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ABSTRACT
Recommendation techniques have been well developed in the
past decades. Most of them build models only based on user
item rating matrix. However, in real world, there is plenty of
auxiliary information available in recommendation systems.
We can utilize these information as additional features to
improve recommendation performance. We refer to recom-
mendation with auxiliary information as context-aware rec-
ommendation. Context-aware Factorization Machines (FM)
is one of the most successful context-aware recommendation
models. FM models pairwise interactions between all fea-
tures, in such way, a certain feature latent vector is shared
to compute the factorized parameters it involved. In prac-
tice, there are tens of context features and not all the pair-
wise feature interactions are useful. Thus, one important
challenge for context-aware recommendation is how to effec-
tively select “good” interaction features. In this paper, we
focus on solving this problem and propose a greedy interac-
tion feature selection algorithm based on gradient boosting.
Then we propose a novel Gradient Boosting Factorization
Machine (GBFM) model to incorporate feature selection al-
gorithm with Factorization Machines into a unified frame-
work. The experimental results on both synthetic and real
datasets demonstrate the efficiency and effectiveness of our
algorithm compared to other state-of-the-art methods.
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1. INTRODUCTION
Recommendation systems have been well studied in the

past decades. Most of them mainly focus on context un-
aware methods, e.g. only consider user and item interac-
tions. Among them, matrix factorization methods [16, 27]
have become popular due to their good performance and ef-
ficiency in dealing with larger dataset. These methods focus
on approximating user item rating matrix using low rank
representations, and use them to make further predictions.
However, in real world scenarios, plenty of auxiliary informa-
tion is available and is proved to be useful especially in large
industry datasets. For example, in the Weibo celebrity rec-
ommendation scenario, both the user’s and celebrity’s meta
data (such as age and gender), the popularity of a celebrity,
the recent following behavior of the user, etc. can help make
better recommendations. Recent work in KDDCup 2012 1

[23, 7] show the effectiveness of utilizing auxiliary informa-
tion for recommendation.

In regarding of utilizing auxiliary information, several meth-
ods have been studied to incorporate meta data (e.g., user
profile, movie genre,etc.) [18, 30] and more general auxiliary
information such as session information [32, 2, 14, 22, 25].
In these methods, auxiliary information is encoded as fea-
tures and together with user and item they are mapped from
feature space into a latent space. The Factorization Ma-
chine (FM) model [25] is currently a very strong and flexible
method which easily incorporates any categorical features.
However, it is common that there are tens of context fea-
tures in real data. In FM, all features are assumed to be
interacted with all other features. For example, assuming
there are n features, then for a certain feature i, the latent
vector vi is shared with n− 1 interaction features. It is not
always the case that all the feature interactions are useful.
Useless feature interactions will introduce noise in learning
latent feature vector vi. Thus it is challenging to automati-
cally select useful interaction features to reduce noise.

The most recent work in [6] introduced an automatic fea-
ture construction method in matrix factorization using gra-
dient boosting. In their method, feature functions are con-
structed using greedy gradient boosting method and then
incorporated into the matrix factorization framework. Dif-
ferent from their method, in our paper, we focus on select-
ing useful interaction features under factorization machines
framework. At each step, we propose a greedy gradient
boosting method to efficiently select interaction features,
and then we additively optimize the selected latent vector by

1http://www.kddcup2012.org/
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optimizing the residual loss. Another difference is that our
method is more efficient in selecting categorical feature in-
teractions compared to the binary decision tree construction
algorithm in [6]. The contribution of our paper is summa-
rized as follows:

• We propose an efficient feature interaction selection
algorithm using gradient boosting which can reduce
noise compared to factorization machines methods.

• We proposed a novel Gradient Boosting Factorization
Machines Model (GBFM) by incorporating the feature
selection algorithm with factorization machines into a
unified framework.

• The experiment results in both synthetic and real data
show the effectiveness of our proposed methods com-
pared to factorization machines and other state-of-the-
art methods.

The rest of the paper is organized as follows. Section 2
introduces the related work. Section 3 gives the details of
our methods. Section 4 presents the experiment results and
discussions. The paper is concluded in Section 5.

2. RELATED WORK
The work present in this paper is closely related to tra-

ditional matrix factorization models, context-aware recom-
mendation and gradient boosting. In the following, we briefly
review the related work.

