
An Adaptive Communication Mechanism for
Heterogeneous Distributed Environments

Using XML and Servlets

Vincent Wing�hang CHEUNG

A Thesis Submitted in Partial Ful�lment

of the Requirements for the Degree of

Master of Philosophy

in

Department of Computer Science � Engineering

Supervised by�

Prof� Michael R� LYU and Prof� Kam Wing NG

c� The Chinese University of Hong Kong

June� ����

The Chinese University of Hong Kong holds the copyright of this thesis� Any

person�s� intending to use a part or whole of the materials in the thesis in a pro�

posed publication must seek copyright release from the Dean of the Graduate

School�

An Adaptive Communication
Mechanism for Heterogeneous

Distributed Environments Using XML
and Servlets

submitted by

Vincent Wing�hang CHEUNG

for the degree of Master of Philosophy

at the Chinese University of Hong Kong

Abstract

Nowadays� distributed systems are becoming more and more popular in the

provision of enriched information to the increasingly demanding users� Yet�

many communication obstacles hinder the expansion of distributed systems�

First� the use of �rewalls has become the barricades for many di�erent commu�

nication protocols� CORBA IIOP is one good example� Another problem is the

lack of a simple and generic method to solve the problems that arise when inte�

grating heterogeneous systems with di�erent communication protocols� such as

integrating CORBA systems with DCOM systems� In this thesis� we describe

our mechanism of using XML and Java Servlet components to support various

communication protocols in distributed systems and solve the two problems

mentioned above�

Regarding �rewall matters� we use CORBA systems to demonstrate our ap�

proach� People are trying to use XML to represent the communication protocols

and to transmit the XML messages by HTTP� which is a common communi�

cation protocol recognized by most �rewalls� SOAP� XML�RPC and XIOP

ii

are good examples of this approach� Yet� they have some de�ciencies� SOAP

and XML�RPC may not be compatible with some traditional systems� such

as CORBA systems or DCOM systems� XIOP may require modi�cation of

existing components� and does not support complicated mechanisms� such as

callbacks in CORBA�

We have developed a mechanism which supports CORBA general calls tun�

neling through �rewalls with HTTP and XML� and does not require modi��

cation to the existing components� Then� we have extended our mechanism

to support CORBA callbacks� which even XIOP and many �rewalls dedicated

for CORBA IIOP cannot handle� Moreover� we have developed a schema and

implemented a translator for mapping CORBA IDL to XML format� These

XML documents can help in creating add�on components in our mechanisms�

and help in setting up a standard in the transmission of messages in commu�

nication�

In the later part� we further describe how we expand our mechanism to

heterogeneous communication protocols� XML has 	exible semistructure that

can be the communication bridge between di�erent protocols� We try to use

XML as a common communication protocol among DCOM and Java RMI�

We demonstrate our mechanism by applying it to the integration of a prac�

tical system� We have implemented a scalable mediator�based query system

with CORBA and we apply the proposed tunneling method to integrate di�er�

ent components across �rewall and perform callbacks� We then demonstrate

the expansion to other protocols by integrating our CORBA�based mediator

query system with other DCOM and Java RMI objects� We also give overview

of some related technologies �e�g� XML and Java Servlets�� compare our ap�

proach to other similar approaches �e�g� XIOP and SOAP�� and evaluate the

performance of our mechanism in this thesis�

iii

Acknowledgments

I would like to take this opportunity to express my gratitude to my supervisors�

Prof� Michael R� Lyu and Prof� Kam Wing Ng� for their generous guidance

and patience given to me in the past two years� Their numerous support and

encouragement� as well as their inspiring advice are extremely essential and

valuable in my research papers �published in CISST
����� JCDL
�
� IC
���

and SCI
���
�ISAS
���
� and my thesis�

I am also grateful for the time and valuable suggestions that Prof� Kin Hong

Lee and Dr Yiu Sang Moon have given in marking my term papers� Without

their e�ort� I will not be able to strengthen and improve my research projects

and papers�

I would also like to show my gratitude to the Department of Computer

Science � Engineering� CUHK� for the provision of the best equipment and

pleasant o�ce environment required for high quality research�

Finally� special thanks to my fellow colleagues� who have helped me in solv�

ing programming and computer problems� enlightened me with new research

ideas� and given me encouragement and supports� They have given me a joyful

and unforgettable university life�

iv

Contents

Abstract ii

Acknowledgments iv

� Introduction �

�
 Firewall Issue in Distributed Systems � � � � � � � � � � � � � � � �

�� Heterogeneous Communication Protocols � � � � � � � � � � � � �

�� Translator for Converting Interface De�nition to Flexible XML �

�� An Implementation of a Scalable Mediator Query System � � � �

�� Our Contributions �

�� Outline of This Thesis ��

� Related Work and Technologies ��

��
 Overview of XML Technology ��

��
�
 XML Basic Syntax ��

��
�� DTD� The Grammar Book � � � � � � � � � � � � � � � � ��

��
�� Representing Complex Data Structures � � � � � � � � � ��

v

��� Overview of Java Servlet Technology � � � � � � � � � � � � � � � ��

��� Overview of Simple Object Access Protocol �SOAP� � � � � � � ��

��� Overview of XML�RPC ��

��� Overview of XIOP ��

� Using XML and Servlets to Support CORBA Calls ��

��
 Objective �	

��� General Concept of Our Mechanism � � � � � � � � � � � � � � � ��

����
 At Client Side ��

����� At Server Side ��

��� Data in Transmission ��

����
 Using XML ��

����� Format of Messages in Transmission � � � � � � � � � � � ��

��� Supporting Callbacks in CORBA Systems � � � � � � � � � � � � ��

����
 What is callback� ��

����� Enhancement to Allow Callbacks � � � � � � � � � � � � � �	

��� Achieving Transparency with Add�on Components � � � � � � � ��

� A Translator to Convert CORBA IDL to XML ��

��
 Introduction to CORBA IDL ��

��� Mapping from IDL to XML � 	�

����
 IDL Basic Data Types � � � � � � � � � � � � � � � � � � � 	�

vi

����� IDL Complex Data Types � � � � � � � � � � � � � � � � � 	�

����� IDL Interface � 	�

����� Attributes � 	�

����� Operations �Methods� 	�

����� Exceptions � 	�

����� Inheritance ��

����� IDL Modules ��

����� A Sample Conversion ��

��� Making a Request or Response � � � � � � � � � � � � � � � � � � ��

��� Code Generation for Add�on Components � � � � � � � � � � � � ��

����
 Generation of Shadow Objects � � � � � � � � � � � � � � ��

����� Generation of Servlet Components � � � � � � � � � � � � �	

� Communication in Heterogeneous Distributed Environments ��

��
 Objective ��

��� General Concept ��

��� Case Study
 � Distributed Common Object Model � � � � � � �
�

����
 Brief Overview of Programming in DCOM � � � � � � � �
�

����� Mapping the Two Di�erent Interface De�nitions � � � �
�

����� Sample Architecture of Communicating Between DCOM

and CORBA �
�

��� Case Study � � Java Remote Methods Invocation � � � � � � � �

vii

����
 Brief Overview of Programming in Java RMI � � � � � �

����� Mapping the Two Di�erent Interface De�nitions � � � �
�

����� Sample Architecture of Communicating Between JavaRMI

and CORBA ��

��� Be Generic� Binding with the WEB � � � � � � � � � � � � � � � ��

� Building a Scalable Mediator	based Query System ��

��
 Objectives ��

��� Introduction to Our Mediator�based Query System � � � � � � � ��

����
 What is mediator� ��

����� The Architecture of our Mediator Query System � � � � �

����� The IDL Design of the Mediator System � � � � � � � � � ��

����� Components in the Query Mediator System � � � � � � � ��

��� Helping the Mediator System to Expand Across the Firewalls � ��

����
 Implementation ��

����� Across Heterogeneous Systems with DTD � � � � � � � � �

��� Adding the Callback Feature to the Mediator System � � � � � � ��

��� Connecting our CORBA System with Other Environments � � ��

����
 Our Query System in DCOM � � � � � � � � � � � � � � � ��

����� Our Query System in Java RMI � � � � � � � � � � � � � ��

����� Binding Heterogeneous Systems � � � � � � � � � � � � � � ��

viii

� Evaluation ��

��
 Performance Statistics �	

��
�
 Overhead in other methods � � � � � � � � � � � � � � � � �

��� Means for Enhancement ��

����
 Connection Performance of HTTP � � � � � � � � � � � � ��

����� Transmission Data Compression � � � � � � � � � � � � � ��

����� Security Concern ��

��� Advantages of Using Our Mechanism � � � � � � � � � � � � � � � ���

��� Disadvantages of Using Our Mechanism � � � � � � � � � � � � � ���

 Conclusion ���

ix

List of Tables

�
 Pros and cons of existing methods for remote method callings

across �rewalls � 	

�� Pros and cons of existing methods for communication in hetero�

geneous environments �

��
 Meanings of some regular expressions in DTD � � � � � � � � � � ��

��
 Basic types in IDL and their corresponding XML tags � � � � � 	�

��
 Mapping the Basic types in MIDL to CORBA IDL�XML Schema
	

��� Mapping Basic Types from Java to CORBA IDL�XML schema
�

��� Mapping Basic Types from CORBA IDL�XML schema to Java
�

��
 Performance Statistics of the Query System Described in Chap�

ter ��

��� Performance Evaluation of OrbixCOMet � � � � � � � � � � � � � �

x

List of Figures

��
 An example of XML document � � � � � � � � � � � � � � � � � � �	

��� The tree hierarchy of the XML document in Figure ��
 � � � � ��

��� The DTD of the XML document in Figure ��
 � � � � � � � � � �

��� A tree structure and its corresponding XML data describing its

structure ��

��� Diagram showing the mechanism of SOAP � � � � � � � � � � � � ��

��� Diagram showing the mechanism of XIOP � � � � � � � � � � � � ��

��
 Our mechanism to support general CORBA IIOP across the

�rewalls �

��� The details of our tunneling mechanism at client side � � � � � ��

��� The details of our tunneling mechanism at server side � � � � � ��

��� Mechanism that supports CORBA callbacks � � � � � � � � � � � �	

��� CORBA callback mechanism on client side � � � � � � � � � � � ��

��� CORBA callback mechanism in server side � � � � � � � � � � � � �

��
 A sample IDL �le for an information system � � � � � � � � � � ��

xi

��� XML format of the IDL in Figure ��
 � � � � � � � � � � � � � � ��

��� The DTD for the parameter passing of simulated calls � � � � � �

��
 An example of MIDL document � � � � � � � � � � � � � � � � � �
�

��� Our mechanism to support communication among DCOM and

CORBA �

��� An example of Java RMI interface de�nition � � � � � � � � � � �
�

��� Our mechanism to support communication among Java RMI and

CORBA ��

��� Allowing heterogeneous systems to communicate � � � � � � � � ��

��
 Diagram of the mediator concept � � � � � � � � � � � � � � � � � �

��� The architecture of our query system � � � � � � � � � � � � � � ��

��� The IDL design of our system ��

��� QueryMediator� another interface that QueryMed Class imple�

mented ��

��� HttpQueryGateway� another interface that HttpGateway Class

implemented ��

��� The architecture of our query system � � � � � � � � � � � � � � �	

��� An sample request message in XML for calling a mediator object ��

��� An sample response message in XML returns from a mediator

object �

��� The DTD for the parameter passing of simulated calls � � � � � ��

��
� The IDL design of our system ��

xii

��

 Mechanism for supporting callbacks in our query system � � � ��

��
� The MIDL �le for the query system in DCOM enclave � � � � � ��

��
� The DTD for the parameter passing of simulated calls � � � � � ��

��
� Query system in heterogeneous environments with our mecha�

nism ��

xiii

Chapter �

Introduction

Nowadays� distributed systems are becoming more and more popular than cen�

tralized systems because of their global nature� scalability� openness� hetero�

geneity and fault�tolerance� �
� A distributed system will have components

that are distributed over various computers� These components need to in�

teract with each other for providing access to other
s services or requesting

services from others� By using distributed systems in the provision of di�erent

services in di�erent hosts� we can enhance the system scalability and increase

fault�tolerance�

To further enhance the system scalability and fault�tolerance� and also to

provide better services to the demanding users� there is a trend of integrating

several distributed information systems into a single one� In spite of many

bene�ts of integrating multiple distributed systems� we �rst have to tackle

many challenges in communication among di�erent components and di�erent

environments� where the situation is far more complicated than building a

distributed system in a single enclosed area�

In this thesis� we focus on two communication problems in system integra�

tion� They are�

�

Chapter � Introduction �

� The common use of �rewall which blocks the integration of information

systems�

� The integration of several systems with di�erent communication proto�

cols�

Though currently� there are a number of solutions for these two problems� they

have their de�ciencies� Our research motivation is to use XML and Servlet

technologies to provide better solutions to those problems� We explain these

two problems with more details below�

��� Firewall Issue in Distributed Systems

With the rapid expansion of the Internet� the use of �rewalls is also becoming

more and more common nowadays� Firewalls are used in the gateways between

the local networks and the public Internet� in order to protect the computers

in the internal networks by enforcing some security policies ���� Their role is

to control external access to internal information and services� Using packet

�ltering by a router in the network layer to enforce certain rules is one of the

most common mechanism used by the �rewalls� But �rewall systems can in�

clude elements that operate at layers above the network layer in the application

level� Application level gateways for Telnet� File Transfer Protocol �FTP�� and

Hypertext Transfer Protocol �HTTP� are in common use�

Common �rewalls block many less common applications� such as the com�

munication protocols for agents� and also the Internet InterORB Protocol

�IIOP� used in Common Object Request Broker Architecture �CORBA� ����

This is because these common �rewalls may not be able to decode the message

bodies of those protocols� Using CORBA IIOP as an example� IIOP is the

Object Management Group
s �OMG� speci�ed network protocol for commu�

Chapter � Introduction �

nication between object request brokers� which employs TCP�IP and can be

handled by common �rewalls at the network and transport level with packet

�lters� But at the application level� the message body of IIOP is encoded in

Common Data Representation �CDR� and �rewalls are unable to decode it�

Therefore� �rewalls cannot base �ltering decisions on IIOP messages ����

With the blocking of some protocols by �rewalls� the scalability of system

development and system integration would be limited� There exist speci�c

�rewalls dedicated for certain protocols� but they are usually not generic and

may have some limitations� Take CORBA IIOP as an example again� There

are a number of �rewalls for CORBA IIOP� such as IONA Orbix Wonderwall

��� and Visibroker Gatekeeper ���� but they cannot solve all �rewall problems�

As they are not commonly used� both server and client sides must be using

them� They may also be vendor�dependent and proprietary� Finally� some

CORBA features� such as callbacks� may not be handled�

Elenko and Reinertsen ��� have suggested a communication perspective for

the cooperation between XML and CORBA by employing XML� Servlet and

HTTP calls to substitute for CORBA IIOP communications� Applying HTTP

calls to transport XML parameter contents can eliminate the complicated �re�

wall issue of IIOP� as application level gateways for HTTP are in common

use�

SOAP ��� and XML�RPC ��� are proposed speci�cations which use XML

for distributed system protocol� But they are not compatible to other existing

distributed systems� such as CORBA or DCOM� XIOP �
�� is a proposed sub�

stitute of IIOP by XML data� which is dedicated for CORBA� But it does not

propose a mechanism to avoid great modi�cations to the existing components�

Also� it does not have a mechanism to perform callbacks�

Table
�
 summarizes the pros and cons of the above methods� Our target

Chapter � Introduction 	

Table ���� Pros and cons of existing methods for remote method callings across
�rewalls
Solutions Strengths Weaknesses

