)],

(6)

where δ(·) and ξ(·) are two indicator functions that

δ(u, i, j) =

{
1 if i ∈ N+(u) and j ∈ Sk(u),
0 otherwise
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Algorithm 1 Community Detection via LNMF
Input: G, the adjacency matrix of original graph
Output: F , the node-community membership matrix
1: initialize F
2: compute initial loss
3: repeat
4: for num samples = 1 to sample size do
5: sample (u, i, j, d) according to Algorithm 2
6: for each entry Θ in Fu, Fi, Fj and Fd do
7: update Θ according to Equation (10)
8: Θ← max(Θ, 0)
9: end for

10: end for
11: compute loss
12: until convergence or max iter is reached

and

ξ(u, j, d) =

{
1 if j ∈ Sk(u) and d ∈ Tk(u),
0 otherwise .

Recall the four propositions in preliminaries that Vk(u) and
N−(u) can be split into two disjoint sets with different levels
of preference. Following the scheme argued in [Rendle et al.,
2009; Zhao et al., 2014], we can simplify Equation 6 to∑

i∈N+(u),j∈Sk(u)
P(ru,i ≥ ru,j |F )

|N+(u)| · |Sk(u)|
+∑

j∈Sk(u),d∈Tk(u)
P(ru,j ≥ ru,d|F )

|Sk(u)| · |Tk(u)|
.

(7)

Applying the sigmoid function σ(x) := 1
1+e−x to interpret

P(ru,i ≥ ru,j |F ), i.e., P(ru,i ≥ ru,j |F ) = σ(x̂(u, i) −
x̂(u, j)), we sum up the log-likelihood functions of all nodes:∑

u

[
∑

i∈N+(u),j∈Sk(u)

lnσ(x̂(u, i)− x̂(u, j))+

λ(u) ·
∑

j∈Sk(u),d∈Tk(u)

lnσ(x̂(u, j)− x̂(u, d))],
(8)

where x̂(u, i) := Fu · FTi can be regarded as the correlation
between u and i, and λ(u) := |N+(u)|

|Tk(u)| can be regarded a
coefficient of local influence.

In the end, to prevent our model from overfitting, we add a
regularization term reg(F ) = ||F ||2F , which is the Frobenius
norm of the node-community membership matrix. The final
objective function l is

l(F ) =
∑
u

[
∑

i∈N+(u),j∈Sk(u)

lnσ(x̂(u, i)− x̂(u, j))+

λ(u)·
∑

j∈Sk(u),d∈Tk(u)

lnσ(x̂(u, j)− x̂(u, d))]− λrreg(F ),

(9)
where λr is a regularization coefficient.

3.4 Parameter Learning
As an efficient and widely-used paradigm for parameter
learning, stochastic gradient descent (SGD) is employed as

Algorithm 2 Sampling Strategy
Input: G, the adjacency matrix of original graph
Output: (u, i, j, d), a quadruple to perform a step in

stochastic gradient descent
1: sample node u from V uniformly at random
2: sample node i from N+(u) uniformly at random
3: sample node j from Sk(u) uniformly at random
4: sample node d from Tk(u) uniformly at random

our learning algorithm. Distinguished from the traditional
batch gradient descent which computes Equation 9 in each
iteration, SGD only picks a small number of random sam-
ples to perform update. In our case, a sample is a (source,
neighbor, local non-neighbor, distant non-neighbor) quadru-
ple. Mathematically, we calculate the derivative of our final
objective function l by

Θt+1 = Θt + α
∂l

∂Θ
, (10)

where is Θ can be any entry of the node-community mem-
bership matrix F . For the non-negative constraints, we apply
a projected gradient method proposed in [Lin, 2007], which
maps the parameter vector back to the nearest point in pro-
jected space, in our case, the non-negative space.

The whole process is described in Algorithm 1. Let sample
size be t. The time complexity of each iteration is O(tp)
and the space complexity is O(np), where n is the number
of nodes and p is the number of communities.

3.5 Sampling Strategy and Other Issues
Due to the nature of stochastic gradient descent, sampling
strategy matters to both running time and performance. More
than what PNMF did, we need to sample a set of quadru-
ples for each learning step. The process is described in
Algorithm 2.