2.1 Matrix Factorization
Matrix factorization techniques [29, 4, 16, 27, 2] have

been shown to be particularly effective in recommender sys-
tem as well as the well-known Netflix prize competitions2.
They usually outperform traditional item-based methods
[28]. The main idea behind matrix factorization is to learn
two low rank latent matrices U ∈ Rk×m and V ∈ Rk×n
to approximate the observed user item rating matrix R ∈
Rm×n so that

R ≈ UTV, (1)

where m,n are the number of users and items respectively
and k is the dimension of low rank matrices.

We assume that the conditional distribution over the ob-
served rating is:

p(R|U, V, σ2
R) =

m∏
i=1

n∏
j=1

[N (Rij |UiV Tj , σ2
R)]I

R
ij , (2)

where N (x|µ, σ2) is the probability density function of the
Gaussian distribution with mean µ and variance σ2, and IRij
is the indicator function that is equal to 1 if user ui rated
item vj and equal to 0 otherwise. The zero-mean spheri-
cal Gaussian priors are also placed on user and item latent
feature vectors:

p(U |σ2
U ) =

m∏
i=1

N (Ui|0, σ2
UI), p(V |σ2

V ) =

n∏
j=1

N (Vj |0, σ2
V I),

(3)

2http://www.netflixprize.com

through a Bayesian inference, we have the following objec-
tive function:

min
U,V

1

2

m∑
i=1

n∑
j=1

IRij(Rij − UiV Tj )2 +
λ1

2
‖U‖2F +

λ2

2
‖V ‖2F . (4)

The above equation can be easily solved either by stochastic
gradient descent (SGD) or alternating least squares (ALS).

2.2 Context-aware recommendation
Most traditional matrix factorization method mainly an-

alyze the user item rating matrix thus they are context un-
aware. Contextual information has proved to be useful in
recommender systems and already have been widely studied.
In order to incorporate auxiliary information, several vari-
ants of matrix factorization have been proposed. In [17, 33],
temporal features are explored to help capture user prefer-
ence more precisely. Socical [20, 13] or location information
[35, 8, 9] also have been explored. The meta-data like user
age or item genre are incorporated into the matrix factoriza-
tion model [30, 18]. In addition to the meta-data which is
attached to user or item itself, the context features include
information attached to the whole recommendation event
such as user’s mood, day of the week, etc. as well.

The most basic approach for context aware recommen-
dation is to conduct pre-filtering or post-filtering where a
standard context-unaware method is applied [21, 1]. Bal-
trunas et al. [3] proposed a simple model that introduced
a basis term for each context feature or item context in-
teraction feature. Context information is encoded in these
additional parameters. More generally, Karatzoglou et al.
[14] proposed a multiverse recommendation model by mod-
eling the data as a user-item-context N-dimension tensor.
Then Tucker decomposition [31] is applied to factorize the
tensor. However, the computation complexity of this model
is Θ(km) where k is the dimension of low rank vectors and
m is the number of features, which is intolerable in practice.
Rendle et al. [25] proposed to apply factorization machines
(FM) [22] to overcome the problem in Multiverse recommen-
dation. They transform the recommendation data into a
prediction problem and FM models all interactions between
pairs of features with the target. They further proposed
to deal with relational data in [24] through block structure
within a feature which have repeating patterns.

The idea of tree based random partition has been explored
in [36, 19]. Zhong et al. [36] assumed that contextual infor-
mation is reflected by user and item latent vectors. In their
method, the random tree partition is conducted to split the
user item matrix by grouping users and items with simi-
lar contexts. Then matrix factorization is applied on the
sub-matrices. Liu et al. [19] employ the similar idea but
explicitly use context information to split the user item ma-
trix into sub matrices according to specific context values.
The prediction is the average values of each prediction from
T generate decision trees. However, they fail to discuss how
to select useful features especially when there are tens of
features.