CORBA
dedicated
�rewalls

� Fast to handle IIOP

� Capable to handle compli

cated CORBA services

� Not popular

� Vendor
dependent

� Not able to handle call

backs

SOAP and
XML
RPC

� Flexible semistructured
XML to represent data

� Simple� Complicated ser

vices are not required

� standalone protocol� not
designed for existing
protocols

XIOP � compatible with CORBA � modi�cation to existing
objects is needed

� no mechanism for callback
is suggested

is to develop a solution which can cover their weaknesses� i�e�� a generic mech�

anism that can bind to the existing systems� without any modi�cations to the

existing components in the systems�

Consequently� we took CORBA IIOP as our target and developed a sim�

ple solution by using HTTP� XML and Java Servlets for tunneling through the

�rewalls to support the CORBA IIOP calls in a more generic way� We then fur�

ther enhance our mechanism to allow CORBA callbacks which are not feasible

behind many CORBA �rewalls� We brie	y describe how we can automatically

generate the necessary components to support our mechanism� by referring to

the design of Interface De�nition Language �IDL� for a CORBA system� In

general� our approach can be applied to other communication protocols as well�

Chapter � Introduction �

��� Heterogeneous Communication Protocols

Currently� we have many di�erent ways to build distributed systems� and the

most prominent middlewares are CORBA ���� DCOM �

� and Java RMI �
���

CORBA is de�ned by the Object Management Group� which supports hetero�

geneous and distributed objects� The CORBA objects are using the IIOP com�

munication protocol to interact with each other� The Distributed Component

Object Model �DCOM� protocol is an application�level protocol for object�

oriented remote procedure calls which is useful for distributed� component�

based systems of all types� It is a Microsoft technology� Java RMI is developed

by Sun Microsystem� which uses the Java Remote Method Protocol �JRMP�

to communicate�

All of them have di�erent architectures and di�erent protocols for communi�

cation� hence it is very di�cult to integrate systems with di�erent middlewares

directly� Integrating them requires some bridging tools� Though there are

quite a number of bridging tools developed� they may not be able to solve

the problems nicely� Some bridges can only map the CORBA objects to the

COM�DCOM objects� or vice versa� They do not support interworking� Some

bridges actually can only support interworking between the CORBA objects

and COM objects� they don
t support the interworking between the CORBA

objects and DCOM objects�

With the release of new COM�CORBA interworking speci�cation by OMG�

many vendors have developed some better applications for bridging� there are

still some area that can be improved� Let us discuss one of the very famous ap�

plications� OrbixCOMet ���� �
��� which is developed by IONA Technologies�

OrbixCOMet ���� implements the COM�CORBA Interworking speci�cation

by enabling transparent communication between COM�Automation clients and

CORBA servers� There is a COMET component located between the CORBA

Chapter � Introduction

Table ���� Pros and cons of existing methods for communication in heteroge

neous environments
Solutions Strengths Weaknesses

OrbixCOMet � Fast � Not generic to other protocols

RMI�IIOP � Fast� no real
time
protocol conversion
overhead

� Not generic to other protocols

� Not reversible to communicate
with RMI objects

enclave and COM�DCOM enclave� and it acts as a bridge which provides the

mappings and performs translation between CORBA and COM�Automation

types�

Though OrbixCOMet is already a good implementation in bridging between

CORBA and COM� it allows only a limited number of connections for DCOM�

as DCOM is distributed while COM is not� Moreover� the weakest point of

OrbixCOMet is that it only supports the communication between CORBA and

COM�DCOM� and not other protocols� It is because the COMET component

would only convert a binary communication protocol message to another binary

communication protocol message� As they use binary messages� protocols other

than CORBA and COM�DCOM are not able to read them�

Another example of is RMI�IIOP package �
�� of Java RMI� which helps

RMI objects to communicate with CORBA objects� With modifying the exist�

ing RMI objects with RMI�IIOP package� the communication protocol of those

RMI objects would be substituted by IIOP� such that they are communicate

with CORBA objects� But the drawback is that those modi�ed RMI objects

are no longer be able to invoke other RMI objects� as they have given up the

original communication protocol�

Chapter � Introduction �

Table
�� summarizes the pros and cons of the two methods mentioned�

Again� our target is too cover the weaknesses of those methods� i�e� to give a

generic bridging solution to heterogeneous distributed environments and com�

munication protocols�

Here� we extend the mechanism for tunneling across �rewalls� and use XML

as the bridging messages between di�erent distributed system environments�

Based on the generic CORBA IDL� we design a mapping schema from CORBA

IDL to XML� Also� we have developed some rules for mapping other Interface

De�nition Languages� such as MIDL of DCOM and Java Interface of JavaRMI�

to the same XML schema�

By sharing the same schema� di�erent distributed environments can com�

municate with that �common language� for remote object method calling� The

easily�manipulated and human�readable XML messages are not only limited to

the usage of CORBA� DCOM or Java RMI� but can be also applied to other

web�based applications� such as Active Server Pages �ASP�� Java Server Pages

�JSP�� etc� It is because all of them can use the same XML method calling

schema to invoke those CORBA or DCOM objects� Hence� our approach can

provide a generic bridge for communication among di�erent distributed system

environments and web applications� without modifying the existing compo�

nents�

��� Translator for Converting Interface De�ni�

tion to Flexible XML

As we have mentioned� to tackle the �rewall and heterogeneous distributed

environments problems� we have to make use of passing XML messages with

HTTP� With the 	exible semi�structured XML� messages of remote object call�

Chapter � Introduction �

ings can be well�represented� However� we still need a standard for the trans�

mission of messages� otherwise the objects in di�erent enclaves are not able to

communicate�

We have designed a schema for mapping CORBA IDL to XML format�

and implemented a translator to convert the IDL �les and generate the XML

documents� By making use of the XML documents that follow an agreed Data

Type De�nition �DTD�� we can have a standard for message transmission�

Moreover� these XML documents can help to generate the add�on components

automatically� The generation of these source codes can help to reduce the extra

programming work for those add�on components as they usually contain many

similarities� especially in the part of converting the internal data structures to

XML formats�

CORBA has a very generic IDL as it supports a variety of programming

languages� such as C��� Java� COBOL� etc� As CORBA IDL is so generic� we

use the XML mapping scheme of CORBA IDL as the fundamental� and map

other interface de�nition languages of other distributed environments to the

same XML schema� By using the same schema� di�erent distributed system

environments can have a �common language� and hence be able to communi�

cate with each other�

��� An Implementation of a Scalable Mediator

Query System

Nowadays� there is a trend to integrate several information systems to o�er

richer information� As we have mentioned� the �rewall problem� and the het�

erogeneous distributed environments� are often the obstacles in building or

integrating a scalable large system�

Chapter � Introduction �

We have proposed the solutions for those problems and we would like to

demonstrate our work by a mediator�based query system and applying our

mechanism onto it� such that it can be scalable across the �rewalls and hetero�

geneous distributed system environments�

We use the mediator architecture to integrate multiple query systems via

the Internet� Mediators forward the client queries to the appropriate digital

libraries or mediators� and then integrate the returned answers and forward

them back to the clients� We use the mediators to make queries across the

�rewalls by making use of XML and Java Servlets� and also querying across

the heterogeneous systems with some components which are programmed in

DCOM or Java RMI�

By building this query systems� we can demonstrate the advantages of our

approach� Also� we will evaluate our approach by measuring the performance

of this system�

��� Our Contributions

Brie	y speaking� we have the following contributions in our research work�

� We have proposed a generic mechanism to enable distributed objects to

communicate across �rewalls by using XML and Java Servlets� We use

CORBA as an example� but this mechanism is generic and can be applied

to other distributed environments�

� We have extended the mechanism to support the callback feature in

CORBA� which is not supported by other XML�based protocols nor many

CORBA�dedicated �rewalls�

� We have proposed a schema for mapping CORBA IDL to XML format�

Chapter � Introduction ��

With this schema� we can automatically generate some add�on compo�

nents in our mechanism� Also the schema can provide a standard gram�

mer for the transmission messages of method callings�

� We have extended the mechanism to support remote object calling in

heterogeneous environment� By mapping di�erent interface de�nition

languages of di�erent distributed environments to the schema we have

designed� objects of di�erent distributed environments can have commu�

nication�

� We have implemennted a mediator�based query system to demostrate

our work� This mediator�based query system has applied our mechanism

thus it can make queries to a remote object beyond the �rewalls� and have

callback feature support� Also� the system can make queries to objects

from heterogeneous distributed environments� such as DCOM objects�

JavaRMI objects� or even other web applications �JSP� ASP etc��

��	 Outline of This Thesis

We would explain the contributions described above in details in the coming

chapters� First� we have an overview of some related work and technologies in

Chapter �� We describe XML and Java Servlets technologies there� as they are

closely related to our approach� Also� we look at SOAP� XML�RPC and XIOP�

which are similar appoarches that use XML as a protocol� We will discuss their

pros and cons there�

In Chapter �� we introduce our tunneling mechanism� and how we sup�

port the callback feature there� Chapter � will cover our schema for mapping

CORBA IDL to XML format� and outline how we generate the add�on compo�

nents� For Chapter �� we focus on the way we support communication among

Chapter � Introduction ��

heterogeneous distributed envrionments�

We demonstrate our mechanism with a mediator�based query system in

Chapter �� and we describe in details the components of that system and how

we apply our mechanism to enhance it to be a more scalable system�

In Chapter �� we evalute the performance of our approach� and also the ad�

vantages and disadvantages� We will also address the enhancement on security

issue and perfomance issue in our mechanism� We then conclude our work in

Chapter ��

Chapter �

Related Work and Technologies

In this chapter� we will present an overview of some XML technologies and

Java Servlets technologies as they are closely related to our research project�

We have used XML and Java Servlets technologies heavily in our research�

XML has a 	exible structure and strong capability in representing data� hence

it plays a very important role in our research project� Java Servlet technology

is a popular choice for building interactive Web application� thus we use it to

transmit XML messages in the Internet�

There are some protocols which are similar to our approach� such as SOAP�

XML�RPC and XIOP� We will also give a brief overview of these technologies

in this chapter� and discuss their strengths and weaknesses�

We hope this chapter can help you to understand our research work better�

��� Overview of XML Technology

In the age of worldwide information networks� documents must be easily acces�

sible� portable and 	exible� The information documents must also be system�

and platform�independent� XML possesses these features and o�ers documents

��

Chapter � Related Work and Technologies ��

an advantage not found in other document description languages�

Extensible Markup Language �XML� �
��
��
�� is a new standard adopted

by the World Wide Web Consortium �W�C� in
���� and it is a kind of gener�

alized markup language� Some of the design goals of XML are �
��
���

� XML shall be straightforwardly usable over the Internet�

� XML shall be able to store complex data structures�

� XML shall support a wide variety of applications

These goals make XML to be a data exchange and representation standard�

Also� XML can be widely used in various kinds of applications� and exchange

information among di�erent applications� and also heterogeneous platform�

Our research mainly focuses on using XML and Java Servlet to support

various communication protocols� XML is used because it can provide 	exible

structure description to complex protocol structures and data structures� Also�

XML is platform�independent and system�independent that would be very suit�

able to be used in distributed heterogeneous environment� Moreover� we can

foresee that the Internet would be a platform in building large and scalable dis�

tributed in future� for which XML can work well� Hence� we use XML heavily

in the system implementation of our research work�

In the following sections� we will address the basic syntax of XML� the use

of DTD� and how XML represents complex data structures�

����� XML Basic Syntax

In this part� we overview the syntax of XML data� which is based on the

speci�cation of XML
�� by W�C �
��� We will only cover those standards that

will be used in our research project�

Chapter � Related Work and Technologies �	

�news�

�source�South China Morning Post��source�

�date�

�day�����day�

�month����month�

�year�������year�

��date�

�title�Press warning appropriate	 says Beijing��title�

�reporter location
�Hong Kong��

�firstname�Greg��firstname�

�lastname�Torode��lastname�

��reporter�

�content�Beijing yesterday defended remarks made by senior

SAR�based official Wang Fengchao that local media should

avoid reporting separatist views

��content�

��news�

Figure ���� An example of XML document

XML is a textual representation of data� The basic component in XML is

the element� that is� a piece of text bounded by matching tags� Users can de�ne

new tags for their needs� which should appear in pairs with a start tag and an

end tag� For example� to describe a piece of news article� we can de�ne a pair of

tags �news� and ��news�� and then we can put all of the news contents inside

this tag pair� Inside an element we may have text� other elements� or even a

mixture of both� Figure ��
 shows a typical XML document� You can see we

have de�ned new tags like �date�	 �source�� etc�

XML also allows us to associate attributes with elements� Attributes in

Chapter � Related Work and Technologies ��

news

year month day firstname lastname

reporter contenttitledate

Figure ���� The tree hierarchy of the XML document in Figure ���

XML are like properties in data models� In XML� attributes are de�ned as

�name� value� pairs� With tags� users may de�ne arbitrary attributes� which

can enrich the meaning of an element� In the example of Figure ��
� the tag

�reporter� has an attribute location which indicates the location of that

reporter�

There are some di�erences between tags and attributes� A given attribute

may occur only once within a tag� while sub�elements with the same tag may

be repeated� Also the value associated with an attribute is a string� while that

associated with an element can contain sub�elements�

XML data can always be viewed as a tree structure� For example� in Figure

���� the tree hierarchy is the representation of the XML document in Figure

��
�

����� DTD� The Grammar Book

We have given an overview of some simple syntax in the previous section� But

for most of the time� just following the syntax would not be enough for real�life

applications� We usually have to give rules to the XML documents in order to

Chapter � Related Work and Technologies �

��DOCTYPE database �

��ELEMENT database �news���

��ELEMENT news �date	title	reporter�	content��

��ELEMENT date year CDATA �REQUIRED

month CDATA �REQUIRED

day CDATA �REQUIRED�

��ELEMENT title ��CDATA��

��ELEMENT reporter �firstname	 lastname��

��ATTLIST reporter location ��CDATA��

��ELEMENT firstname ��CDATA��

��ELEMENT lastname ��CDATA��

��ELEMENT content ��PCDATA��

��

Figure ���� The DTD of the XML document in Figure ���

regulate them to have speci�ed numbers of speci�c tags or attributes� and also

to have speci�c structures� To do this� we can use Document Type De�nition

�DTD� �
��� A DTD serves as a grammar for the underlying XML document�

and it is part of the XML language� To some extent� a DTD can also serve

as a schema for the data represented by the XML document� hence we are

interested in DTD also�

Consider the example in Figure ��
� it may follow the DTD in Figure ����

The meanings of some regular expressions in DTD are shown in Table ��
�

Based on the DTD� we can hence de�ne more documents of a similar schema�

Also� di�erent sources can be compromised to use a common schema for their

standard�

Chapter � Related Work and Technologies ��

Table ���� Meanings of some regular expressions in DTD
Regular Expressions Meanings

test� any number of test element
test� one or more occurrence
test� zero or one

test � test� alternation
test 	 test� concatenation

����� Representing Complex Data Structures

XML plays a very important role in the transmission of HTTP messages� XML

has the 	exibility in de�ning new tags on top of its semi�structured feature�

so that it can well represent most of the complicated data structures �
���

Even in the case of unlimited�multilevel recursive data structures� such as tree

structures� XML can still handle them nicely� Figure ��� shows a tree structure

and its corresponding XML representation� We can see that the XML data

can represent data with complex structures with great 	exibility� Hence� we

use HTTP to send streams of XML data between the client and server sides to

represent the parameters in the remote procedural calls�

By using the DTD of XML data� we can further provide a grammar for

the XML data transmission format� Hence we can make a compromise on the

interpretation of data transmission of complicated data structure formats for

both client and server sides�

Besides the 	exibility of data representation� the readability and the ease

of manipulation of XML information also provide great 	exibility for server

as well as client implementation� As long as we follow the DTD of the data

transmission format� programmers can have a high degree of freedom to choose

di�erent implementation methods�

Chapter � Related Work and Technologies ��

1
1

<node> 1
 <node> 2
 <node> 4 </node>
 <node> 5
 <node> 8 </node>
 <node> 9 </node>
 </node>
 </node>
 <node> 3
 <node> 6 </node>
 <node> 7 </node>
 </node>
</node>

<node> 1
 <node> 2
 <node> 4 </node>
 <node> 5
 <node> 8 </node>
 <node> 9 </node>
 </node>
 </node>
 <node> 3
 <node> 6 </node>
 <node> 7 </node>
 </node>
</node>

3
3

2
2

4
4

5
5

7
7

6
6

8
8

9
9

Figure ���� A tree structure and its corresponding XML data describing its
structure

��� Overview of Java Servlet Technology

Currently� Java Servlet Technology ���� �
� ��� has become a popular choice

for building interactive Web applications� In our research project� we also

use Java Servlets to support di�erent communication protocols and build the

distributed systems upon an Internet�based environment� As Java Servlet plays

an important role in our research� we would like to present a brief overview of

it before the following chapters�

According to the Java Servlet Speci�cation ����� a Servlet is a web compo�

nent� managed by a container� that generates dynamic content� Servlets are

small� platform�independent and are able to cooperate with web servers� They

interact with web clients via a request�response paradigm implemented by the

Servlet container� This request�response model is based on the behavior of the

Hypertext Transfer Protocol �HTTP�� It provides a simple� consistent mecha�

nism to Web developers for extending the functionality of a Web application

and for accessing existing business systems�

Chapter � Related Work and Technologies ��

Servlets provide a component�based� platform�independent method for build�

ing Web�based applications� without the performance limitations of Common

Gateway Interface �CGI� programs� And unlike proprietary server extension

mechanisms �such as the Netscape Server API or Apache modules�� Servlets

are server�independent and platform�independent� This leaves the program�

mers free to select a �best of breed� strategy for the servers� platforms� and

tools�

When compared to other traditional server extension mechanisms� Servlets

have the following advantages�

� They are generally much faster than CGI scripts because a di�erent pro�

cess model is used�

� They use a standard API that is supported by many web servers�

� They have all the advantages of the Java programming language� includ�

ing ease of development� portability� performance� reusability� and crash

protection

� They can access the large set of APIs available for the Java platform�

such as JDBC�

� A Servlet module would be loaded once the �rst time it is invoked and

then it stays loaded until the HTTP server task is shut down or restarted�

But a CGI script is loaded every time it is invoked and unloaded when it

has �nished� hence the performance is worse�

For the mechanism in our research� the Java Servlets modules can actually

be substituted by other server extension mechanisms� But as Java Servlets

have more advantages when compared to CGI� especially in terms of system�

and platform�independence� and memory management� we chose to use Java

Servlets in our implementation�

Chapter � Related Work and Technologies ��

Client Object
Client Object

SOAP Messages

Firewall

SOAP XML
parser

Server Object
Server Object

SOAP XML
parser

Figure ���� Diagram showing the mechanism of SOAP

��� Overview of Simple Object Access Protocol

SOAP�

Simple Object Access Protocol �SOAP� ��� ��� is a lightweight protocol for the

exchange of information in a decentralized� distributed environment� which has

been accepted by World Wide Web Consortium as a standard� People started

discussing XML�based protocol in early
���� and SOAP speci�cation �nally

shipped at the end of
��� by W�C�

It is an XML based protocol that consists of three parts� an envelope that

de�nes a framework for describing what is inside a message and how to pro�

cess it� a set of encoding rules for expressing instances of application�de�ned

datatypes� and a convention for representing remote procedure calls and re�

sponses� Objects need to integrate with some XML�parsers to create messages

for making requests or responses� Figure ��� shows the mechanism of using

SOAP in a distributed system�

Due to XML features� building distributed systems with SOAP can provide

many advantages�

Chapter � Related Work and Technologies ��

� Adaptable to widely distributed networks� as XML is platform� indepen�

dent and system�independent�

� Able to work through �rewalls with use of HTTP in transmission of XML�

� Flexible in implementation of di�erent components� Components can be

developed in Perl� Java� PHP� ASP etc�

But SOAP still has some de�ciencies when compared to our approach or

working with traditional distributed systems�

� SOAP is not designed to give support to those popular platform types�

such as CORBA� DCOM� etc� Hence� it cannot be combined to existing

CORBA systems� DCOM systems� or Java RMI systems naturally�

� SOAP is a de�nition of the communication protocol contents� The calling

mechanism has to be de�ned by users� It would be hard to support some

complicated calling methods� such as callbacks�

� Programmers need to deal with XML details while developing distributed

systems� such as dealing with XML parsers� etc�

For our approach described in this thesis� we would try to maintain the

advantages of using XML in communication messages protocol� and to avoid

the de�ciencies of SOAP�

��� Overview of XML�RPC

XML�RPC is another XML�based protocol for communication in distributed

systems across Internet �rewalls� It is developed by UserLand Software� Inc

at
���� Though it is not a standard of W�C� it has a little�bit longer history

than SOAP�

Chapter � Related Work and Technologies ��

XIOP Messages
(XML+HTTP)