For the sampling of j, we need to pre-process the whole
graph to record a set of local nodes of each u in the graph.
By using the fact that N−(u) = Sk(u)

⋃
Tk(u), we keep

sampling a random node until we get a node neither inN+(u)
nor in Sk(u) and let d be this node.

Moreover, there are several remaining issues to be dis-
cussed.

• The number of communities. The nature of matrix
factorization needs us to set the number of communi-
ties which are unknown in advance. A cross-validation
paradigm is used. In details, we reserve 10% of nodes
as validation set at first. After learning the node-
community membership matrix F , we compute the sum
of log-likelihood function for all nodes in validation set
via Equation 7. Since the computational cost is huge for
cross-validation, only a small set of quadruple will be
sampled.

• The community membership threshold. Obtaining
the node-community membership matrix F is still one
step away from getting the final node-community corre-
spondence. We need to set a threshold to decide whether
a community accepts a node. We employ the approach
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Dataset V E

Dolphins 62 159
Les Misérables 77 254
Books about US politics 105 441
Word adjacencies 112 425
American college football 115 613
Coauthorship in network science 1,589 2,742

Table 2: Statistics of six Newman’s datasets. V: number
of nodes, E: number of links.

in [Zhang et al., 2015] to deal with this issue. In
short words, we set a probability threshold to P(ru,i ≥
ru,j |F ) and use the sigmoid function to reversely com-
pute the lower bound of community membership weight
assuming that u, i share one community but u, j do not
share any community.

• The convergence criterion. First, we randomly gener-
ate a subset of quadruples to be our loss sample and com-
pute initial loss on this set according to Equation 9. After
each iteration, we need to compute loss again and we
stop stochastic gradient descent when the absolute dif-
ference between current loss and previous loss is smaller
than a very small percentage, say ε, of initial loss.

4 Experiments
In this section, we compare our LNMF model with both
classic and state-of-the-art overlapping community detection
methods on various real-world datasets. We will show our ex-
perimental results with two metrics, namely modularity and
F1 score, and have a brief discussion.

4.1 Data Description
Six benchmark networks collected by Newman1 are used as
our datasets. These networks are relatively small and have
no ground-truth communities. Basic information of these
datasets can be found in Table 2.

Moreover, we choose three large networks with ground-
truth communities collected by SNAP2 [Yang and Leskovec,
2012] to test the scalability of our model. These networks are
of different types:

• YouTube dataset: a social network of a video-sharing
web site.

• DBLP dataset: a collaboration network of research
paper authors in computer science.

• Amazon dataset: a products co-purchasing network
based on Customers Who Bought This Item Also
Bought feature of the Amazon website.

Simple statistics for these three datasets are shown in Table 3.

4.2 Experimental Setup
We conduct our experiments on a computer with a Xeon
2.60GHz CPU and 64GB memory.

1http://www-personal.umich.edu/ mejn/netdata/
2http://snap.stanford.edu/data/

Dataset V E C U

DBLP 317k 1.0M 2.5k 429.8
Amazon 335k 926k 49k 100.0
YouTube 1.1M 3.0M 30k 9.7

Table 3: Statistics of three SNAP datasets. V: number of
nodes, E: number of links, C: number of ground-truth
communities, U: average number of nodes per commu-
nity.

Comparison methods. We select both classic and state-of-
the-art methods to compare with our model. The latter four
are Non-negative Matrix Factorization (NMF) based models.

• SCP [Kumpula et al., 2008] accelerates the original CP
method [Palla et al., 2005] in a sequential manner. We
set k to be 4 or 5 when finding k-cliques.

• LC [Ahn et al., 2010] clusters link instead of node to get
overlapping communities. We ignore all communities
with only one or two nodes since they are meaningless.

• BNMF [Psorakis et al., 2011] is one of the earliest work
which applies MF into community detection. Squared
loss is used as loss function.

• BNMTF [Zhang and Yeung, 2012] incorporates a com-
munity interaction matrix into the classic MF to become
a Matrix Tri-Factorization model. Squared loss is used
as loss function.

• BigCLAM [Yang and Leskovec, 2013] is claimed by its
authors as a scalable model. It can search for the best
number of communities given a range.

• PNMF [Zhang et al., 2015] is the model on which our
proposed model builds.