2.3 Gradient Boosting
Gradient Boosting have been successfully used in classifi-

cations [12] and learning to rank [34, 5]. In each step, gra-
dient boosting greedily conducts coordinate descent in the
function space to select a feature function. Chen et al. [6]
proposed to use gradient boosting method to automatically
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(a) Online rating example (b) User item rating
matrix

(c) Context-aware prediction

Figure 1: Context-aware recommendation

construct feature function for each user(item) latent vector
at each step. Time dependent feature function and demo-
graphic feature function construction is discussed in their
work. Different from their work, in our paper, we employ
gradient boosting algorithm to find the best feature inter-
action at each step, then similar to gradient boosting, we
additively optimize the latent feature vectors. Besides, in
real world, there are many categorical features with large
size, the binary tree splitting algorithm in their work is not
efficient in deal with such features.

3. GRADIENT BOOSTING FACTORIZATION
MACHINES

In this section, we first describe the context-aware recom-
mendation problem we study in this paper and define the no-
tations, and then we briefly review context-aware FMs which
is closely related to our work. Then we present the details
of our proposed Gradient Boosting Factorization Machines
Model followed by complexity analysis and discussions.

3.1 Preliminaries and Problem Definition
Figure 1(a) shows an example of context-aware online rat-

ing system. Traditional recommendation systems consider
only the user rating matrix 1(b) to make recommendations.
However, rich context information is available and easy to
obtain in real world. For example, in Fig. 1(a) we can easily
get the rating time and the rating comments. These infor-
mation provide a new information dimension for recommen-
dation. We can encode the context information as well as
user and item as either real value or categorical features, and
the rating as the target value. In such way, we can trans-
form the context aware recommendation into a prediction
problem as shown in Fig.1(c). The figure shows an example
about users U watch movies I in mood M:

U = {u1, u2, u3}
I = {i1, i2, i3, i4}
M = {Happy,Normal, Sad}

Then the first tuple in Fig.1(c) states that user u1 gave movie
i1 4 stars in a Happy mood.

Next we give the formal definition of context-aware rec-
ommendation problem. We denote the user set as U and the
item set as V. Assume there are another m− 2 context fea-
tures, we further denote the context features as C3, . . . , Cm.
In fact, user and item can be regarded as the first and second
“context” feature. For simplicity, we denote user set as C1
and item set as C2. In our paper, we consider only categori-
cal features for simplicity, since in practice most features are
categorical [23] and for real value features can also be seg-
mented into categorical features. The training data can be

encoded as feature vectors as shown in Fig 1(c) by transform-
ing categorical features to indicator variables. We denote ni
as the number of different feature values for context feature
Ci. Each context feature set is Ci = {ci,0, . . . , ci,ni}. We fur-
ther denote the length of feature vector as d which equals to
n1 + . . .+nm. Training data is denoted as S =

∑N
i=1(xi, yi),

where N is the total training instance number, xi ∈ Rd,
yi ∈ R are feature vector and target value for instance i re-
spectively. Our problem is to estimate the following rating
function

ŷ : Rd → R, (5)

that minimize the following objective function:

arg min
Θ

N∑
i=1

l(ŷi, yi) + Ω(ŷ), (6)

where l is a differentiable convex loss function that measures
the difference between the prediction rating ŷi and the tar-
get rating yi, Θ is parameter set to be estimated. The sec-
ond term Ω measures the complexity of the model to avoid
overfitting.

3.2 Context-aware FM
Factorization Machines [22] is a generic model class that

subsumes many well-known recommendation methods in-
cluding SVD++[16], matrix factorization [29] and PITF[26].
Rendle et al. [25] proposed to apply FM to solve context-
aware recommendation problem and it has proven to be ef-
fective in KDDCup 2012 [23] as well.

In [25], factorization machines is restricted to be 2-way
FMs. In such setting, the FM models all interactions be-
tween pairs of variables with the target including nested
ones, by using factorized interaction parameters. The rating
prediction function is:

ŷ(x) := w0 +

d∑
i=1

wixi +

d∑
i=1

d∑
j=i+1

ŵi,jxixj . (7)

From the perspective of classification problem, w0 is the
global bias, wi is the weight for feature xi and ŵi,j is the
weight for feature xixj . We refer feature xixj as interaction
feature which indicates the instance have both feature value
xi and xj . For example, the first tuple in Fig. 1(c) one
interaction feature is u1v1 since we have user u1 and item
v1 in the tuple.