Firewall
CORBA

Server Object

Pluggable
Protocol

CORBA Client
Object

Pluggable
Protocol

Portable Data
Representation

Portable Data
Representation

IIO
P

IIOP CORBA
Client ObjectIIOP

CORBA
Client Object

IIOP

IIOP

IIO
P

CORBA
Server Object

CORBA
Server Object

Figure ���� Diagram showing the mechanism of XIOP

It provides very similar functionalities as SOAP �refer to section ����� XML�

RPC also works by marshaling procedure calls over HTTP as XML documents�

It is even more lightweighted than SOAP as SOAP supports XML Schemas�

enumerations� strange hybrids of structs and arrays� and custom types which

XML�RPC does not support� At the same time� several aspects of SOAP are

implementation de�ned� So� XML�RPC has less features than SOAP� but the

advantage of it is having more compact XML message structures�

As XML�RPC is very similar to SOAP� they both have similar advantages

and de�ciencies�

��� Overview of XIOP

Di�erent from SOAP and XML�RPC� XIOP is designed as a substitute of

CORBA IIOP in XML format� It is a pretty new protocol developed by Fi�

nancial Toolsmiths AB� which was introduced in April ����� Besides working

well across the Internet �rewalls� XIOP is compatible with existing CORBA

systems� XIOP requires a pluggable protocol framework to make conversion

between IIOP and XIOP� Figure ��� shows the mechanism of the use of XIOP�

The advantages of XIOP are�

Chapter � Related Work and Technologies ��

� Integrates HTTP and XML into a distributed object framework�

� Fits into an existing� open and well established distributed object frame�

work� OMG CORBA�

� Uses the OMG IDL type system and therefore is more suitable for map�

pings to programming languages �natural datatypes�

� Leverages existing mappings to programming languages such as C� C���

Java� ADA� �Python� Perl etc��

� Leverages existing object serialization standard�

In spite of the many advantages of XIOP� it still has many rooms for im�

provement� XIOP development is mainly focusing on the conversion mapping

of traditional IIOP and XML�based XIOP� but for the mechanism of conversion

and callings� there are still some de�ciencies that can be improved�

� The pluggable protocol framework increases the complexity of the CORBA

environment�

� The pluggable protocol framework centralizes all protocol conversion jobs

which may be the bottle�neck in message transmission�

� We need to modify the original CORBA components in order to use the

message�conversion framework�

Our approach described in this thesis is trying to maintain the advantages

of XIOP messages� but using a simple architecture� avoiding modi�cation to

the original components� and providing methods for workload distribution�

Chapter �

Using XML and Servlets to

Support CORBA Calls

��� Objective

In Chapter
� we have described the need of integrating di�erent distributed

systems and how this would induce some communication problems� One prob�

lem we have mentioned is that the common use of Internet �rewalls would block

the communication with many traditional distributed system platforms� such

as IIOP in CORBA� Using IIOP as an instance� it is the Object Management

Group
s �OMG� speci�ed network protocol for communication between object

request brokers� It employs TCP�IP and can be handled by common �rewalls

at network and transport level with packet �lters� But at the application level�

the message body of IIOP is encoded in Common Data Representation �CDR��

which is di�erent from the packet formats with other common protocols� such

as FTP or HTTP� Firewalls are unable to decode it because they cannot base

�ltering decisions on IIOP messages�

There are some �rewalls which are dedicated for some special protocols� for

example� Orbix Wonderwall ��� and Visibroker Gatekeeper ��� are dedicated for

�	

Chapter � Using XML and Servlets to Support CORBA Calls ��

CORBA IIOP� But there are some de�ciencies for these two �rewalls� as they

are generally vendor�dependent and may not support certain CORBA features

like callbacks�

There are proposals to use SOAP� XML�RPC or XIOP to tackle this �rewall

problem� But SOAP and XML�RPC are not speci�ed to work with other

protocols and programmers may have to deal with XML parsers or other XML

tools in order to use it� And for XIOP� programmers also need to deal with the

pluggable protocol framework� which is not transparent to them�

Here� we try to use XML� Java Servlets and HTTP to simulate IIOP calls�

Modi�cations to the existing components are avoided in order to give great

transparency to users about our newly added implementation�

In this chapter� we will introduce our mechanism which can achieve this

target� First� the general concept of our approach will be introduced� and we

will explain what the server and the client sides will do in details� Then� we

will describe how callbacks can be done� We also describe what would be the

contents in the XML messages and how we automatically generate some source

codes of our newly added components� and make those components transparent

to programmers�

��� General Concept of Our Mechanism

Here� we use CORBA as an example to demonstrate our tunneling mechanism�

Actually� the same mechanism can be applied to other distributed system en�

vironments� such as DCOM or other agent environments�

Let us assume that we are having two CORBA enclaves� each of them is

located in a Local Area Network �LAN�� For each LAN� it has a �rewall that

separates them from the outside Internet� Now� we want to let the objects

Chapter � Using XML and Servlets to Support CORBA Calls �

��
��
��

FIREWALL Server Side CORBA
Enclave

Client Side CORBA
Enclave

HTTP messages with
data in XML format

Shadow
Server

Client
Object

Server
Object

IIOP
Servlet

Component

Figure ���� Our mechanism to support general CORBA IIOP across the �re

walls

in these two enclaves to be able to communicate with each other� Unfortu�

nately� CORBA IIOP cannot pass through those common �rewalls� In order

to support IIOP calls between two CORBA enclaves separated by �rewalls�

the main approach we use is to convert the contents of IIOP calls into HTTP

calls� as HTTP calls can go through the �rewall blocking� Figure ��
 shows

the mechanism of our tunneling solution� The object that issues a request is

named as client object� while the object that gives a response is named as the

server object� The enclaves they are located are named client side and server

side respectively�

In this case� we need two components to do the conversions from IIOP to

XML�based data automatically�

� one is at the client side to convert the request messages from IIOP mes�

sages to HTTP messages �i�e�� the one named as Shadow Server in Figure

��
��

� another one is at the server side to convert the HTTP request messages

Chapter � Using XML and Servlets to Support CORBA Calls ��

back to normal IIOP messages �i�e�� the one named as Servlet Component

in Figure ��
��

Their duties will be inter�changed when the server returns the computation

results back to the client side� We now explain the details of these two compo�

nents�

����� At Client Side

At the client side� we add a new CORBA object which is used to convert IIOP

messages into XML�based messages and vice versa� We call this client�side

conversion component as Shadow Server� as it will perform exactly the same

functions as the actual target server object� This conversion component allows

client objects to make requests to it� with request methods which are exactly

the same as in the actual server object� And this component will immediately

return the results to the client objects� with the returned data in the same type

and format as the actual server would return� So� in the viewpoint of the client

objects� this conversion component performs exactly the same as the original

target server object� and we can just regard this conversion component object

as a proxy� That is why we call it a Shadow Server�

Figure ��� shows the details of what is happening at the client side� Client

object �rst sends a request to the Shadow Server� The Shadow Server object

provides the same interface as the real target server object� They are sharing

the same interface de�nition of the target server IDL �le� By using the same

interface� the client objects will not notice the di�erences between these two

objects while making requests�

Other than the common interface� all the internal implementation of the

methods would be di�erent� The Shadow Server will not do any real com�

Chapter � Using XML and Servlets to Support CORBA Calls ��

Client Side CORBA
Enclave

Shadow
Server

(same interface as
the target server)

Client
Object

IIOP data in XML by HTTP

REQUEST
1. Client object sends a request to

Shadow Server.
2. Shadow Server converts the

IIOP request to XML format
3. Shadow Server sends the XML

message to server side by
HTTP

RESPONSE
1. Shadow Server receives XML-

based response message
2. Shadow Server parses the XML

message and extracts the
contents

3. Shadow Server sends an IIOP
response calls to client object

same as calling
the actual server

Figure ���� The details of our tunneling mechanism at client side

putation or manipulation to the data passed by the clients� instead it will

convert the parameters and other related information to XML�based messages

and send them to the real server object via HTTP� The details of the XML

message contents will be described in section ����

When the server side returns a response message to the client side� no matter

it is a normal response� or an exception� it will also be a XML�based message

via HTTP� The response message will be returned to the Shadow Server and

then the Shadow Server converts all received HTTP messages into ordinary

IIOP messages and returns them to the client objects�

����� At Server Side

At the server side� we add a new Java Servlet component which is used to

convert IIOP messages into XML�based messages and vice versa� This Java

Servlet component on the server side communicates with the Shadow Server

on the client side� Servlets interact with web clients via a request�response

paradigm implemented by the Servlet container� This request�response model

Chapter � Using XML and Servlets to Support CORBA Calls ��

Server Side CORBA
Enclave

data in XML by HTTP Server
Object

Servlet
Component

RECEIVE
1. Servlet component receives request

in XML format
2. Servlet component parses the XML

message and sends the contents to
server object.

RESPONSE
1. Server object responses to the

Servlet component
2. Servlet component converts the

response message into XML format
and sends back to the client side

Figure ���� The details of our tunneling mechanism at server side

is based on the behavior of HTTP�

Each server object� which is ready for outside calls� will have a corresponding

Servlet component associated with it� Figure ��� shows the detailed situation

on the server side� When the client side sends a message� it will directly send

to the Servlet component� which is already associated with the target server

object� This Servlet component will parse the XML�based request message�

extract the necessary parameters and the related information from it� and then

convert it to an ordinary IIOP call and invoke the target server object�

When the server object has �nished the computation� it will send the re�

sponse to the Servlet component� The Servlet component will convert the

response to XML format and return it back to the client side via HTTP� It is

expected that the Shadow Server at the client side will receive that response

message�

It would be very similar for the server to return exception messages� The

exception messages will also be converted into XML format by the Servlet

component and then return to the client side via HTTP� Also� the Shadow

Server at the client side will receive those exception messages� In section ����

Chapter � Using XML and Servlets to Support CORBA Calls ��

we will describe the details of the data contents in XML messages�

��� Data in Transmission

����� Using XML

Extensible Markup Language �XML� plays a very important role in the trans�

mission of HTTP messages� XML is semi�structured and hence has the 	exi�

bility to well represent most of the complicated data structures� Hence� we use

HTTP to send streams of XML data between the client and server sides�

Further to the 	exibility of data representation� the readability and the

ease of manipulation of XML information provide great 	exibility for server as

well as client implementations� That is the reason why we convert the binary

stream of IIOP messages into XML�

By using the Data Type De�nition �DTD� of XML data� we can provide a

grammar for the XML data transmission format� Hence we can make a com�

promise on the interpretation data transmission formats for both client and

server sides� As we have DTD to provide rules and guidelines of transmission

message format for decoding and encoding� there is no limitation for the client

side or the server side to be implemented by CORBA objects� Hence� program�

mers can have great freedom to choose di�erent implementation methods� We

will give more details of this in the next chapter�

����� Format of Messages in Transmission

If a client object needs to make a request to a server object� it has to �rst send

the request message to Shadow Server� An ordinary request message is sent to

Chapter � Using XML and Servlets to Support CORBA Calls ��

Shadow Server by the client object� and then Shadow Server will get the values

of the parameters�

Based on the corresponding DTD of the target object� the Shadow Server

constructs an XML document which describes the parameter types and values�

and the object method being requested� There is a generic component in the

Shadow Server that can construct the XML message based on the regulations

stated in the DTD� For the details about the DTD format and the XML data

format� please refer to Chapter ��

After the XML message is constructed� it will be sent to the Servlet com�

ponent on the server side by the POST method calls of HTTP� Then the whole

XML message will be sent to the server side immediately� Each message in the

POST method calls contains the following information�

� the IP address or domain name that the Servlet component is located�

� the port number to access that Servlet component�

� the path name and the name of the Servlet component� and

� the encoded XML message�

The �rst three items should be known by the Shadow Server during its initial�

ization� The last item can only be determined at run time� We will give more

details about the formation of the XML messages in the next chapter� For

example� if we want to send a piece of XML request message form the client

side to the server side� which calls the deposit method of object Account� we

would have the following XML message�

�request�

�Account type
�interface��

�deposit type
�operation��

�parameter ref
�in� order
����

�float name
�amount�������
����float�

Chapter � Using XML and Servlets to Support CORBA Calls ��

��parameter�

��deposit�

��Account�

��request�

Assume the domain name of the server host is pc�����
cse
cuhk
edu
hk�

path name is research�� port number is ���� and the name of the Servlet

component is testing� After encoding the XML message� the Shadow Server

on the client side would use the HTTP POST method to send the encoded

XML message to the Servlet component�

http���pc�����
cse
cuhk
edu
hk������research�testing���C

request�type��D���interface�����E���Caccount�type��D���i

nterface�����E���Cdeposit�type��D���operation�����E���Cp

arameter�ref��D���in����order��D���������E���Cfloat�name

��D���amount�����E�����
����C��Ffloat��E���C��Fparameter

��E���C��Fdeposit��E���C��Faccount��E���C��Frequest��E

At the server side� when the Servlet component gets the message by the

HTTP POST method� it will extract and parse the XML message� and then

invoke the corresponding method of the server object� by passing the extracted

parameters to it� The server object will perform the computation immediately

and pass the results or any exception message back to the Servlet component�

The Servlet component will then convert the results� or the exception signal

into XML message again� based on the DTD of the server object� The returning

stream would be the response part of the HTTP POST method that the Shadow

Server issued� When Shadow Server gets the returned XML message� it will

parse it� and then return the results or raise an exception to the caller client

object�

Chapter � Using XML and Servlets to Support CORBA Calls ��

��� Supporting Callbacks in CORBA Systems

The mechanism introduced in section ��� can handle all of the basic types of

method calls� But only applying this mechanism may not be able to handle

other more complicated calling features� For example� CORBA provides an

interesting and useful feature� named Callbacks� which needs an enhancement

of our mechanism in order to handle it�

����� What is callback�

Just imagine an example of a stock�prices reporting system� You are using the

client application to lookup the changes of the prices of your stocks� There

are thousands of users like you� and hence there may be thousands of client

programs that need to connect to the server for looking up the prices every

minute in order to know the latest stock prices� Though the prices may not

be changing all the time� there will still thousands of connection and lookups

every minute� This would lead to a nightmare in network tra�c�

When client objects need to react to changes or updates that occur on the

server side� it would be rather ine�cient for the client objects to lookup the

server periodically� Instead� it would be more e�cient if the server can notify

the clients whenever there is an update on the server side� hence the client

programs can react to changes with a faster response� and also can minimize

the number of connections� That is� once the client programs have subscribed

to certain stocks� whenever there are updates in stock prices� the server will

inform the client programs� What those client programs need to do is just

waiting for the server to call� This approach is called the callback feature�

The callback feature allows a client object to pass the reference of itself as

one of the parameters when invoking the server object
s methods� And then�

Chapter � Using XML and Servlets to Support CORBA Calls �	

FIREWALL

HTTP & XML
Shadow
ServerIIOP

Server EnclaveClient Enclave

HTTP & XML Shadow
Client

IIOP

createClient
Object

Servlet

Servlet

Server
Object

create

Figure ���� Mechanism that supports CORBA callbacks

the server object can call the client object
s methods by the reference� This

requires both sides to be capable of starting a communication� Because of this�

many CORBA�dedicated �rewalls are not capable to do so� Here� we try to

enhance the mechanism we described before to enable the callback features�

����� Enhancement to Allow Callbacks

As the callback feature needs both client and server objects to be capable of

initializing a new communication� we implement both sides to have the shadow

objects and Servlet components� We describe our mechanism for CORBA

callbacks in Figure ����

Enhancement on Client Side

On the client side� if the client object is expected to use the callback feature�

it should have a Servlet component associated with it at the very beginning�

which can be known from the system IDL design�

Chapter � Using XML and Servlets to Support CORBA Calls ��

HTTP &
XML

Shadow
ServerIIOP

Client Enclave

HTTP & XML

Client
Object

Servlet

create

Procedure
1. Client object first sends a method call

to the Shadow Server. For callbacks,
the method call must contain the client
object itself as one of the parameters.