Evaluation metrics.
• Modularity. We use the classic modularity as our met-

ric for Newman’s datasets. Modularity Q is defined as

Q =
1

2m

∑
u,v∈V

(Au,v −
d(u)d(v)

2m
)|Cu ∪ Cv|,

where m is the number of links, V is the node set,
A is the adjacency matrix, d(u) is the degree of node
u, and Cu is the set of communities to which node u
belongs. This definition indicates that for each node
pair (u, v) which shares communities, its contribution
to modularity is positive if u, v are linked and is nega-
tive otherwise. It matches our intuition that nodes inside
one community tends to build links with each other.

• F1 score. For SNAP datasets with ground-truth com-
munities, F1 score is obviously one of the best mea-
surements. The F1 score of a detected community
Si is defined as the harmonic mean of precision(Si)
and recall(Si), where precision(Si) and recall(Si) are
defined as

precision(Si) = max
j

Cj
⋂
Si

|Cj |
,

2398



Dataset SCP LC BNMF BNMTF BigCLAM PNMF LNMF(RI)
Dolphins 0.305 0.654 0.507 0.507 0.423 0.979 1.086(10.9%)
Les Misérables 0.307 0.773 0.125 0.103 0.540 1.103 1.184(7.3%)
Books about US politics 0.496 0.851 0.461 0.492 0.529 0.864 1.270(47.0%)
Word adjacencies 0.071 0.271 0.254 0.268 0.231 0.668 0.701(4.9%)
American College football 0.605 0.891 0.558 0.573 0.518 1.049 1.235(17.7%)
Coauthorships in network science 0.729 0.956 0.661 0.741 0.503 1.657 2.310(39.4%)

Table 4: Comparison in terms of modularity. RI: Relative Improvement over PNMF.

Dataset BigCLAM PNMF LNMF(RI)
DBLP 0.039 0.098 0.107(9.2%)
Amazon 0.044 0.042 0.048(11.4%)
YouTube 0.019 0.060 0.057(0.0%)

Table 5: Experimental results on SNAP datasets in terms
of F1 score. RI: Relative Improvement over PNMF.

and

recall(Si) = max
j

Cj
⋂
Si

|Si|
,

where Cj is the node set of a ground-truth community.
The averageF1 score for the set of detected communities
S is

F1(S) =
1

|S|
∑
Si∈S

F (Si).

Setting the k. Remember that if we set k = 1 in k-degree
local network, our model will degrade to the PNMF model.
According to our observation on several datasets, if k is set
to be larger than 2, the average number of common com-
munities two nodes in a k-degree local network share is not
significantly larger than that two random nodes in the whole
network share. Thus, we set k to be 2, which means only a
friend’s friends are considered as local non-neighbors.

4.3 Results
We set the regularization coefficient to be 0.5 and the con-
vergence parameter ε to be 0.001 for all experiments. The
sample size t is determined according to data size. For New-
man’s datasets, we set t = m, i.e., the number of links. For
SNAP datasets, we set t = 10

√
n in order to finish one itera-

tion without taking too much time, where n is the number of
nodes. The maximum times of iteration is set to 100, though
in fact all datasets converge before reaching the limit.

Table 4 shows the performance of our LNMF model on
Newman’s datasets. From the results we find that under the
metric of modularity, our LNMF model outperforms all base-
line methods on all datasets.

Table 5 shows the our experimental results on SNAP
datasets. The other baselines methods are not listed here since
none of them can finish all three datasets in time. This fact
can reflect the scalability of our LNMF model to some ex-
tend. It can be seen that our model outperforms BigCLAM
on all datasets and has improvement over PNMF on two of
three datasets. For YouTube, we find its community forma-
tion pattern quite random due to small size of communities
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Figure 2: Convergence speed of learning algorithm

and large variety of users. In other words, our model assump-
tion does not fit the community pattern of this dataset so well.
This may explain why LNMF fails to have improvement on it.
The running time of one iteration is about one or two hours
for DBLP and Amazon. For YouTube, it takes about four to
five hours to finish an iteration.

The convergence speed of our learning algorithm on Ama-
zon and DBLP is illustrated in Figure 2. A point in the figure
represents the ratio of current loss to initial loss after i-th iter-
ation. The results show that our LNMF can converge within
a fair number of iterations. In fact, if we do not consider the
regularization term, the final losses of both datasets are less
than 10% of the initial loss.