The factorized parameters ŵi,j is defined as:

ŵi,j := 〈vi,vj〉 =

k∑
f=1

vi,f · vj,f . (8)

The model parameters Θ that need to be estimated are:

w0 ∈ R, w ∈ Rd, V ∈ Rd×k. (9)
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Note that the latent matrix V can be regarded as the con-
catenation of all m latent feature matrices Vi ∈ Rni×k, i =
1, . . . ,m. The final objective function is

arg min
Θ

N∑
i=1

l(ŷ(xi), y) +
∑
θ∈Θ

λ(θ)θ
2, (10)

where λ(θ) is the regularization parameters. In practice, l
can be logit loss for binary classification problems:

l(ŷ, y) = log(1 + exp(−ŷy)) (11)

or least square loss for regression

l(ŷ, y) = (ŷ − y)2. (12)

In practice, it is not surprising that we can have tens of
context features 3 and not all interaction features are useful
for rating prediction. Note that FM models all pairwise
interactions between context features, while the weight of
interaction feature is defined in Eq. 8. The latent vector vi is
shared by all other feature vector vj in order to estimate the
feature weight ŵi,j . If the feature interaction feature xixj
is not useful i.e. in practice, the estimate function ŷ does
not have the item ŵi,jxixj , in such case, the estimation for
parameter vj and vj will be affected. In order to effectively
select “good” interaction features, we propose our Gradient
Boosting Factorization Machines model.

3.3 Gradient Boosting Factorization Machines

3.3.1 GBFM Training
In this section, we present our proposed GBFM training

algorithm. To relieve the problem in FM discussed in pre-
vious section, we borrow the idea of boosting methods [10]
to select one interaction feature at each step and additively
optimize the target function. The rating prediction function
in our model is defined as:

ŷs(x) := ŷs−1(x) +
∑
i∈Cp

∑
j∈Cq

I[i, j ∈ x]〈Vi
p,V

j
q〉, (13)

where s is the iteration step of the learning algorithm. At
step s, we greedily select two interaction features Cp and
Cq where I is the indicator function, the value is 1 if the
condition holds otherwise 0. The feature selection algorithm
we will introduce later. Vp ∈ Rnp×k and Vq ∈ Rnq×k are
the low rank matrices for feature Cp and Cq, k is the low
rank dimension. After interaction features Cp and Cq are
selected, we estimate the parameters Vp and Vq at step s.
For example, at step s we select the interaction between user
and item, we need to learn the low rank latent matrices U
and V. The objective function for estimate Vp,Vq is:

arg min
Vp,Vq

N∑
i=1

l(ŷs(xi), yi) + ‖Vp‖2F + ‖Vq‖2F . (14)

Assume we totally have S steps, we denote Csp and Csq as in-
teraction feature selected at step s, then the final prediction
function is:

ŷS(x) = ŷ0(x) +

S∑
s=1

∑
i∈Csp

∑
j∈Csq

I[i, j ∈ x]〈Vi
sp,V

j
sq〉, (15)

3In KDDCup 2012 Task 1 we can easily extract around 20
features, there are more features in real industry world.

where ŷ0(x) is the initialized prediction function.
The details of the algorithm are shown in Algorithm 1.

Algorithm 1 Gradient Boosting Factorization Machines
Model

1: Input: Training Data S = {xi, yi}Ni=1

2: Output: ŷS(x) = ŷ0(x) +
∑S
s=1〈vsi,vsj〉

3: Initialize rating prediction function as ŷ0(x)
4: for s = 1→ S do
5: Select interaction feature Cp and Cq from Greedy Fea-

ture Selection Algorithm
6: Estimate latent feature matrices Vp and Vq

7: Update ŷs(x) := ŷs−1(x) +
∑
i∈Cp

∑
j∈Cq I[i, j ∈

x]〈Vi
p,V

j
q〉

8: end for

3.3.2 Greedy Feature Selection Algorithm
In this section, we show how to effectively select “good”

interaction features at each step which is the core part of our
model. From the view of gradient boosting machine, at each
step s, we would like to search a function f in the function
space F that minimize the objective function:

L =

N∑
i=1

l(ŷs(xi), yi) + Ω(f), (16)

where ŷs(x) = ŷs−1(x) + αsfs(x). In our GBFM, the func-
tion f is set to factorized feature interactions like in FM.
However, it is impossible to search all feature interactions
to find the best (i.e. decrease the objective function most)
due to high computation complexity. In order to find the
desirable interaction features, we propose a greedy layer-
wised algorithm to find the n-way interaction features. Our
idea is as follows: there are n layers in total, at each layer,
we greedily select the feature Ci that makes the objective
function decrease fastest. At the end, we will get the n-
way interaction feature. we heuristically assume that the
function f has the following form:

fl(x) =

l∏
t=1

qCi(t)(x), (17)

where qCi(t)(x) is the function learned at layer t with i(t)-th
context feature selected. The function q maps latent feature
vector x to real value domain. There are d elements in
feature set, for each element we assign a weight wtj to it.
The function qCi(t)(x) is defined as:

qCi(t)(x) =
∑

j∈Ci(t)

I[j ∈ x] · wtj , (18)

where I is the indicator function. Although the q looks very
complex, in fact, in each instance there is only one non-zero
element corresponding to feature Ci(t), the function value
just takes the weight corresponding to the non-zero element.
Take the instances in Fig. 1(c) for example again, suppose
we select feature C1 at layer t, then the q function for first
tuple is wt1.

Searching function f to optimize the objective function
in Eq. 16 can be hard for a general convex loss function l.
The most common way is to approximate it by least-square
minimization [11]. We denote the negative first derivative
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and the second derivative at instance i as gi and hi:

gi = −∂l(ŷs(xi), yi)
∂ŷs(xi)

|ŷs(xi)=ŷs−1(xi) (19)

hi =
∂2l(ŷs(xi), yi)

∂ŷs(xi)2
|ŷs(xi)=ŷs−1(xi). (20)

The first part of Eq. 16 can be approximate as:

L =

N∑
i=1

l(ŷs−1(xi) + αsfs(xi), yi)

≈
N∑
i=1

l(ŷs−1(xi), yi)− gi(αsfs(xi)) +
1

2
hi(αsfs(xi))

2

(21)

The Eq. 21 is equivalent to:

L(f) =

N∑
i=1

hi(gi/hi − fs(xi))2 + Ω(fs) (22)

Replace the fs function with the heuristic f defined in Eq. 18,
we get the objective function for selecting n-way interaction
features. Even using heuristic functions, finding the best
interaction feature is still impossible. Instead, we learn the
function fl layer by layer. At layer t, we assume that the
function qCi(1) , . . . , qCi(t−1)

have been learned, i.e. ft−1 has

been learned. Suppose at layer t we select i(t)-th feature,
then we have:

ft(x) = ft−1(x) · qCi(t)(x). (23)

Our problem is finalized to find the i(t)-th feature which:

arg min
i(t)∈{1,...,m}

N∑
i=1

hi(
gi
hi
−ft−1(xi)·qCi(t)(xi))

2+λ
∑
θ∈Θ

θ2, (24)

where here we use L2-regularization to control the model
complexity. To obtain the feature i(t) minimize Eq. 24, we
calculate the function q for all features. Without loss of
generality, we assume the selected feature at layer t is Ci(t).
The problem is actully transformed to estimating the weight
for each ni(t) item in feature Ci(t). For a certain element j
in Ci(t), we denote its corresponding weight as wij . The
solution for wij is:

wij = arg min
w

N∑
i=1

hi(gi/hi − ft−1(xi) · I(j ∈ xi) · w)2 + λw2

(25)
We denote zi = gi/hi and let

a =

N∑
i=1

d∑
j=1

I(xj == zj)zihift−1(xi)

b =

N∑
i=1

d∑
j=1

I(xj == zj)hi(ft−1(xi))
2

(26)

Then the solution for wij is:

wij =
a

b+ λ
. (27)

Note that although we need to calculate q function for all
features, we can compute a, b for all features at the same

time by scanning the training data just once. After we get
the q function for all features, it is easy to select the best
feature which satisfies Eq. 24. We repeat this process at
each layer, at the end we can obtain the heuristic n-way
interaction feature. Like FM, in our method, we consider
2-way interaction feature only. The details of the algorithm
are shown in Algorithm 2.

Algorithm 2 Greedy Feature Selection Algorithm

1: Input: Training Data S = {xi, yi}Ni=1,context feature set C
2: Output: n-way interaction feature Ci(1), . . . , Ci(n).