2. Once the Shadow Server checks out
there is a possibility of callbacks, it will
create a new Servlet component
assoicated with the client object for the
server object to callback later.

3. Shadow Server sends the method
request as normal to the server side,
with some additional information of the
new Servlet component, such as its
location, port number, calling method
list, etc.

4. The new Servlet component waits for
callback from server side.

Figure ���� CORBA callback mechanism on client side

The client object will �rst get a reference to the Shadow Server on the client�

side CORBA enclave� When the Shadow Server receives a method call from

the client object that may request a callback �that is putting itself as one of

the parameters�� and if it is the �rst time� it will create a Servlet component

to be associated with that client object� and will store the information such as

IP address� port number� host name� calling methods� etc� in itself�

These information �IP address� port number� call method and calling meth�

ods� etc� of the Servlet component associated with the client object� will also

be sent to the server side when invoking the server method� Figure ��� shows

the details of what happens on the client side�

Enhancement in Server Side

On the server side� once the Servlet Component has received a message that

includes the information of the location of the Servlet component of the calling

Chapter � Using XML and Servlets to Support CORBA Calls �

HTTP & XML

Server Enclave

HTTP
& XML IIOP

create

Servlet

Server
Object

Shadow
Client

IIOPShadow
Client

Shadow
Client

IIOP

Procedure
1. Servlet Component in the Server side

receives call from outside. If there is
callback, this Servlet Component will
create a Shadow Client immediately,
which will be initialized by the info of
location provided by client side.

2. Servlet Component will inform the
server object the location of the
Shadow Client that has required
callback.

3. When there is a need to callback,
server object will call the Shadow
Client(s).

4. The Shadow Client(s) will invoke the
Servlet Component(s) on the client
side.

Figure ���� CORBA callback mechanism in server side

client object� it will automatically generate a new Shadow Client object� which

has the same interface as the calling client object� This Shadow Client object

will be initialized by the information of the real client and its Servlet compo�

nent� so that it will know how to set up the connection with the real client

later�

The real server object then gets the reference of the Shadow Clients �the

newly created ones on the server side� that requires callbacks� Whenever the

server is updated� it can call the Shadow Clients to invoke and notify the client

object� During the data transmission� we still employ similar XML data for�

mat as described in the previous section� By this mechanism� we can support

IIOP calls for CORBA callbacks by integrating XML� Servlet and HTTP calls�

Figure ��� shows the details of what is happening on the client side�

Chapter � Using XML and Servlets to Support CORBA Calls ��

��� Achieving Transparency with Add�on Com�

ponents

One of the advantages of our add�on components are their transparency to the

whole system� They also help us to avoid any modi�cations to the existing

components in the system� We have shadow objects that have exactly the

same interface as the objects being called in another enclave� Shadow objects

are located at the same enclave as the callers� and they perform exactly the

same functions as the target objects that the callers want to call� Servlets

components� which are located at the same enclave as the objects being called�

should be able to convert the XML messages to appropriate calling methods

that the objects being called can understand� Interfaces of the objects are very

important for the function and the creation of these add�on components�

When building a CORBA system� programmers are �rst needed to design

the interfaces of all CORBA objects and provide an IDL �le to generate the

necessary source codes for server skeletons� client stubs and other system archi�

tectures� The IDL design of a CORBA system provides the interface de�nitions

of all the objects in the system� The IDL �les can provide the following interface

information�

� Interface names�

� Object method names provided by each interface�

� The return type of each method�

� All parameters types and their orders in prototypes of each method�

� All passing types of the parameters �i�e� if they are �passing by reference

or passing by value��

Chapter � Using XML and Servlets to Support CORBA Calls ��

� All exceptions in each method�

� All newly de�ned structures� and

� The possibility of having callbacks features �i�e�� when a CORBA object

interface has another CORBA object interface as one of its parameters��

With IDL providing adequate information about the interface� we can use

these interface information to generate the XML message schema� and also the

source code for the add�on components� As both the add�on Servlet components

and the shadow objects have many common parts of source codes and they are

both concerned only with the interfaces of the server and client objects� we can

use the IDL �les to generate these add�on components automatically�

We have developed a compiling tool which can compile the IDL �les� analyze

the interface design and then generate the following artifacts�

� Source code for Shadow Server�Client objects�

� Source code for Servlet components� and

� DTD of the transmitted messages�

The generation of these source codes can help to reduce the extra programming

work for those add�on components as they usually contain many similarities�

especially in the part of converting the internal data structures to XML for�

mats� The generation of DTD �les� on the other hand� provides a standard for

information exchange in XML formats� Based on the DTD� system developers

can have implementations other than using CORBA for their clients or servers

components� These tools will be introduced in the next chapter�

Chapter �

A Translator to Convert CORBA

IDL to XML

��� Introduction to CORBA IDL

In order to generate the XML documents for data transmission in remote pro�

cedure calls and source code generation for the add�on components� we make

use of the Interface De�nition Language �IDL� �les for CORBA object design�

We try to use these IDL �les to extract all the necessary information of the

interfaces from IDL �les for the auto�creation of our Shadow Server or Shadow

Client� and the DTD standards for message passing� We are able to do this

because the IDL �les have already contained all the information about all the

interfaces of all CORBA objects that would be involved in remote calling�

The CORBA IDL is used to de�ne interfaces to objects in a distributed

environment ��� ��� ���� The �rst step in developing a CORBA application is

to de�ne the interfaces to the objects required in the distributed system� IDL

allows programmers to de�ne interfaces to CORBA objects without specifying

the implementation of those interfaces� In fact� programmers can implement

IDL interfaces using any programming language for which an IDL mapping is

��

Chapter � A Translator to Convert CORBA IDL to XML 	�

available� CORBA applications written in di�erent programming languages are

fully interoperable� CORBA de�nes standard mappings from IDL to several

programming languages� including C��� Java� and Smalltalk� hence� we can

say that CORBA IDL is very generic�

A translator� which is written in Perl� is implemented in our research project

for XML documents generation� Here� we will describe how this translator

works to produce XML documents and the DTD �les of those XML documents�

In the following sections� we introduce di�erent elements of CORBA IDL

and describe one by one in details about how we convert di�erent items into

XML format� We will also discuss how the add�on components work� and how

they can be generated by the XML �les�

��� Mapping from IDL to XML

Here� we will describe the schema of mapping CORBA IDL to XML in details�

First� we explain how we represent some data types in XML formats� Then�

we describe the schema for mapping all information in interface� Basically�

interface in CORBA IDL is representing an object in CORBA� We will also

address the inheritance issue in our mapping�

We will explain two uses of the XML documents� One is for representing the

IDL� which mainly contains only the structural information of di�erent object

interfaces� With this XML �le� we can generate the add�on components� such

as shadow objects and Servlet components� automatically�

Another one is for transmitting request or response messages in method

calling� For these XML messages� they are not just representing the structure�

but also data values� DTD is provided to give the grammar for these XML

messages�

Chapter � A Translator to Convert CORBA IDL to XML 	�

Table ���� Basic types in IDL and their corresponding XML tags
IDL Type Representation Size Corresponding XML

short �

bit �short� ��short�

unsigned short �

bit �ushort� ��ushort�

long ��
bit �long� ��long�

unsigned long ��
bit �ulong� ��ulong�

long long
	
bit �longlong� ��longlong�

unsigned long long
	
bit �ulonglong�

��ulonglong�

�oat IEEE single
precision
�oating point numbers

�float� ��float�

double IEEE double
precision
�oating point numbers

�double� ��double�

char An �
bit value �char� ��char�

boolean TRUE or FALSE� �boolean� ��boolean�

octet An �
bit value that is
guaranteed not to un

dergo any conversion
during transmission

For simplicity� we do not
support it right now� In
fact� uuencode can convert
binary messages to character
strings

any The any type allows the
speci�cation of values
that can express an ar

bitrary IDL type

For simplicity� we do not
support it right now�

����� IDL Basic Data Types

Same as many programming languages� IDL also provides a number of basic

types for de�ning interfaces� such as integers� 	oating point numbers� etc� Table

��
 lists the basic types supported in IDL�

To convert these values into XML data� we simply use the variable type

names as the tag names� For example� short becomes �short�	 ��short��

unsigned short becomes �ushort�	 ��ushort� etc�

In transmission messages� we will put the value of a variable inside the tags�

and state the variable name in an attribute of the tags as name� For example�

Chapter � A Translator to Convert CORBA IDL to XML 	�

a short integer named abc is carrying
�� then the representation is�

�short name
�abc������short�

In the XML representation of attribute de�nition in IDL �les� no data is in

short variable� hence we use a short form of tags� �short name
�abc� ���

����� IDL Complex Data Types

This section describes the IDL complex data types including� enum� struct�

string� sequence� and array� They may consist of a number of basic type

elements� In IDL� for the de�nition of these complex types� a new type name

may be assigned� We use these new type names as the new tag names in XML

documents� And all new tags would bound all their detailed information and

have the attribute complex to indicate what category of complex data type it

is� Here� we will describe di�erent complex data types in details�

Enum Type

An enumerated type allows you to assign identi�ers to the members of a set

of values� For example� a variable of Color type below may have red� blue or

green as its value�

enum Color fred	 blue	 greeng�

To use XML in representing the IDL design� we will use tags �element�	

��element� to present the possible values as follow�

�Color complex
�enum��

�element�red��element�

�element�blue��element�

�element�green��element�

��Color�

When we use XML in message transmission� we will use only one �element�

Chapter � A Translator to Convert CORBA IDL to XML 	�

��element� pair to represent the current value of the variable� For instance�

a variable pixel of Color type in the previous example containing a value as

blue� would be represented in the XML message in transmission like this�

�Color complex
�enum� name
�pixel��

�element�blue��element�

��Color�

Struct Type

A struct data type allows programmers to package a set of named members of

various types� for example�

struct Customerf
long id�

short age�

boolean ismale�

g�

The Customer type contains three members� including a long integer named as

id� a short integer named as age� and a boolean named as ismale�

Shown here is the way we represent the de�nition above in XML format�

�Customer complex
�struct��

�long name
�id���

�short name
�age���

�boolean name
�ismale����

�Customer�

If we are using the XML to represent a struct variable� say with variable

name as peter of type Customer in the previous example� and id is
��� age

is �� and ismale is TRUE� the information will be presented as follow�

�Customer complex
�struct� name
�peter���

�long name
�id�������long�

�short name
�age������short�

�boolean name
�ismale��TRUE��boolean

��Customer�

Chapter � A Translator to Convert CORBA IDL to XML 		

String

An IDL string represents a character string� where each character can take

any value of the char basic type� If the maximum length of an IDL string is

speci�ed in the string declaration� then the string is bounded� otherwise the

string is unbounded�

string���� place� ��Bounded String

string name� ��Unbounded String

The usage of �string� tags is very similar to those basic data types� To

represent a string with maximum length de�ned� we use an attribute size in

the �string� tags� �Otherwise� this attribute will be omitted��

�string size
���� name
�name���

Sequence and Arrays

In IDL� you can declare a sequence and array of any IDL data types� An IDL

sequence is similar to a one�dimensional array of elements� but it does not have

a �xed length� If the sequence has a �xed maximum length� then the sequence

is bounded� Otherwise� the sequence is unbounded�

sequence�short	 �� marksix� ��Bounded Sequence of Short Integers

sequence�string� name� ��Unbounded Sequence of String

Shown here is how we represent a sequence in XML for IDL de�nition�

�sequence bounded
����

�short��

��sequence�

If we represent data� the elements bounded by tag sequence should be re�

peated with corresponding values� Say� a sequence of short with variable name

Chapter � A Translator to Convert CORBA IDL to XML 	�

as number� with values in the sequence �
�� and �� will be represented as follow�

�sequence bounded
��� name
�number��

�short index
���� � ��short�

�short index
���� � ��short�

�short index
���� � ��short�

��sequence�

XML is so 	exible that it can well represent structures even as complex as

a sequence of struct type data� Using customer in the struct type section as

an example�

�sequence bounded
��� name
�number��

�Customer complex
�struct� index
����

�long name
�id�������long�

�short name
�age������short�

�boolean name
�ismale��TRUE��boolean�

��Customer�

�Customer complex
�struct� index
����

�long name
�id�������long�

�short name
�age������short�

�boolean name
�ismale��FALSE��boolean�

��Customer�

�Customer complex
�struct� index
����

�long name
�id�������long�

�short name
�age������short�

�boolean name
�ismale��TRUE��boolean�

��Customer�

��sequence�

For arrays� they are very similar to sequence� but they are multi�dimensional

and always have a �xed size� Using an example of a ��� array�

short test��	��

We use attributes size�� size�� size������ etc� to represent the size in di�erent

dimensions� in which size� means the �rst dimension� size� means the second

dimension� etc� To represent this statement of IDL in XML format�

�array size�
��� size�
��� name
�test���

�short��

��array�

Chapter � A Translator to Convert CORBA IDL to XML 	

To represent the data for transmission in XML format� we use attributes

index�� index�� index������ etc� to represent the indexes of the elements with

di�erent dimensions� We can have the following structure�

�array size�
��� size�
��� name
�test��

�short index�
��� index�
���� ��� ��short�

�short index�
��� index�
���� ��� ��short�

�short index�
��� index�
���� ��� ��short�

�short index�
��� index�
���� ��� ��short�

�short index�
��� index�
���� �� ��short�

�short index�
��� index�
���� ��� ��short�

��array�

TypeDef

The typedef keyword allows programmers to de�ne a meaningful or more sim�

ple name for an IDL type� The following IDL provides a simple example of

using this keyword�

typedef float Money

typedef MarkSix short����

We would just use the new type name to create a pair of tag to bound the

data type it representing�

�MarkSix complex
�typedef��

�array size�
��� name
�test���

�short��

��array�

��MarkSix�

To represent the typedef data in transmission� tags of the typedef name

would bound the original message�

�MarkSix complex
�typedef��

�array size�
��� name
�test���

�short index�
���� � ��� �short index�
���� �� ���

�short index�
���� � ��� �short index�
���� �� ���

�short index�
���� �� ��� �short index�
���� �� ���

��array�

��MarkSix�

Chapter � A Translator to Convert CORBA IDL to XML 	�

����� IDL Interface

An IDL interface describes the functions that an object supports in a dis�

tributed application� Interface de�nitions provide all of the information that

clients need in order to access the object across a network�

interface Account f
�� The account owner and balance

readonly attribute string name�

attribute float balance�

�� Operations available on the account

void deposit �in float amount��

boolean withdraw �in float amount��

g�

The example above shows the interface Account� The objects which imple�

ment this interface will have two attributes� and two operations� To represent

by XML� we just use the interface name as the new tag name and bound ev�

erything inside�

�Account complex
�interface��

Details of Attributes and Operations

��Account�

We will talk about the detailed XML representation of attributes and op�

erations in the following parts�

����� Attributes

Attributes correspond to variables that an object implements� They indicate

that these variables are available in an object and that clients can read or write

their values�

In general� attributes map to a pair of functions in the programming lan�

Chapter � A Translator to Convert CORBA IDL to XML 	�

guage used to implement the object� These functions allow client applications

to read or write the attribute values� However� if an attribute is preceded by the

keyword readonly� then clients can only read the attribute value� These read

and write functions will also be prepared in our Shadow Client and Server

objects� and Servlet components�

With reference to the interface Account shown in the previous section� it

contains two attributes�

readonly attribute string name�

attribute float balance�

In the example� the string attribute is read�only while another one is read�

write� To represent these� we use a tag attribute readonly�

�string type
�attribute� readonly
�true� name
�name���

�float type
�attribute� name
�balance���

����� Operations 	Methods

IDL operations de�ne the format of functions� methods� or operations that

clients use to access the functionality of an object� An IDL operation can take

parameters and return a value� using any of the available IDL data types�

In our representation of IDL �les using XML� we use the operation name

as the tag name� and have an attribute type to indicate that it is an object

method� Within the pair of tags� we have two more kinds of element tags�

they are �parameter� and �return�� �parameter� tags describe one of the

parameters of the operation� It has attribute ref to state if it is passed by

reference or values� and attribute order to describe its listing order with other

parameters in the method call�

Here is an example with the two operations shown in the example in the

previous section�

Chapter � A Translator to Convert CORBA IDL to XML 	�

�deposit type
�operation��

�parameter ref
�in� order
����

�float name
�amount���

��parameter�

��deposit�

�withdraw type
�operation��

�return�

�boolean��

��return�

�parameter ref
�in� order
����

�float name
�amount���

��parameter�

��withdraw�

If the operation takes an object as one of its parameters� we pass the object
s

interface in the method call� which is also bounded by parameter tags� The

XML�based interface de�nition passed should contain all the information of

its attributes� operations and exceptions� This would be useful in callback

features�

����� Exceptions

IDL operations can raise exceptions to indicate the occurrence of an error�

CORBA de�nes two types of exceptions� System exceptions are a set of stan�

dard exceptions de�ned by CORBA� User�de�ned exceptions are exceptions

that you de�ne in your IDL speci�cation�

Implicitly� all IDL operations can raise any of the CORBA system excep�

tions� No reference to system exceptions appears in an IDL speci�cation� Also�

as all objects may throw system exceptions� it is not necessary to put the

de�nition of system exceptions in the XML documents�

An IDL exception is a data structure that contains member �elds� In the

following example� the exception notEnoughMoney includes a single member of

type string�

Chapter � A Translator to Convert CORBA IDL to XML ��

interface Account !