5 Conclusion And Future Work
In this paper, we propose a Locality-based Non-negative Ma-
trix Factorization model to improve the performance of ex-
isting work on overlapping community detection. Our LNMF
model is based on a pairwise preference learning scheme. We
exploit local area around a node formally defined as k-degree
local network to enhance the previous preference system. In
details, we extend a two-level preference system which only
distinguish neighbors and non-neighbors to a three-level pref-
erence system which split the set of non-neighbors into local
non-neighbors and distant non-neighbors. Experiments on
several real-world datasets including large ones with ground-
truth communities show that this extension can indeed im-
prove the quality of overlapping community detection.

2399



Our model can be further generalized by extending the
preference system from three-level to n-level. Mathemati-
cally, according to the notations in Section 3.1, now Pk(u) :=
Lk(u)\Lk−1(u) for each k ≥ 1 is a node set of a particu-
lar preference level of node u and u’s preference on Pi(u)
is larger than its preference on Pj(u) if i > j. For model
formulation, we only need to modify a few spots to make
it a more general one. However, our learning algorithm is
not efficient enough. Specifically, a natural extension of our
sampling strategy suffers two main problems: (1) for differ-
ent nodes, the upper limit of k is different; (2) for each node
u, pre-processing the whole graph to record node sets of all
preference levels is equal to a breath-first search starting from
u, which is too expensive for large-scale networks. We plan
to first conduct empirical study to see whether this extension
makes sense. If it does, we will try to find solutions for the
problems mentioned above.
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and Tamás Vicsek. Uncovering the overlapping commu-
nity structure of complex networks in nature and society.
Nature, 435(7043):814–818, 2005.

[Psorakis et al., 2011] Ioannis Psorakis, Stephen Roberts,
Mark Ebden, and Ben Sheldon. Overlapping commu-
nity detection using bayesian non-negative matrix factor-
ization. Physical Review E, 83(6):066114, 2011.

[Rendle et al., 2009] Steffen Rendle, Christoph Freuden-
thaler, Zeno Gantner, and Lars Schmidt-Thieme. Bpr:
Bayesian personalized ranking from implicit feedback.
In Proceedings of the Twenty-Fifth Conference on Un-
certainty in Artificial Intelligence, pages 452–461. AUAI
Press, 2009.

[Wang et al., 2011] Fei Wang, Tao Li, Xin Wang, Shenghuo
Zhu, and Chris Ding. Community discovery using nonneg-
ative matrix factorization. Data Mining and Knowledge
Discovery, 22(3):493–521, 2011.

[Whang et al., 2013] Joyce Jiyoung Whang, David F Gleich,
and Inderjit S Dhillon. Overlapping community detection
using seed set expansion. In Proceedings of the 22nd ACM
international conference on Conference on information &
knowledge management, pages 2099–2108. ACM, 2013.

[Yang and Leskovec, 2012] Jaewon Yang and Jure
Leskovec. Defining and evaluating network commu-
nities based on ground-truth. In Proceedings of the ACM
SIGKDD Workshop on Mining Data Semantics, page 3.
ACM, 2012.

[Yang and Leskovec, 2013] Jaewon Yang and Jure
Leskovec. Overlapping community detection at scale: a
nonnegative matrix factorization approach. In Proceed-
ings of the sixth ACM international conference on Web
search and data mining, pages 587–596. ACM, 2013.

[Zhang and Yeung, 2012] Yu Zhang and Dit-Yan Yeung.
Overlapping community detection via bounded nonnega-
tive matrix tri-factorization. In Proceedings of the 18th
ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 606–614. ACM, 2012.

[Zhang et al., 2015] Hongyi Zhang, Irwin King, and
Lyu Michael R. Incorporating implicit link preference
into overlapping community detection. In Proceedings
of the Twenty-Ninth AAAI Conference on Artificial
Intelligence. ACM, 2015.

[Zhao et al., 2014] Tong Zhao, Julian McAuley, and Irwin
King. Leveraging social connections to improve person-
alized ranking for collaborative filtering. In Proceedings
of the 23rd ACM International Conference on Conference
on Information and Knowledge Management, pages 261–
270. ACM, 2014.

2400