3: for l = 1→ n do
4: A = ∅ // A is the set of context features already selected
5: Maintain two vectors a and b for all categorical values in

C, both initialized to 0
6: for (xi, yi) in S do
7: compute tempa = zihift−1(xi) and tempb =

hi(ft−1(xi))
2

8: for j = 1→ d do
9: if xij is non-zero and not in A then

10: add tempa to aj and tempb to bj
11: end if
12: end for
13: end for
14: Compute weight for all categorical features in C − A ac-

cording to Eq. 25.
15: Select the feature Ci(l) according to Eq. 24.

16: Add feature Ci(l) into A
17: end for

3.3.3 Complexity Analysis
The computation complexity for Greedy Feature Selection

Algorithm is O(n · N), where N is the training data size,
n is the number of layers. At each layer, the q function
can be computed though scanning the training dataset once
as described in Algorithm 2. Then best feature selection
according to Eq. 24 can also be carried out by the training
dataset once. Usually, n� N , in 2-way FM, n = 2. So the
computation cost for Algorithm 2 is O(N).

In Algorithm 1, the estimation for Vp and Vq is usually
carried out by stochastic gradient descent (SGD). The com-
plexity for this part is O(kN), where k is number of itera-
tions. In total, the complexity for GBFM is O(SN + kSN),
S is number of boosting steps as stated in the algorithm,
the computation complexity is still linear to the number of
training dataset.

In addition, GBFM can be speedup by multi-threading
and parallelization. The computation of first and second
derivative can be decoupled thus can be easily computed
though multi-threading and distributed to a cluster of com-
puters. The gradient of Eq. 14 also can be decoupled and
parallelization is possible for Algorithm 1.

3.3.4 Discussions
We discuss the insights of our heuristic function f in Eq. 17

which is the key part of Algorithm 2 as well as the relation-
ship between the proposed GBFM and other state-of-the-art
methods. At last, we discuss some variants of our model.

Insights of heuristic function f : The main idea of our
algorithm is that at each layer we greedily select a context
feature Ci according to Eq. 24 and we compute the corre-
sponding weight vector, e.g. qCi . We can regard it as the
low rank latent feature matrix for feature Ci like in FM with
latent dimension k = 1. Then the heuristic function f is an
intance of CANDECOMP/PARAFAC (CP) decomposition
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[15] with k = 1. We greedily use this f function to choose
the interaction feature. In practice, for large dataset in in-
dustry world, we can additively use this function f as the
“weak learner” instead of 〈Vp,Vq〉, to quickly find useful
interaction features since the computation cost is relatively
low.

Relation to Factorization Machines: Factorization
Machines is a strong baseline method for context-aware rec-
ommendation [25]. The main difference between our model
and FM is that FM models all interactions between context
features while our method only consider part of them. For
example, in Fig. 1(c), we have 3 context features, the rating
prediction function of FM is:

ŷ(x(u, i, c3)) = w0 + wu + wi + wc3 + 〈vu,vi〉
+ 〈vu,vc3〉+ 〈vi,vc3〉. (28)

While in our GBFM, we may only consider the (user,item)
and (user,mood) interaction pair. If the interaction feature
(item,mood) is actually not useful, then the term 〈vi,vc3〉
which is the weight for feature xixc3 will introduce noise
for the prediction function. Another difference is that in
our algorithm we additively learn the latent feature matrices
which are not shared to compute other factorization weights.
For example, in first step, we select (user,item) pair, then
the second step we select (user,mood) pair, the latent feature
matrix Vu is not the same. It may lose the advantage of
generalization compared to FM, we can regard our GBFM as
a feature selection algorithm and only model the interaction
on selected features.

Relation to GBMF: Gradient Boosting Matrix Fac-
torization [6] is the state-of-the-art model which is a gen-
eral functional matrix factorization using gradient boosting.
GBMF is under the framework of matrix factorization [27].
They assume that the user/item latent low rank matrix is
functional, each time a function f is added to latent di-
mension Uk. While our model is under the framework of
factorization machines, we use gradient boosting to greed-
ily select “good” interaction features. Another difference is
the construction method of high-order categorical features.
In our algorithm, we can efficiently find the “best” features
according to Algorithm 2, while the binary splitting tree al-
gorithm may fail for categorical features since the cost for
finding the best binary split is exponential.