exception notEnoughMoney !

string reason�

"�

void withdraw�in CashAmount amount�

raises�notEnoughMoney��

"�

Inside the �Account� tags� we will have the de�nition of the exception

notEnoughMoney as follow�

�notEnoughMoney type
�exception��

�string name
�reason���

��notEnoughMoney�

And inside the method �withdraw� tags� we will add a new tag for the

exception� �raises�� to bound the exceptions �similar to �parameter� and

�return� tags��

����� Inheritance

IDL supports inheritance of interfaces� An IDL interface can inherit all the

elements of one or more other interfaces� In our mapping scheme� we will

simply put all information of the parent interface into the child interface� For

example� we have two interfaces in IDL� where child is inherited from parent�

interface parent !

short op�in a��

"�

interface child � parent !

readonly attribute short cat�

"�

In our XML �le� the interface child would be�

Chapter � A Translator to Convert CORBA IDL to XML ��

�child type
�interface� parent�
�parent��

�short type
�attribute� name
�cat��

�op type
�operation��

�parameter ref
�in� order
����

�short name
�a� ��

��parameter�

��op�

��child�

����
 IDL Modules

An IDL module de�nes a naming scope for a set of IDL de�nitions� Modules

allow you to group interfaces and other IDL type de�nitions in logical name

spaces� and prevent name clashes with other modules�

As IDL module is the outermost bounding of the whole IDL �le in the XML

document� we also create a pair of tags with the name of the module to be the

root tags� The tag would contain an attribute type with value as module�

�bank type
�module��

����

 definition interfaces ���

��bank�

����� A Sample Conversion

We have described the schema of the conversion from CORBA IDL to XML�

Here� we give a sample IDL �le� and then demostrate how we convert it into

XML format� Figure ��
 shows a sample IDL of the information system of a

small shop� Figure ��� is the XML format of the IDL in Figure ��
�

Chapter � A Translator to Convert CORBA IDL to XML ��

module OrderProcessing !

typedef string ProductCode�
enum PriceType ! retail	 contract	 promotion "�

struct Customer !
string customerCode�
string customerName�

"�

interface Price !
attribute float price�
attribute PriceType priceType�
attribute string expiryDate�

"�

typedef sequence � Price � PriceSequence�

interface PriceCalc !
attribute Customer customer�
attribute ProductCode product�
void getPrices�out PriceSequence prices��
void recordUseOfPrice�in Price priceUsed��

"�
"�

Figure ���� A sample IDL �le for an information system

��� Making a Request or Response

If a client object wants to make a request to the server object� it will make a

request call to the Shadow Server instead� The Shadow Server will generate

a XML request message to the server side� which uses a pair of �request� tags

as the root tags to bound the method calling information�

After the server object has performed the request� it will return a returned

value or throw an exception to the client side� The returned messages would

be bounded by a pair of �response� tags as root tags�

Both XML�based request and response messages will follow the generated

Chapter � A Translator to Convert CORBA IDL to XML ��

DTD� It is shown in Figure ����

��� Code Generation for Add�on Components

In the previous sections� we have shown the complete schema for the mapping

of CORBA IDL to XML messages� With that XML data� we can generate

the add�on components automatically� as they already have all the information

about the interfaces�

For instance� in CORBA callback calls� a client would put itself as one of

the parameters in the server
s method call� Here� the client putting itself in

the parameters means that on the client side� the Shadow Server would send

the interface de�nition of that client to the server side� The Servlet component

on the server side would immediately use the interface de�nition of the client�

which is in XML format� to create a Shadow Client immediately� While on the

client side� the Shadow Server will also generate a Server component� Here�

we will discuss the generation of these two components�

����� Generation of Shadow Objects

A Shadow Object has the same interface as the actual target object� To gen�

erate it� we have to analyze the XML �le that represents the object interface�

For each operation in the interface� we create the same operation which takes

the same parameters and returns a value of the same data type�

Inside each operation� we would have three parts of source code�

� To convert the parameters into text strings� and form a XML message

which describes a request call�

Chapter � A Translator to Convert CORBA IDL to XML �	

�� To start a HTTP connection with and send the XML message to the

server side� and wait for the response�

�� When the XML�based response message is returned� either a returned

value form or an exception� it is parsed and returned to the caller object

by returning it or throwing an exception�

����� Generation of Servlet Components

The mechanism in Servlet components is much simpler than that in Shadow

Objects� A Servlet component is to take the XML�based request messages

from the client side� and then make a corresponding call to the server object�

Hence� it has to know how to call all the operations of the server object�

Inside a Servlet component� we would have three parts of source code�

� To wait for the client requests by HTTP connection�

�� When the XML�based request message is received� which contains infor�

mation about the calling method and its parameters� the Servlet parses

the message and makes a method call with corresponding parameters to

the server object�

�� To convert the returned values or any exceptions into XML format� and

then return it back to the client side�

Chapter � A Translator to Convert CORBA IDL to XML ��

�OrderProcessing type
�module��

�ProductCode complex
�typedef�� �string�� ��ProductCode�

�PriceType complex
�enum��
�element�retail��element�
�element�contract��element�
�element�promotion��element�

��PriceType�

�Customer complex
�sequence��
�string name
�customerCode��
�string name
�customerName��

��Customer�

�Price complex
�interface��
�float type
�attribute� name
�price���
�PriceType type
�attribute� name
�priceType���
�string type
�attribute� name
�expiryDate���

��Price�

�PriceSequence complex
�typedef��
�sequence� �Price�� ��sequence�

��PriceSequence�

�PriceCalc type
�interface��
�Customer type
�attribute� name
�customer���
�ProductCode type
�attribute� name
�product���
�getPrices type
�operation��

�parameter ref
�out� order
����
�PriceSequence name
�price���

��parameter�
��getPrices�
�recordUseOfPrice type
�operation��

�parameter ref
�in� order
����
�Price name
�priceUsed���

��parameter�
��recordUseOfPrice�

��PriceCalc�
��OrderProcessing�

Figure ���� XML format of the IDL in Figure 	��

Chapter � A Translator to Convert CORBA IDL to XML �

��DOCTYPE OrderProcessing �
��ELEMENT OrderProcessing �ProductCode	 PriceType	

Customer	 Price	 PriceSequence	 PriceCalc��
��ATTLIST OrderProcessing type ��CDATA��

��ELEMENT ProductCode �string��
��ATTLIST ProductCode type ��CDATA��
��ATTLIST ProductCode complex ��CDATA��
��ATTLIST ProductCode name ��CDATA��

��ELEMENT PriceType �element���
��ATTLIST PriceType complex ��CDATA��

��ELEMENT Customer �string���
��ATTLIST Customer complex ��CDATA��
��ATTLIST Customer type ��CDATA��
��ATTLIST Customer name ��CDATA��

��ELEMENT Price �float	 PriceType	 string��
��ATTLIST Price type ��CDATA��

��ELEMENT PriceSequence �sequence��
��ATTLIST PriceSequence type ��CDATA��

��ELEMENT sequence �Price���
��ELEMENT PriceCalc �Customer	 ProductCode	

getPrices	 recordUseOfPrice��
��ATTLIST PriceCalc complex ��CDATA��

��ELEMENT getPrices �parameter��
��ATTLIST getPrices type ��CDATA��

��ELEMENT recordUseOfPrice �parameter��
��ATTLIST recordUseOfPrice type ��CDATA��

��ELEMENT parameter �PriceSequence � Price��
��ATTLIST parameter ref ��CDATA��
��ATTLIST parameter order ��CDATA��

��ELEMENT float ��CDATA��
��ATTLIST float name ��CDATA��

��ELEMENT string ��CDATA��
��ATTLIST string name ��CDATA��

��ELEMENT element ��CDATA��
��

Figure ���� The DTD for the parameter passing of simulated calls

Chapter �

Communication in

Heterogeneous Distributed

Environments

��� Objective

Nowadays� we have a trend to integration of several information systems in

order to provide better services to the increasingly demanding users� In fact�

integrating several distributed system is not an easy task� There are many

popular environments for the development of distributed applications� such as

CORBA ���� DCOM �

� or Java RMI �
�� etc� They are developed by di�er�

ent organizations� hence they use di�erent communication protocols� CORBA

systems use IIOP� DCOM systems use DCOM protocol� and Java RMI uses

Java Remote Method Protocol �JRMP�� So� when we want to integrate sys�

tems with di�erent distributed environments� it would be hard to let those

distributed objects to communicate with others�

Though we have many applications that help us to achieve the commu�

nication among heterogeneous distributed environments� they are not generic

��

Chapter � Communication in Heterogeneous Distributed Environments ��

enough� Take the famous OrbixCOMet �
�� by Iona Technologies as an exam�

ple� It is a typical bridging tool� and implements the COM�CORBA Interwork�

ing speci�cation by enabling transparent communication between COM clients

and CORBA servers� There is a COMET component located between the

CORBA enclave and COM�DCOM enclave� and it acts as a bridge to provide

the mappings and perform translation between CORBA and COM�DCOM�

OrbixCOMet provides very good performance in bridging CORBA and

COM�DCOM applications� but it is not generic enough to give bridging to

other environments� such as JavaRMI� It is because OrbixCOMet uses a mid�

dleware COMET between CORBA enclave and COM�DCOM enclave� which

would directly convert the binary streams of CORBA IIOP messages to binary

streams of DCOM IIOP messages� Though this approach is fast� it cannot be

used with other distributed environments� Moreover� as their protocols may

not be supported by many common �rewalls� they may also encounter the

�rewall problems as mentioned before�

We try to extend the mechanism described in Chapter � in order to support

communication in heterogeneous distributed environments� We map the inter�

face de�nition languages of di�erent environments to the same XML schema�

that we have introduced in Chapter �� hence they have the �common language�

to communicate� We base on our CORBA IDL
s XML schema� as CORBA IDL

is very generic which can be mapped to many di�erent programming languages�

hence� it has greater 	exibility to let other interface de�nition languages map

to it�

In this chapter� we will �rst introduce our general principles for the exten�

sion of our mechanism� Then� we will focus on the cases of DCOM and Java

RMI� For each case� we will look at their mapping schema� and how we achieve

communication� Lastly� we will describe how generic our approach is and how

it can also adopt to other web applications�

Chapter � Communication in Heterogeneous Distributed Environments ��

��� General Concept

In Chapter �� we proposed a mechanism of using XML streams with HTTP to

solve the �rewall problem in distributed systems� This mechanism works be�

cause we can avoid the use of IIOP across �rewalls� we use HTTP instead� The

use of shadow objects and the Servlet components can make our conversion

of IIOP to XML transparent from other CORBA objects� as these CORBA

objects cannot distinguish them from the real callers or callees� More impor�

tant� our add�on components are also CORBA objects and located at the same

enclave as those original objects� hence there are no communication problems�

Now� we use the approach described in Chapter � and extend it as the com�

munication bridge among heterogeneous distributed environments� In hetero�

geneous distributed environments� objects in one enclave cannot communicate

with objects in another enclave� It is because they use di�erent communication

protocols� CORBA systems use IIOP� DCOM systems uses DCOM protocol�

and Java RMI use Java Remote Method Protocol �JRMP� and they are in�

compatible to each other� The case is similar to the blocking of �rewalls� one

enclave cannot talk with another enclave�

To solve this problem� again� we rely on our add�on components� shadow

objects and Servlets components� The add�on components are developed under

the same environment as the other objects located at the same enclave� so they

have no problem to communicate with the objects in the same enclave� At

the same time� the shadow objects and the Servlets components can talk to

the others with XML and HTTP� This can help to join di�erent heterogeneous

enclaves into a network and hence they all can communicate with each other�

To achieve the joint network it is important that all enclaves must agree

to use a common XML schema� such that they have the common language to

talk with the others� In Chapter �� we have described the schema of mapping

Chapter � Communication in Heterogeneous Distributed Environments
�

CORBA IDL to XML format� With this� we can achieve communication of

CORBA objects in di�erent enclaves� as all CORBA objects in di�erent en�

claves use the same language� We have set the schema for IDL to XML mapping

to guarantee the unity in representation�

What we have to do now is to ensure that the interface de�nition languages

in di�erent distributed environments can map onto the same schema� CORBA

has a generic IDL which is able to map to many di�erent programming lan�

guages� As CORBA IDL is so generic� we try to use its XML schema as the

fundamental schema and map other IDLs into the same schema�

In the following sections� we are going to show how we link DCOM systems�

Java RMI systems and CORBA systems together with an agreed common XML

schema� and a suitable architecture� Our mechanism is so generic that not

only DCOM or Java RMI systems can be integrated� but also other distributed

environments� or other web applications� We will describe how they can further

connect to other web applications�

��� Case Study � � Distributed Common Object

Model

����� Brief Overview of Programming in DCOM

Developed by Microsoft� DCOM is COM �Common Object Model� with dis�

tributed feature �COM only allows processes in a single host to communicate��

DCOM supports remote objects by running on a protocol called the Object

Remote Procedure Call �ORPC�� A DCOM server is a body of code that is

capable to be called by objects of a particular type at runtime� Each DCOM

server object can support multiple interfaces each representing a di�erent be�

Chapter � Communication in Heterogeneous Distributed Environments
�

havior of the object� A DCOM client calls the methods of a DCOM server

by acquiring a pointer to one of the server object
s interfaces� DCOM server

components can be written in diverse programming languages like C��� Java�

Object Pascal �Delphi�� Visual Basic and even COBOL� As long as a platform

supports COM services� DCOM can be used on that platform� DCOM is now

heavily used on the Windows platform� Companies like Software AG provide

COM service implementations through their EntireX product for UNIX� Linux

and mainframe platforms� Digital for the Open VMS platform and Microsoft

for Windows and Solaris platforms�

DCOM objects use Microsoft Interface De�nition Language to de�ne their

interfaces ���� ��� ���� Figure ��
 shows a sample MIDL �le� The MIDL

compiler creates the proxy and stub code when run on the MIDL �le for the

static invocation to work� They are registered in the systems registry to allow

greater 	exibility of their use and virtual table �vtable� will be used for invok�

ing objects� In the MIDL� COM objects would implement IUnknown interface

for static invocation� Otherwise� COM objects have to implement an inter�

face called IDispatch for dynamic invocation to work� As with CORBA or

Java�RMI� to allow for dynamic invocation� some ways are needed to describe

the object methods and their parameters� DCOM uses type libraries to describe

the object� and it also provides interfaces� obtained through the IDispatch in�

terface� to query an Object
s type library� In COM� an object whose methods

are dynamically invoked must be written to support IDispatch�

Note that in DCOM� each interface is assigned a Universally Unique IDenti�

�er �UUID� called the Interface ID �IID�� Similarly� each object class is assigned

a unique UUID called a CLasS ID �CLSID�� COM does not support multiple

inheritance� instead� it uses the notion of an object having multiple interfaces

to achieve the same purpose�

Chapter � Communication in Heterogeneous Distributed Environments
�

�
uuid� � �a�����e�����d��b�c���������������	
version��
��

�
library SimpleStocks
!

importlib��stdole��
tlb���
�

uuid�BC�C�AB���A�����d����C����A�����C����	
dual

�
interface IStockMarket � IDispatch
!

HRESULT get#price��in� BSTR p�	 �out	retval� float� rtn��
"

�
uuid�BC�C�AB���A�����d����C����A�����C����	

�
coclass StockMarket
!

interface IStockMarket�
"�

"�

Figure ���� An example of MIDL document

����� Mapping the Two Di�erent Interface De�nitions

A MIDL document �refer to Figure ��
 as example�� is usually consisted of

two components� interface header and interface body� The interface header is

the part bounded by a pair of square brackets� which speci�es the information

about the interface as a whole� It contains some attributes such as UUID�

version numbers� etc� These attributes are not necessary in our XML messages

formation� Below the square brackets are interface bodies� The IDL inter�

face body contains data types used in remote procedure calls and the function

prototypes for the remote procedures� The interface body can also contain

Chapter � Communication in Heterogeneous Distributed Environments
�

imports� constant declarations� type declarations and object method declara�

tions� So� we are only interested in the information inside the interface body

for the translation of MIDL �les to XML format� and we will ignore the things

included in square brackets�

In the naming convention of DCOM� names started with letter I are the

interface names� So� we need to convert the contents inside the interfaces

to XML messages� For example� IStockMarket and IDispatch in Figure ��

are the interface names� The DCOM IDL �le associates the IStockMarket

interface with an object class StockMarket as shown in the coclass block� That

means object class StockMarket is implementing interface IStockMarket� so

we need the information provided by interface IStockMarket for generating

XML messages�

Inside an interface de�nition are their method de�nitions� HRESULT is the

default return type of all object methods in the MIDL �le� which represents

error and success noti�cations �such as failure� insu�cient memory� invalid

arguments� etc�� For method parameters� the pair of square brackets in front

of each parameter indicates if the parameter is for input� output or both� The

last parameter may be the return value� which is indicated by the keyword

retval� The �nal objects implementing the interface will return the parameter

with retval keyword as return value�

Table ��
 shows the mapping of basic types between MIDL and CORBA

IDL� This mapping is based on OMG COM�CORBA Interworking speci�cation

which only spells out what the requirements for mapping and interworking

are� but provides no implementation ��� ��� ���� Note that in the conversion

from CORBA IDL to MIDL� as MIDL does not have long long and unsigned

long long� these two types will only be mapped to long and unsigned long

respectively�

Chapter � Communication in Heterogeneous Distributed Environments
	

Table ���� Mapping the Basic types in MIDL to CORBA IDL�XML Schema
DCOM MIDL Type CORBA IDL Type Corresponding XML

short short �short� ��short�

unsigned short unsigned short �ushort� ��ushort�

long long �long� ��long�

unsigned long unsigned long �ulong� ��ulong�

�oat �oat �float� ��float�

double double �double� ��double�

char char �char� ��char�

bool boolean �boolean� ��boolean�

For other complex types and other de�nitions� though DCOM and CORBA

have di�erent syntax� they contain similar information for those de�nitions

such that mapping for them would be trivial�

There are two special issues that needed discussion� they are inheritance

and exceptions� CORBA IDL supports interface inheritance� while DCOM

does not� Instead of supporting multiple inheritance� DCOM uses the notion

of an object having multiple interfaces to achieve the same purpose� In our

XML representation for interface� we will simply list all the resultant methods�

attributes and exceptions inherited from or extended from all interfaces to the

new interfaces� Hence� we need not handle the problem of di�erences between

multiple interfaces extension and multiple interfaces inheritance�

Another issue is exception� One di�erence between CORBA �and Java�RMI�

IDLs and COM IDLs is that CORBA �and Java�RMI� can specify exceptions in

the IDLs while DCOM does not� There are system exceptions also in DCOM�

but they need not be de�ned in the MIDL �le� which is similar to CORBA� So�

we will not include these in our XML representation� For user de�ned applica�

tion exceptions� we need to represent them as parameters of the corresponding

methods�

Chapter � Communication in Heterogeneous Distributed Environments
�

The last issue is the attributes� In CORBA IDL� they are declared inside

the object interface as ordinary object attributes� with speci�cation if they are

read�only� But in MIDL� methods for reading and writing are de�ned instead�

Say an attribute with the name as �NAME�� in Java RMI Interface� it would

be presented as two methods� one is for reading get �NAME���� another one is

for writing� put �NAME���� If the attributes are read�only� they will not have

put �NAME��� methods�

����� Sample Architecture of Communicating Between

DCOM and CORBA

The mechanism applied here is similar to what we have proposed in Chapter ��

In the DCOM enclave� if a client object needs to call another object outside� a

Shadow Server object is added to the enclave to simulate the behaviour of the

target server object outside� If there is a server object waiting for calls from

outside� a Servlet component has to assoicate with it� They are responsible for

the conversion of XML message to or from DCOMmethod calls� In the CORBA

side� the con�guration is the same as described in previous chapter� Figure ���

shows the details of the architecture of establishing such a communication�

For the Servlet components� besides using Java Servlets� we can also use

alternative solutions� such as Active Server Pages� CGI� etc� It is because in

Windows environment� where DCOM systems work the best at� those alterna�

tive solutions may work better than Java Servlets� in terms of performance and

compatibility� Anyway� Java Servlets still work �ne with DCOM systems�

Chapter � Communication in Heterogeneous Distributed Environments

DCOM
Shadow
Server

DCOM
Client
Object

DCOM

Protocol

CORBA EnclaveDCOM Enclave

CORBA
Servlet

CORBA
Server
Object

IIOPHTTP & XML

CORBA
Shadow
Server

DCOM
Server
Object

DCOM
Protocol

DCOM
Servlet

CORBA
Client
ObjectIIOP

HTTP & XML

Figure ���� Our mechanism to support communication among DCOM and
CORBA

��� Case Study � � Java Remote Methods Invo�

cation

����� Brief Overview of Programming in Java RMI

Java RMI is similar to CORBA or DCOM which also enables the programmers

to create distributed applications� Its application objects are Java�to�Java� in

which the methods of remote Java objects can be invoked from other Java

virtual machines� possibly on di�erent hosts� A Java program can make a call

on a remote object once it obtains a reference to the remote object� either by

looking up the remote object in the bootstrap�naming service provided by RMI�

or by receiving the reference as an argument or a return value� A client can call

a remote object in a server� and that server can also be a client of other remote

objects� RMI uses Object Serialization to marshal and unmarshal parameters

and does not truncate types� supporting true object�oriented polymorphism�

Chapter � Communication in Heterogeneous Distributed Environments
�

Similar to CORBA and DCOM� Java RMI also has its interface de�nition

language� As Java RMI supports only Java�to�Java communications� it uses the

ordinary Java interface de�nition as its interface de�nition language� All remote

interfaces extend� either directly or indirectly� the interface java
rmi
Remote�

The Remote interface de�nes no methods� as shown here�

public interface Remote! "

For example� the code fragment in Figure ��� de�nes a remote interface for

a bank account that contains methods that deposit to the account� get the

account balance� and withdraw from the account�

public interface BankAccount extends java
rmi
Remote !

public void deposit �float amount�

throws java
rmi
RemoteException�

public void withdraw �float amount�

throws OverdrawnException	 java
rmi
RemoteException�

public float balance��

throws java
rmi
RemoteException�

"

Figure ���� An example of Java RMI interface de�nition

For object methods� each method must declare java
rmi
RemoteException

in its throws clause� in addition to any application�speci�c exceptions� Similar

to the IDLs of other distributed environments� a remote object passed as an

argument or return value �either directly or embedded within a local object�

must be declared as the remote interface� not the implementation class�

Chapter � Communication in Heterogeneous Distributed Environments
�

����� Mapping the Two Di�erent Interface De�nitions

Here� we map the Java RMI Interface �
�� ��� into the same XML schema

derived from the CORBA IDL� In order to encourage convergence between

the RMI and CORBA communities� Object Management Group �OMG� has

released the speci�cation for converting the Java Language to IDL mapping

��
�� Its target is to de�ne a solution that is both fully compatible with current

RMI semantics and fully compatible with OMG IDL� IIOP� and CORBA object

model� Sun Microsystems has developed Java RMI�IIOP �
�� which uses this

speci�cation to do conversion in the RMI objects such that those objects will

use IIOP to communicate� With the usage of RMI�IIOP� original RMI objects

have to be modi�ed in order to use IIOP� but these objects would not be able

to communicate with ordinary RMI objects again�

To make RMI objects able to communicate with CORBA objects without

any modi�cation to the existing source code� we apply our mechanism again�

We need to map Java Interface to CORBA IDL� and vice versa� Our conversion

schema is based on the OMG speci�cations for Java to IDL mapping ��
�� and

IDL to Java mapping �����

In Table ���� they are the general rules for converting the basic types in Java

Interface to the corresponding types in CORBA IDL and our XML schema�

This conversion scheme would be useful for binding existing RMI objects to�

wards other systems� For example� the Shadow Servers in the RMI enclaves

need to use these rules to convert parameters in Java RMI into our common

XML schema�

Table ��� shows the general rules for converting the basic types in CORBA

IDL� or our XML schema� to Java primitive types in RMI Interface� It is used

to let outside objects to communicate with Java RMI� For example� the Servlet

Components in the RMI enclaves need to use these rules to convert parameters

Chapter � Communication in Heterogeneous Distributed Environments
�

Table ���� Mapping Basic Types from Java to CORBA IDL�XML schema
Java RMI Type CORBA IDL Type Corresponding XML

short short �short� ��short�

int long �long� ��long�

long long long �longlong� ��longlong�

�oat �oat �float� ��float�

double double �double� ��double�

char char �char� ��char�

boolean boolean �boolean� ��boolean�

Table ���� Mapping Basic Types from CORBA IDL�XML schema to Java
CORBA IDL Type Java RMI Type Corresponding XML

short short �short� ��short�

unsigned short short �ushort� ��ushort�

long int �long� ��long�

unsigned long int �ulong� ��ulong�

long long long �longlong� ��longlong�

unsigned long long long �ulonglong� ��ulonglong�

�oat �oat �float� ��float�

double double �double� ��double�

char char �char� ��char�

boolean boolean �boolean� ��boolean�

in our common XML schema to Java RMI types�

For other de�nitions� the Java Interface does not have much di�erence when

compared to CORBA IDL� such as struct type de�nition� enum type de�nition�

object interface de�nition� module de�nition� etc� Though they have di�erent

syntax to CORBA IDL� they still have the same contents which can be directly

mapped to the same XML schema�

However� there are points worth mentioning� One is the attributes� In

CORBA IDL� they are declared inside the object interface as ordinary object

attributes with speci�cation if they are read�only� But in the Java Interface�

Chapter � Communication in Heterogeneous Distributed Environments ��

methods for reading and writing are de�ned instead� Say an attribute with the

name as �NAME�� in Java RMI Interface� it would be presented as two methods�

one is for reading get�NAME��� �or if the attribute is boolean� it would be

is�NAME����� another one is for writing� set�NAME���� If the attributes are

read�only� they will not have set�NAME��� methods�

Another point worth noting is about exceptions� Some system exceptions

may be thrown out in Java RMI� and they must be de�ned in the interface

de�nition in all object methods as RemoteException� It is similar to CORBA�

in which system exceptions may be thrown in every method� but they need

not be de�ned in CORBA IDL� We do not mark anything in XML schema for

system exceptions for CORBA� and hence for Java RMI interface� we do not

mark anything in XML schema for system exceptions� too�

The last point is about struct and enum complex type� There is no direct

mapping in Java� instead� Java uses a class �having no operations except con�

structors� to represent� So� if there exists a class in Java with no operations�

we can map them to struct or enum type in our XML schema�

����� Sample Architecture of Communicating Between

JavaRMI and CORBA

The mechanism applied here is similar to what we have applied in the case of

DCOM before� In the Java RMI enclave� if there is a client RMI object that

needs to call another object outside� a Shadow Server object is added to the

enclave to simulate the behaviour of the target server object outside� If there is

a RMI server object waiting for calls from outside� a Servlet component has to

assoicate with it� They are responsible for the conversion of XML message to or

from Java RMI method calls� Same con�guration is set in the CORBA enclaves�

Figure ��� shows the details of the architecture of such communication�

Chapter � Communication in Heterogeneous Distributed Environments ��

Java RMI
Shadow
Server

Java
RMI

Client
Object

JRMP

CORBA EnclaveJava RMI Enclave

CORBA
Servlet

CORBA
Server
Object

IIOPHTTP & XML

CORBA
Shadow
Server

Java
RMI

Server
Object

JRMP
Java
RMI

Servlet

CORBA
Client
ObjectIIOP

HTTP & XML

Figure ���� Our mechanism to support communication among Java RMI and
CORBA

��� Be Generic� Binding with the WEB

In the previous sections� we described how we use the same XML scheme as

the communication protocol such that we can connect CORBA objects� DCOM

objects� and Java RMI objects together� With a common language for com�

munication� objects from heterogeneous environments can interact with each

other�

In fact� the calling sides are not limited to CORBA� DCOM and Java RMI

objects� but they can be many other implementations� It is because with a

right format of XML message and HTTP protocol� any application can invoke

the Servlet components associated with the target object in order to call any

object methods� It is not di�cult to form an XML message and send it by

HTTP protocol� as many implementations can achieve this� Hence� the caller

can be some traditional stand�alone program �e�g� a C or C�� program� a

Java application� etc��� or some web applications �e�g� a Java applets� a Perl

Chapter � Communication in Heterogeneous Distributed Environments ��

CORBA EnclaveDCOM Enclave

DCOM
Objects

DCOM
Protocol

DCOM
add-ons

CORBA
Objects

Web EnvironmentJava RMI Enclave

Java
RMI

Objects
JRMP

Java
RMI

add-ons

WEB Applications
(ASP, JSP,

Servlets, Applets,
CGI, etc)

CORBA
add-ons

IIOP

XML &
HTTP

Figure ���� Allowing heterogeneous systems to communicate

CGI script� Java Server Pages� Active Server Pages� etc��� or even an ordinary

HTML webpage with a button associated with HTTP POST method�

The Servlet components provide great 	exibility of the implementation of

the client side� With Servlet component and XML messages� even the server

enclaves may not be designed as a web application at the beginning� they can

still be integrated to the Internet environment easily�

Moreover� the sides being called are also not limited to CORBA� DCOM

and Java RMI objects� All components or programs that are able to parse the

XML message can be invoked by other CORBA� DCOM or Java RMI objects�

Shadow Servers on the client side convert all client objects
 requests to XML

messages� which are readable to many implementations� such as ASP� JSP� etc�

Hence� our mechanism can bring all CORBA� DCOM� all Java RMI objects

into a completely web�based environment� that is� they can invoke web�based

applications� or be invoked by web�based applications�

Chapter �

Building a Scalable

Mediator�based Query System

	�� Objectives

In the previous chapters� we have introduced our mechanisms for support�

ing IIOP calls in two CORBA enclaves separated by �rewalls� for supporting

CORBA callbacks� and for supporting the communication among di�erent dis�

tributed environments� In order to let you have a more detailed understanding

of our proposed mechanisms� and also to show you how our mechanisms con�

tribute in integrating di�erent distributed systems� we would like to show you

how we implement a practical example� a mediator�based query system� It

demonstrates how we use our mechanisms to bypass �rewalls� to use callback

features� and to expand across heterogeneous systems� in order to build a scal�

able information systems for system integration process�

In this Internet age� people put lots of information on the Internet for others

to retrieve� Though there are plentiful information ready for us� we may not

be able to query for the contents we need� First� the volume of information is

expanding dramatically� Even within an organization� multiple databases are

��

Chapter � Building a Scalable Mediator�based Query System �	

usually employed to store their data� Hence� techniques for searching across a

number of distributed data sources are important� Second� information may be

provided by various organizations� which means we may need to search across

many di�erent sites to obtain the richer information�

In order to solve the �rst problem� we have established a web�based query

system using mediators to search in distributed databases� The mediator is the

middleware that forwards user queries to various database engines� and when

the database engines searched out the results� it integrates them and returns

them back to the users� We will give an introduction to mediators� and describe

our system design and implementation in section ���� We use CORBA for our

infrastructure implementation such that mediators can make queries to various

data sources� or even other mediators� within the CORBA enclave�

Although the second problem� that is� making queries to other sites� can

be solved by an extension to our mediator system� we need to tackle some

technical problems �rst�

The �rst problem is the �rewall issue� For a local system� we usually have a

�rewall to protect the computers inside from outside attacks� As we are using

CORBA and IIOP cannot pass through �rewalls for communication� we try

to use Java Servlets� XML and HTTP to simulate object method calls and

parameter transmissions in CORBA� By doing so� we can make our system to

be more scalable in the Internet with �rewalls� This will be discussed in ����

We then demonstrate how we enhance our query system by using the call�

back feature� We extend our mechanism to use XML and Servlets to perform

some interesting features with callback� Section ��� will cover this part�

The second problem is that when we need to combine information among

heterogeneous distributed environments� we do not have a generic method to

do so� Here� we use XML and Servlets again to connect our CORBA�based

Chapter � Building a Scalable Mediator�based Query System ��

system with DCOM�based system and JavaRMI�based system� This part will

be covered in section ���

By doing all this� �nally� we develop a simple and generic way to achieve

a more scalable query system against �rewalls and heterogeneous distributed

environments�

	�� Introduction to Our Mediator�based Query

System

����� What is mediator�

The mediator is the middleware between the clients and database servers� which

can solve some de�ciencies of traditional client�server systems ���� ���� The

tight relation between client and server may lead to the following problems�

First� a server may be dedicated to some clients only� also� clients may need to

search a number of servers to obtain what they need� while those servers may be

heterogeneous� Mediator is one of the architectures that can meet the need to

make data widely available over a distributed environment� Mediators forward

client queries to appropriate data sources� and then integrate the answers from

di�erent sources� and forward the integrated answer back to the clients� Figure

��
 is an example�

There are several advantages of using a mediator system�

� Conceptually� all distributed data sources are integrated into a single com�

ponent even though the data sources are heterogeneous� Hence� clients

need not know about the location or other speci�c information of the data

sources�

Chapter � Building a Scalable Mediator�based Query System �

Mediator

User Interface

Database

User InterfaceUser Interface

DatabaseDatabase

Query Result

Query
Result

Query Result

Query
Result

Query
Statement

Query
Statement Query

Statement

Query
Statement

...