Variants of our GBFM: There are several variants of
our proposed GBFM. In our paper, we only use the 2-way
interaction feature like in FM. It can be easily extended to
n-way FM by selecting n-way interaction feature. Since our
model is an additive model, we can first consider linear fea-
tures, i.e. 1-way feature, then 2-way interaction and more
high order features. Another variant is that we can fully op-
timize the selected interaction features instead of additively
optimize interaction features one by one, we refer this vari-
ant as GBFM-Opt. The difference between GBFM-Opt and
FM is that GBFM-Opt only consider some “good” selected
2-way interaction features.

4. EXPERIMENTS
In this section, we empirically investigate whether our pro-

posed GBFM can achieve better performance compared to
other state-of-the-art methods with large number of context
features. Furthermore we would like to examine whether

the interaction features selected by our algorithm is more
effective compared to pairwise interactions in FM.

4.1 Datasets
We conduct our experiments on two dataset: a synthetic

dataset and a real world dataset, i.e., the Tencent Microblog4.
Synthetic data: Since there are few public datasets that
have many context features. We construct a synthetic dataset
for comparison. The data generation process is as follows:
assume we have m context features, each context feature Ci
have ni values, we generate the latent context features from
zero-mean spherical Gaussian as follows:

Vj
i ∼ N (0K , σ

2IK),

where j = 1, . . . , ni, 0K is a K-dimension vector with all
elements set to 0, and IK is the K ×K identity matrix. We
also generate the weight vector all categorical feature values
w ∼ N (0d+1, σ

2Id+1), where d =
∑m
i=1 ni, we incorporate

the global bias into the weight vector. Then we select sev-
eral 2-way interaction features. We denote the interaction
feature set as F . Then the rating is obtained by rescale the
sigmoid value to 1 to D by:

ŷ(x) =

d∑
i=0

wixi +
∑

(p1,p2)∈F

∑
i∈Cp1

∑
j∈Cp2

I[i, j ∈ x]〈Vi
p1 ,V

j
p2〉

ŷ(x) = dg(ŷ)×De,

where D is the rating scale, g(x) = 1/(1 + exp(−x)). In
our experiment, we set number of context features m = 10,
latent dimension K = 5, rating scale D = 5, feature value
size ni = 1000.

Table 1: Statistics of datasets
Dataset # Users #Items #Observed Entries

Synethic data 1000 1000 16270
Tencent microblog 2.3 M 6095 73 M

Tencent microblog dataset: Tencent microblog is one
of the largest social media services in China like Sina Weibo
and Twitter. The dataset is designed for KDDCup 2012
competition and it contains the celebrity recommendation
records of about 2.3 million users over a time period of
about two months. In this dataset, the celebrities are re-
garded as items for recommendation. The system recom-
mends a celebrity to a user at a certain time and the user’s
response is either “accept” or “reject”. The dataset contains
rich context information such as user’s age, gender, item’s
category, time information, etc.. We can also extract the
session information such as the number of recommendation
records before current recommendation. The dataset splits
into training and testing data by time. The test data fur-
thermore splits into public and private set for independent
evaluations. The dataset is extremely sparse with only about
two positive records (e.g. accept the recommendation) for
each user. Besides, nearly 70% of users in the test dataset
are never occurred in the training data.

Table 1 shows the statistic for both our synthetic data and
real data.

4http://kddcup2012.org/c/kddcup2012-track1/data
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4.2 Setup and Metrics
We randomly remove 20% of dataset as testing data, and

the remaining 80% data as the training for the synthetic
data. We repeat the experiment 5 times and report the av-
erage results. For Tencent Microblog data, the dataset is
already splitted into training and testing set. We further
use 1/5 training data as validation data to tune parameters
and we conduct the evaluation on pubic test dataset. We ex-
tract 18 features from the data, including user, item, tweets
number, follower/followee number, tweet time etc. We treat
all of the features as categorical features.

For synthetic dataset, we use two metrics, the Mean Abso-
lute Error (MAE) and Root Mean Square Error (RMSE), to
measure the prediction quality of different methods. MAE
and RMSE are defined as follows:

MAE =

∑
i |ŷ(i)− yi|

N
(29)

RMSE =

√∑
i(ŷ(i)− yi)2

N
, (30)

where N is the number of training instance.
For Tencent microblog data, MAP@k is used as the met-

ric:

MAP@k =

N∑
i=1

ap@ki/N, (31)

where N is the number of users and ap@k is the average
precision at k for the user:

ap@k =

k∑
i=1

P (k)/(number of items clicked inm items)

(32)
where P (k) is the precision at cut-off k in the item list.