Figure ���� Diagram of the mediator concept

� Client programs need not care about the changing of data source loca�

tions� and the addition� deletion� or even failure of some data sources�

� The mediators can help the users to choose the most appropriate data

sources� based on their queries submitted� to enrich the quality of infor�

mation retrieval�

����� The Architecture of our Mediator Query System

Here� we describe the basic architecture of our mediator query system� Our

mediator query system is mainly consisted of two components� Query Media�

tors and Database Query Engines� The design of the architecture of our query

system is shown in Figure ���� Similar to other mediator systems� the database

engines are waiting for the requests from the mediator components� Also the

mediator components are waiting for requests from the user interface and upon

reception will send these queries to the database engines�

Furthermore� mediators can also send queries to other mediators� which

Chapter � Building a Scalable Mediator�based Query System ��

Web-based UI

Database
Database

More
Mediators
or Digital
Libraries

More
Mediators
or Digital
Libraries

Database
Database

Mediator

Mediator

Servlet

1st Tier 2nd Tier 3rd Tier

...

n-th Tier

Queries and
Results

Layers of
queries

Figure ���� The architecture of our query system

may further forward queries again to other database engines or mediators�

This mechanism forms an n�tier distributed system� As mediator components

have to make queries to both database engines and other mediators� we would

like those database engines and mediators to have the same generic interface�

In our system� we also use XML for the internal data representation and

storage because it works well in a heterogeneous environment� Hence� we use

XML�QL ���� ��� as the query language in the whole system� which is a query

language dedicated for XML data developed by AT�T� We use news data

obtained from local newspapers in our experiments� They are all converted to

XML format�

In the practical application of using mediator architecture in a distributed

environment� we need to handle some special cases� One is the in�nite looping

problem� as a mediator may make queries to another mediator� the queries

may be transferred from one mediator to another� Eventually� there may be

a case that the mediators have formed a cyclic path and the �rst mediator is

Chapter � Building a Scalable Mediator�based Query System ��

being queried by itself� We need some methods to detect in�nite looping� One

possible approach is to give each query a unique ID� and all mediators keep

track of all IDs of those queries that are already submitted but no replies have

been received yet� In case there is an upcoming query with the same ID as any

one entry in its record� we can tell that an in�nite looping has occurred�

The second problem is to avoid having a long waiting time for users� which

may be caused by� the connection between some objects may have been broken�

or the number of layers that the queries need to traverse may be too many� For

the broken connection problem� we simply use a time�out parameter to specify

the maximum amount of time that we are willing to wait� For the too many

layers of query traversal problem� we simply use a maximum layer parameter

to specify the maximum number of layers that we want to go�

����� The IDL Design of the Mediator System

We are using CORBA for our system infrastructure� To design the interfaces

of di�erent components� we use IDL� CORBA IDL is an interface de�nition

language structures for all concepts of the CORBA object model independent of

programming languages� Both Query Mediators and Query Database Engines

are implementing the same interface in order to make these two objects the

same in the view of the users� In our IDL� we only de�ne a common interface

called QueryEngine� �See Figure ����

We are supposed to provide to the QueryEngine a query statement� and it

will return to us the answer in String format� which is a XML expression� We

have de�ned only one simple method in QueryEngine� i�e� query��� which has

a XML�QL statement as its argument� and returns a XML string as the result�

This can be used in both Database Query Engines and Query Mediators� such

that programmer can notice no di�erence between making a query on them�

Chapter � Building a Scalable Mediator�based Query System ��

module QueryEngineApp
f

struct SysPara
f

long qid�
long timeout�
short maxlayer�

g�

interface QueryEngine
f

string query�in SysPara para	 in string QueryStatement��
g�

g�

Figure ���� The IDL design of our system

Though they only share the same interface� the implementation of query��

method would be di�erent�

����� Components in the Query Mediator System

We rely on CORBA technology for building the system infrastructure because

CORBA provides a very good infrastructure for designing and implementing

applications in a distributed environment� In order to integrate our system

into the web environment� we also use Java Servlet technology� Java is used

for our implementation� because of its portability� As we have mentioned be�

fore� both the Query Database Engine class and the Query Mediator class are

implementing the QueryEngine interface� We have named these two classes as

QueryDB and QueryMed respectively�

A QueryDB object is directly connected to the data source� A caller can call

the method query��� and this method will take the query statements �XML�QL

statements in our implementation� as the argument and search for the XML

document speci�ed� then it will return the result to the caller in a stream of

Chapter � Building a Scalable Mediator�based Query System ��

XML string� We have the QueryDBServer object as the server for creating a

QueryDB object� and registering it to the CORBA name service� The server is

also ready to set up multiple threads to support multiple requests on a QueryDB

object at a time� This server should be started at command prompt�

QueryMed object is the Query Mediator which forwards query statements to

other mediators or database engines� Its implementation is more complicated

than QueryDB� Other than the QueryEngine interface� QueryMed also imple�

ments another interface� QueryMediator� shown in Figure ���� Methods of this

QueryMediator interface cannot be called by other distributed objects� but can

only be called by Query Mediator Server objects� which contain the QueryMed

objects and located at the same host with them�

public interface QueryMediator

f
public QueryEngineApp
QueryEngine�� qelist���

public void qelist�QueryEngineApp
QueryEngine�� arg��

public void append result�String res��

g

Figure ���� QueryMediator� another interface that QueryMed Class imple

mented

In a QueryMed object� the attribute qelist would store all the QueryDB

objects and QueryMed objects which it will further search for� And query��

will start a thread for each QueryDB or QueryMed object and the thread will

take the XML�QL query statement as argument and pass it to its correspond�

ing object in qelist by calling their query�� method� Then� when all these

objects have returned the XML result back to the threads� they will call the

append result�� method of the parent QueryMed object� query�� will further

organize and integrate the results into a single XML �le stream and then return

Chapter � Building a Scalable Mediator�based Query System ��

it to the caller�

QueryMedServer object is similar to QueryDBServer object� which will cre�

ate a QueryMed object to handle queries� It will also bind the list of query

engines �QueryDB and QueryMed objects� from CORBA services and can set up

multiple threads to support multiple requests at the same time�

Both the database and mediator need to use a con�guration �le to con�gure

the objects before start up� The con�guration �le would contain the following

attributes� CORBA name server location� CORBA name server port� Ob�

ject name used for registering in CORBA name server� log �le name� and for

QueryMed object� it also needs the list of QueryMed and QueryDB objects for

distributing the queries�

With SysPara object as the parameter of query��� we can detect in�nite

loops and avoid long waiting� The qid in SysPara is a unique number to identify

a query� This number consists of the system time when the user generates the

query� the IP address of the user
s machine� plus a four�byte random number�

As described before� when a mediator needs to call other mediators or database

engines� it has to pass this parameter to them by using the newly modi�ed

query�� method interface� The mediator itself will keep track of all IDs of

those queries that are already submitted but no replies yet� In case there is an

upcoming query with the same ID as any one entry in its record� we can tell

an in�nite loop has occurred� When an in�nite loop is detected� that query

mediator will simply do nothing and return an empty string to the caller�

maxlayer states the maximum layer that the query can travel onwards�

When that value is passed from one mediator to another mediator or database

engine� the value will decrease by one� The query will stop being forwarded

when the maxlayer value becomes zero� timeout states the maximum time in

milliseconds that a mediator or database engine can wait� When that value is

Chapter � Building a Scalable Mediator�based Query System ��

passed from one mediator to another mediator or database engine� the value

will be decreased by the estimated processing time of that mediator itself� The

estimated time is calculated by the statistic of previous connections and queries�

The query will stop being forwarded when that value becomes zero�

	�� Helping the Mediator System to Expand

Across the Firewalls

We use CORBA to implement our mediator query system� Though CORBA is

a very good architecture for distributed systems� we still meet some di�culties

in achieving a real scalable query system� because the common use of �rewalls

will block CORBA IIOP communication� Here� we apply our mechanism with

using XML and Java Servlets to expand our system across �rewalls�

����� Implementation

We now have two mediator query systems as above� and there is a �rewall

separating them� To enable their communication� the QueryMed object must

be able to be called by an object �say� another mediator object� from another

enclave outside the �rewall�

In our implementation� the QueryMed object that would be called by outside

is associated with a Servlet component� The Servlet component forwards the

requests from outside to the QueryMed object immediately� thus the QueryMed

object can accept HTTP requests from outside� We use TOMCAT Servlet

engine ���� in our implementation�

On the client side �caller side�� we have created a new class� HttpGateway�

which is the Shadow Mediator object and is used to connect to the Servlet

Chapter � Building a Scalable Mediator�based Query System ��

component of the target mediator� HttpGateway class implements the same

interface� i�e� QueryEngine interface� as the QueryMed mediator object does�

Besides� HttpGateway also implements another interface� HttpQueryGateway�

for its special need� This interface is shown in Figure ����

public interface HttpQueryGateway

f
public String medURL���

public void medURL�String U��

g

Figure ���� HttpQueryGateway� another interface that HttpGateway Class im

plemented

The medURL�� method in the interface is used to specify the URL� or the

IP address of the target mediator� which is located in another CORBA en�

clave� This methods should be invoked by its server only� which contains the

HttpGateway at the same host�

If a mediator wants to call another mediator located at another CORBA

enclave� it only needs to call the corresponding HttpGateway object� �Actually�

that mediator can treat that HttpGateway object as the real target mediator

object�� The HttpGateway object will convert all the necessary parameters

into XML format� and then send the request message to the target mediator

by HTTP� The target mediator has a Servlet component and will receive the

HTTP calls� It then converts the XML parameters back to their original format�

We can summarize the procedures for communication by referring to the

scenario shown in ���� The scenario is that Mediator M� wants to make a query

to Servlet component SC of the mediator M� in another CORBA enclave� The

procedures are�

Chapter � Building a Scalable Mediator�based Query System �	

FIREWALL

Web-based UI

IIOPM

SC

D

IIOP

Database
Servers

Mediator
HttpGateway

Object
Servlet

Component

Server EnclaveClient Enclave

Database
object

XML+HTTP

XML+HTTP
H

M1
IIO

P
M2

IIO
P

Figure ���� The architecture of our query system

� Mediator M� calls HttpGateway object H with ordinary IIOP connection�

�� H converts the IIOP calls to HTTP calls with parameters converted into

XML format�

�� The Servlet component� SC� of the target mediator gets the HTTP calls

from H and converts them back to ordinary calling to the target mediator�

M��

�� M� keeps on calling other Database object D� the result is returned to M��

and M� further returns it to SC�

�� SC converts the result in XML format� and returns it with HTTP calls to

H�

�� H returns result back to Mediator M� by using ordinary IIOP return

method�

Chapter � Building a Scalable Mediator�based Query System ��

�request�
�QueryEngine type
�interface��

�query type
�operation��
�parameter ref
�in� order
����

�SysPara�
�long name
�qid��������������������long�
�long name
�timeout��������long�
�short name
�maxlayer�����short�

��SysPara�
��parameter�
�parameter ref
�in� order
����

�string name
�QueryStatement��
where �news�$B��news� in �database
xml�
�keyword�satellite��keyword� in $B
construct �result� $B ��result�

��string�
��parameter�

��query�
��QueryEngine�

��request�

Figure ���� An sample request message in XML for calling a mediator object

We have described that parameters are converted to XML format for trans�

mission� Here shown in Figure ��� is a sample of such XML request messages

with parameters embedded� Figure ��� shows a typical response message in

XML format� We use tags to state the objects that are being called� the

method being invoked� the required parameters and their types� and the values

of those parameters�

We can see that both simple data types �like String type variable of XML

Query Statement� and complicated class objects �like the SysPara class of

other enhancement parameters� can be well represented by XML� Basically� it

is believed to be able to handle all kinds of data structures because of XML
s

semi�structured nature�

Chapter � Building a Scalable Mediator�based Query System �

�response�
�QueryEngine type
�interface��

�query type
�operation��
�return�

�string�
�news� �source�South China Morning Post
��source� �date� �day�����day��month��
��month� �year�������year� ��date� �title�
Press warning appro priate	 says Beijing
��title� �content�Beijing yesterday defended
remarks made by senior SAR�based official
Wang Fengchao that local media should avoid
reporting separatist views
��content� ��news�

��string�
��return�

��query�
��QueryEngine�

��response�

Figure ��
� An sample response message in XML returns from a mediator object

����� Across Heterogeneous Systems with DTD

To achieve a scalable system� we need to deal with the heterogeneity of di�erent

local systems� We set up some standard formats for di�erent systems to follow

in order to communicate with other systems� We need two standards� one is

structure of data� and another one is the interface of the system components� If

the structures of data cannot be compromised� we will have confusion of com�

munication� If the interfaces cannot be compromised� we even cannot invoke

other components of the system� Both important information can be obtained

from CORBA IDL �les�

To reach a compromise on a standard for data� we use DTD as the grammar

book for XML data� This DTD is obtained from the corresponding IDL �le

by our conversion schema� IDL gives an interface for programmer to develop

Chapter � Building a Scalable Mediator�based Query System ��

objects that have the same interface� But IDL itself is not enough� as for

parameters passing with using XML and HTTP� we also need to de�ne the

parameter format in XML by DTD� The DTD for parameters is shown in

Figure ���� Hence� di�erent systems can follow the DTD and understand the

parameter formats� By following all those mentioned� we can achieve a scalable

query without any �rewalls or heterogeneous systems problems�

���� For Request Messages ���
��DOCTYPE request �

��ELEMENT QueryEngine �query��
��ATTLIST QueryEngine type ��CDATA��

��ELEMENT query �parameter���
��ATTLIST query type ��CDATA��

��ELEMENT parameter �SysPara � string��
��ATTLIST parameter ref ��CDATA��
��ATTLIST parameter order ��CDATA��

��ELEMENT SysPara �long	long	short��
��ATTLIST SysPara name ��CDATA��

��ELEMENT long ��CDATA��
��ATTLIST long name ��CDATA��

��ELEMENT short��CDATA��
��ATTLIST short name ��CDATA��

��ELEMENT string ��CDATA��
��ATTLIST string name ��CDATA��

��

���� For Response Messages ���
��DOCTYPE response �

��ELEMENT QueryEngine �query��
��ATTLIST QueryEngine type ��CDATA��

��ELEMENT query �return��
��ATTLIST query type ��CDATA��

��ELEMENT return �string��
��ELEMENT string ��CDATA��

��

Figure ���� The DTD for the parameter passing of simulated calls

Chapter � Building a Scalable Mediator�based Query System ��

module QueryEngineApp
f

struct SysPara
f

long qid�
long timeout�
short maxlayer�

g�

interface QueryEngine
f

string query�in SysPara para	 in string QueryStatement��
void subscribe�in QueryEngine qe	 in string topic��
void notify�in string newContent��

g�
g�

Figure ����� The IDL design of our system

	�� Adding the Callback Feature to the Medi�

ator System

To better help the users in obtaining the information they need� one impor�

tant feature of modern information systems is allowing users to specify some

topics of information they want to subscribe� Whenever there is an update of

the speci�ed information� the digital library can inform the subscribed users

immediately� This feature requires callbacks�

To allow callbacks� we add two methods to the QueryEngine interface� One

is subscribe��� which takes a string as parameter to specify the topic of

information that the caller wants to subscribe� and an object with QueryEngine

interface as another parameter to specify the object requests for callback� To

be generic� all user interface objects� mediator objects� shadow objects� and

database objects would implement this interface� Figure ��
� shows the new

IDL �le�

Chapter � Building a Scalable Mediator�based Query System ��

A conceptual diagram of our system mechanism for callbacks is shown in

Figure ��

� And below is the step�by�step desciption of the procedures�

� Mediator M� calls HttpGateway object H� with ordinary IIOP connection�

M� also puts itself as one of the parameter in subscribe�� method� �Same

invocation method as calling the target mediator for normal callback�

�� When H� observes that it is a callback invocation� it generates a Servlet

component �SC��� which is assoicated with M�� immediately�

�� H� sends the IIOP calls to HTTP calls with parameters converted into

XML format� The information of SC� will also be sent to the server side�

These information are embedded into the parameter tag as attributes�

�� When SC� observes that it is a callback invocation� it generates a shadow

client object� H� �shadow of M��� immediately� H� is initialized by the

information of SC� �such as IP address� port number��

�� SC� will invoke M�
s subscribe�� method substituting M� by H� in the

parameter position� such that M� will invoke H� when callback is needed�

�� Whenever there is a callback� M� calls H� notify�� and H� will send the

request to SC�� Finally� M� notify�� method will be invoked by SC��

	�� Connecting our CORBA System with Other

Environments

Merging only CORBA systems would be a great limitation for system inte�

gration� Here� we demostrate how we apply our mechanism to allow CORBA

objects� DCOM objects and Java RMI objects to be able to call each other�

Chapter � Building a Scalable Mediator�based Query System ��

FIREWALL

Web-based UI

SC2

D

IIO
P

Database
Servers

Mediator
HttpGateway

Object
Servlet

Component

Server EnclaveClient Enclave

Database
object

XML+HTTP: subscribe()H1

M1
IIO

P

M2 IIOP

H2SC1 XML+HTTP: notify()

IIO
P

IIO
P

create create

Figure ����� Mechanism for supporting callbacks in our query system

Our target is to expand our system across heterogeneous distributed envi�

ronments� To make the whole system to be more generic� we carefully design

the MIDL of the DCOM system and interfaces of RMI components to be very

similar to our existing CORBA system� such that calling the DCOM mediators

or Java RMI mediators would have no di�erence as calling the CORBA medi�

ator objects� For simplicity of the example� we use the CORBA IDL in Figure

��� to develop our DCOM system and Java RMI system�

����� Our Query System in DCOM

Our DCOM system is developed on Windows ���� operating systems� with

using Microsoft Visual J�� for implementation� Our implementation is based

on the MIDL �le shown in Figure ��
�� From the MIDL� we can �nd out that

it is basically the same as the IDL of CORBA� One thing worth to point out

is query��� the return value is speci�ed in the parenthesis with marking as

Chapter � Building a Scalable Mediator�based Query System ��

retval� It is because the default return type in DCOM object is HRESULT�

hence the real return value is de�ned inside the parenthesis�

import �oaidl
idl��
import �ocidl
idl��

typedef struct SysPara
!

long qid�
long timeout�
short maxlayer�

"SysPara�

� uuid�AC�EDE���ADF�������BB�C�B������BFD�E� �
interface ICOMQueryEngine � IDispatch
!