4.3 Performance Comparsion
In our experiments, we compare the following methods:

• PMF: this method is well known in recommender sys-
tems and proposed in [27]. It only uses user-item ma-
trix for recommendation.

• Context-aware FM: this method is proposed in [25].
It is a strong baseline method we introduced in Section
3.2.

• GBFM: this method is our newly proposed model
which is described in Algorithm 1 and Algorithm 2.

• GBFM-Opt: this method is a variant of our GBFM
which we discussed in Section 3.3.4. After S steps
when the training process stops, we will obtain S inter-
action features. We fully optimize these S interaction
features.

For GBFM, we use 1-way feature linear model as the ini-
tialized prediction function. Grid search is applied to find
regularization parameter λ, and we set it to 0.1 for synthetic
data and 0.8 for Tencent microblog data. The latent dimen-
sion k is set to 5 and 10 for synthetic data and Tencent
microblog data respectively. We use square loss to train
synthetic data and logit loss for Tencent microblog data.
The detailed comparison results are shown in Table 2 and
Table 3.

From the table, we can observe that:

Table 2: Results on Synthetic data in RMSE and
MAE

Method RMSE MAE
PMF 1.9881 1.7650
FM 1.9216 1.6981
GBFM 1.8959 1.6354
GBFM-Opt 1.8611 1.5762

Table 3: Results on Tencent Microblog data in MAP

Method MAP@1 MAP@3 MAP@5
PMF 22.88% 34.50% 37.95%
FM 24.36% 36.77% 40.32%
GBFM 24.62% 37.17% 40.90%
GBFM-Opt 24.66% 37.23% 40.98%

• Both our proposed GBFM and GBFM-Opt model achieve
better performance on both synthetic data and Ten-
cent microblog data in terms of all metrics compared
with PMF and FM. On synthetic dataset, FM gives
0.066 reduction over PMF in terms of RMSE, and
GBFM further gives 0.026 reduction over FM. Since
the synthetic data is generated from part of 2-way fea-
ture interactions, the results reveal that our proposed
GBFM can learn “good” interaction features. While
on the Tencent microblog data, FM improves 2.25% in
terms of MAP@3 compared to PMF. GBFM can still
be able to improve the performance by 0.4%. This re-
sult verifies our assumption that selecting “good” fea-
tures is better than considering all of pairwise interac-
tion features.

• It is not surprising that the performance of FM, GBFM
and GBFM-Opt is much better than PMF. It reveals
the importance of utilizing auxiliary information on
context-aware recommendation. It is even more criti-
cal on Tencent microblog data since most of users in
test dataset do not exist in the training data which
means PMF cannot deal with them at all.

• The performance of GBFM-Opt can illustrate whether
the selected interaction features are useful for recom-
mendation. We can observe that on both datasets
GBFM-Opt can achieve even better performance than
GBFM. On synthetic dataset, GBFM-Opt improves
a lot (0.035) compared to GBFM in terms of RMSE
while on Tencent microblog data GBFM-Opt is slightly
better than GBFM. The results reveal that the features
selected by our GBFM is quite useful compared to con-
sider all the pairwise interactions. Further, recall the
discussion we conducted in Section 3.3.4, compared to
GBFM-Opt, GBFM loses the advantage of generaliza-
tion, which may be the main reason why GBFM-Opt is
better than GBFM. Compared to synthetic data, the
Tencent microblog data is much sparser thus it is not
easy to benefit from generalization which explains why
GBFM-Opt only improves a little compared to GBFM.

5. CONCLUSION
In this paper, we have proposed a novel model called

GBFM which incorporates feature interaction selection algo-
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rithm with Factorization Machines into a unified framework
to solve context-aware recommendation problems. Exper-
iments on both synthetic and real datasets show that our
model can effectively select “good” interaction features and
achieve better performance compared to other state-of-the-
art methods.

There are several interesting directions worthy of consid-
ering in the further study: 1) we would like to explore how to
find high order features, 2) we are interested to extend our
GBFM with better high order feature selection algorithm.
3) it is also interesting to explore how to effectively deal with
other features apart from categorical features.
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