HRESULT query��in� SysPara para	
�in� char � queryStmt
�out	 retval� char �� rtn��

"�

� uuid�AC�EDE���ADF�������BB�C�B������BFD�E�	 version��
�� �
library QuerySystemLib
!

importlib��stdole��
tlb���
importlib��stdole�
tlb���
�

uuid�AC�EDE���ADF�������BB�C�B������BFD�E�	
�
coclass QueryEngine
!

�default� interface ICOMQueryEngine�
"�

"�

Figure ����� The MIDL �le for the query system in DCOM enclave

����� Our Query System in Java RMI

Our Java RMI system is developed in the Unix environment� but it can be run

in any operating systems� Our implementation is based on the Java interface

de�nition �les shown in Figure ��
�� They are basically the same as the IDL

Chapter � Building a Scalable Mediator�based Query System ��

of CORBA system�

One special thing to point out is the struct type of SysPara in IDL� As

Java interface de�nition does not support struct type� a new class of SysPara

is de�ned instead� But it is mapping to the same XML schema as struct type

in XML�

�� SysPara
java ��
public class SysPara implements java
io
Serializable!

public long qid�
public long timeout�
public short maxlayer�

public SysPara�� !
qid
���
timeout
���
maxlayer
���

"
"

�� QueryEngine
java ��

import java
rmi
Remote�

import java
rmi
RemoteException�

public interface QueryEngine extends Remote

!

String query�SysPara para	 String queryStmt�

throws RemoteException�

"

Figure ����� The DTD for the parameter passing of simulated calls

����� Binding Heterogeneous Systems

With the interface de�nition �les of DCOM system and Java RMI� the same

XML schema can be mapped from those interfaces� Hence� the mediator objects

Chapter � Building a Scalable Mediator�based Query System ��

of all systems would have the same interface for calling� hence the scalability

of the binded system is greatly increased� Figure ��
� shows how the mediator

objects in heterogenous distributed environments communicate with objects

in other enclaves� A common XML schema is the key part to achieve this

communication�

SC IIOP

Mediator

HttpGateway
Object

Servlet
Component

CORBA EnclaveDCOM Enclave

M

Database
object

H
M IIOP

M

M

XML + HTTP

Java RMI
Enclave

H
M

IIOP

M

H
IIO

P

XM
L

+
H

TT
P

SCIIOP

SC

IIOP

XML +HTTP

Figure ����� Query system in heterogeneous environments with our mechanism

In fact� this is for the demostration of a generic query system across hetero�

geneous distributed systems with applying our mechanism in it� By matching

the newly designed interface de�nition with the existing XML schema� a highly

generic and scalable mediator�based query system is achieved� In normal way

of system integration� we use the interface de�nition �les to generate the XML

schema for data transmission� but not using the XML schema to design the

interface de�nition�

Chapter �

Evaluation

�� Performance Statistics

In Chapter �� we have described our implementation of a mediator�based query

system and demonstrated how we applied our mechanism on a practical appli�

cation� Now� we are going to evaluate its performance in this chapter� Based on

the original architectures of CORBA� DCOM or Java RMI� we have provided

some add�on components in them for connecting to other enclaves across �re�

walls and beyond heterogeneous environments� As some add�on components

are added in it� it would be important to measure if those components are the

burdens of the system�

We tested our system in an environment with general workload such that

we can ensure that our results would not be in	uenced by other factors� like

network congestion� The query system was installed in a number of personal

computers with Pentium III ���MHz CPU and
� Mbps network connection�

For the objects in CORBA enclave� they are implemented in Java� and tested

with Linux platform� for the objects in DCOM enclave� they are implemented

in C�� and tested with Windows ���� platform� for the objects in Java RMI

enclave� they are located in Linux platform� For each query in our tests� the

�	

Chapter 	 Evaluation ��

Table ���� Performance Statistics of the Query System Described in Chapter

E
ective Process Time Milliseconds

Mediator Objects �excluding waiting time for the
return of query results and connection setup time�

��
 ��

Database Objects ���
 ���
IIOP Communications with CORBA enclave
�connection within LAN�

��
 ���

Shadow Client or Server �excluding waiting time
for the return of query results and connection
setup time�

��
 ���

Servlet Components with Tomcat Servlet Engine
���� �excluding waiting time for the return of
query results�

���
 ���

HTTP communications towards other enclaves
�connection in WAN�

�	�
 ����

system would return a few hundred bytes of text stream information� As we

wanted to see the overhead of using our approach� we kept track of the time used

in each event in di�erent objects� With similar composition of components in

each enclave� di�erent enclaves would have similar performance� We now focus

on the information gathered in CORBA enclave for analysis� The results are

shown in Table ��
�

From the statistics� we can �gure out the following characteristics of our

system�

� Mediator objects are light�weighted objects when compared to Database

objects� as they need not perform complicated computation but only

forwarding queries and merging the results�

� The performance of our add�on components are somehow similar to those

light�weighted objects� This is because our add�on components are only

converting the method calls into XML messages� or vice versa� which do

not involve complicated computation�

Chapter 	 Evaluation �

� The most time�consuming part of the whole process is the Internet con�

nection� which is unavoidable in the communications in a worldwide area�

� When compared to the time for Internet connection� time spent on our

add�on components would not be signi�cant�

We can conclude that our add�on components are light�weighted and would

not be the burdens of our overall system� Though they need some time for

processing� the time they used would be neglible when compared to the long

Internet transmission time� So� our add�on components would not make a great

in	uence on the whole system performance�

����� Overhead in other methods

Though our add�on components bring overhead to the systems� the overhead

is light�weighted� Moreover� other existing methods also bring overhead�

Our mechanism can substitute for the use of DCOM�CORBA bridging ap�

pications� We want to compare the overhead of these applications and our

mechanism� so we use OrbixCOMet as an example to evaluate its overhead�

Fatoohi et al have done some experiments to evaluate the performance of Or�

bixCOMet ����� Table ��� shows the result�

Table ���� Performance Evaluation of OrbixCOMet
CORBA Server DCOM Server

CORBA Client ��
 msec ��� msec
�without OrbixCOMet� �with OrbixCOMet�

DCOM Client ��� msec ��� msec
�with OrbixCOMet� �without OrbixCOMet�

In their experiments� the server was always located in a di�erent host as the

client� We can see that the use of the bridging application always give overhead

Chapter 	 Evaluation ��

for protocol conversion� When a DCOM Server and a CORBA Client are used�

the overhead is extremely large ���� msec� in their current implementation�

But for another con�guration� the overhead is still around ���� It is not a

direct comparison to our apporach� as the object components being tested

were di�erent� But we can see that other bridging solutions also post overhead

to the overall system� so the overhead of our mechanism is still acceptable�

�� Means for Enhancement

����� Connection Performance of HTTP

In order to provide better performance when applying our mechanism� we are

using HTTP
�
 ���� ��� instead of the HTTP
�� standard for the HTTP

connections� One of the problems with the standard HTTP
�� is that a new

TCP connection is required for each resource requested by the client� e�g� each

time the client wants to invoke a server method� one TCP request is needed�

This is ine�cient as the initialization of each TCP request would require some

overhead for connection establishment� because TCP is connection oriented�

So� if this overhead is repeated for every request made� the system would be

very ine�cient� especially when requests are frequently called�

HTTP
�
 allows persistent TCP connections� Once the connection is estab�

lished� it will not terminate immediately when the request is �nished� The con�

nection is still maintained after one request�respond communication is ended�

Hence no more overhead for connection establishment is needed for the on�

going requests� Thus� the time for overhead is reduced and we can have better

performance of the overall system�

Chapter 	 Evaluation ��

����� Transmission Data Compression

Our XML messages used in transmission are text streams embedding in HTTP

calls� which are much longer than ordinary binary�based IIOP� or DCOM calls

in message sizes� That means longer time is needed for transmission of those

XML messages�

If the XML messages are compressed before transmission� the transmission

time would be greatly reduced� The processors are getting faster nowadays�

on�the�	y compression and decompression at the client and server sides should

not pose too much overhead� In general� the need to compress XML data is

great as all the transmission contents are serialized to text�based data and

there are messages sent through the network for every request call� Moreover�

XML compresses extremely well due to the repetitive nature of the tags used

to describe the structure of the data�

As mentioned before� we are using HTTP
�
 for HTTP communication�

In HTTP
�
� compression is standard for servers and clients� and XML auto�

matically bene�ts from this� Currently in HTTP
�
 standard� gzip is used for

compression� which can provide compression rate of around �� to ��� in some

XML testing data� Thus the time for transmission can be reduced greatly�

����� Security Concern

As now we are establishing connections between the objects in two separated

enclaves� we would like to have a guarantee in three security issues� First�

can all objects in a single enclave be invoked by others outside the enclave� or

only some dedicated objects can be invoked� Second� is it possible to verify

which outside object is calling the objects inside the enclave� Third� can the

transmission messages be encrypted such that others cannot steal and read the

Chapter 	 Evaluation ��

messages�

For the �rst problem� the use of Servlet components can help to ensure

that only those objects which are prepared for being called can be invoked by

outsiders� It is because only XML messages are used in communication between

two enclaves� and only those objects associated with Servlets components can

understand and can be invoked by those XML messages� So� it is quite safe that

other objects in the same enclave are protected from being called by outsiders�

For the second and third problems� as we are applying some popular tech�

nologies� such as Servlets and HTTP� there are many good methods developed

for dealing with those security problems� We can take advantage of HTTP au�

thentication mechanisms as well as Secure Sockets Layer �SSL� ��
� for secure

channel communications �using secure HTTP connections via HTTPS�Secure

Hypertext Transfer Protocol� ����� to communicate in a way that can prevent

eavesdropping� tampering� or message forgery� By using SSL in the commu�

nication between the add�on components �Shadow objects and Servlet com�

ponents�� encryption is used after an initial handshake to de�ne a secret key�

Symmetric cryptography is used for data encryption� such that the peer
s iden�

tity can be authenticated using asymmetric� or public key� cryptography� So�

basically� we can ensure communication security by HTTPS�

Recently� there are some stronger mechanisms to handle security issue which

are dedicated for SOAP� SOAP has some similarities when compared to our

mechanism� Therefore� we can also apply their security methods to ours� For

example� Damiani et al ���� have suggested a simple� yet powerful and general�

technique to enforce access restrictions to SOAP invocations in order to sup�

port �ne�grained authorizations at the level of individual XML elements and

attributes� Moreover� many security work about XML data ���� ��� ��� are

also worth referencing for the improvement of our mechanism� Yet� as security

is not the main concern of our research� we have not included them in our

Chapter 	 Evaluation ���

implementation�

�� Advantages of Using Our Mechanism

Our mechanism for communication between distributed systems using XML�

Servlets and HTTP calls described in this thesis has certain strengths and

weaknesses� We are discussing its pros and cons in this and the coming sec�

tion� Generally speaking� our mechanism enjoys the following advantages in

integrating distributed systems�

� It can solve the incompatible �rewall problems of some communication

protocols in distributed environments� It provides vendor�independent

support� With our mechanism using HTTP� common normal �rewalls

cannot block the communication between distributed objects in di�erent

enclaves� and hence the scalability of system design and construction can

be greatly increased�

� It can also solve the incompatible problem of heterogeneous distributed

environments� XML can be used as the bridge in connecting hetero�

geneous distributed protocols� such as connecting CORBA� DCOM and

Java RMI systems� Moreover� even if heterogeneous systems are sepa�

rated by �rewalls� they can still communicate with objects in other sys�

tems�

� Our mechanism can be applied to a system without modifying the orig�

inally existing objects� The newly�added components to the system are

transparent to the original objects� Internal objects would not notice the

di�erence between the real target object and the shadow object� thus

no special modi�cation or implementation is needed for ordinary internal

objects� hence increasing the system transparency properly�

Chapter 	 Evaluation ���

� Systems can maintain good security� as external objects outside the en�

clave can only call the objects integrated with the Servlet components�

hence we can protect other internal objects from being called externally�

Moreover� we are exploiting some very common products like Java Servlet

or HTTP calls� whose security properties are well developed� such as

HTTPS�

� No information loss or distortion� as using XML can represent the in�

formation in the transmitted messages well� even when the parameter

structures of the invoking calls are complicated� This properly enhances

the system interoperability�

� Our mechanism can also be used as a gateway to inter�cooperate with

other Web�based applications� As long as the DTD of transmission mes�

sages is de�ned and agreed between both clients and servers� we can

include any kind of implementations in the server and the client sides�

These advantages are very important in the integration of distributed sys�

tems� The use of �rewalls and the heterogeneity of di�erent system environ�

ments are the major obstacles of system integration� while our mechanism can

provide a solution for that� Providing great transparency and ensuring no data

distortion are also very important� as changes to the existing systems may lead

to some potential hazards� Security concerns in our mechanism can also be

answered by traditional security methods which have been proved to be safe in

many real life applications�

�� Disadvantages of Using Our Mechanism

Though our mechanism has many advantages for integrating distributed sys�

tems� it also has some drawbacks� however� Here listed below are the disad�

Chapter 	 Evaluation ���

vantages of our mechanism�

� For each request or response to a remote object� we have to use one more

Servlet component and one more shadow object between the server side

and the client side in our mechanism and thus the system requires extra

workload and time for running them� However� these components are

light�weighted and would not greatly a�ect the overall performance� The

time for this overhead is also negligible when compared with the average

Internet access delay�

� As XML messages are used in communication� the highly�readable XML

messages would greatly increase the danger of eavesdropping� tampering�

or message forgery� High security level is required for using in the Internet

if critical data are used� Fortunately� many traditional security methods

can be applied to our mechanism� such as HTTPS�

Actually� these disadvantages are the tradeo�s of some good features� Though

Servlet components and shadow objects add extra workload to the systems�

they provide great transparency to the existing objects for invoking objects in

other enclaves� Also� the use of understandable XML can easily provide an

protocol interface to other web�based application by DTD� hence increasing

the system interoperability�

Chapter 	

Conclusion

Nowadays� it is frequently required to integrate several information systems

to work together in order to provide more information to the increasingly de�

manding users� Integrating heterogeneous systems is not an easy task� and the

situation would be more complicated if we want to integrate systems in dis�

tributed environments� There are many major obstacles in integration� such as

common use of �rewalls� or heterogeneity of distributed environments for dif�

ferent components� In this thesis� we suggest to use XML� Servlets� and HTTP

to handle these obstacles and increase the scalability of distributed systems�

The �rst problem we focused on is the �rewall issue� We used CORBA as

an example to introduce our mechanism� Between two CORBA enclaves� if

they are separated by �rewalls� objects are unable to communicate with ob�

jects in another enclave as IIOP cannot pass through the �rewall� To support

IIOP communication to objects in other enclaves� we use HTTP carrying XML

messages which contain the information for method calling� XML is semistruc�

tured and is 	exible to represent the calling parameters and other relevant

information�

In our mechanism� we have a Shadow Server in the client side� which be�

haves the same as the target server object� This Shadow Server is an ordinary

���

Chapter
 Conclusion ��	

CORBA object and its responsibility is to convert the method calls to XML

messages� On the server side� we have a the Servlet component which parses

the received XML messages to an ordinary IIOP method calls� When we re�

ceive responses from the server object� Servlet component converts them into

XML message and sends them to client side by HTTP� Shadow Server on the

client side will parse the messages and return the results to the client object�

The mechanism described above can only handle general calls� We then

extend this mechanism to support the callback feature� In callback� the server

can notify the clients whenever there is an update on the server side� hence

the client programs can react to changes with a faster response� This requires

both sides to be able to initiate a call� which many CORBA dedicated �rewalls

cannot handle properly� We can simply handle this problem by using another

pair of add�on components in our mechanism� one Shadow Client on the server

side� and one Servlet component on the client side�

Then we have addressed how we can generate XML messages from Interface

De�nition Languages in CORBA� and brie	y described how we can generate

the related source code and components automatically and in a generic way by

engaging the interface design �IDL� of a system�

The second problem we focused on is heterogeneity of distributed envi�

ronments� If we integrate two systems in a heterogeneous environment� they

cannot communicate as they have di�erent communication protocols� There

are many bridging tools available on the market� but they are not generic� as

they use binary streams for bridging� which usually allows bridging between

two dedicated environments only� We extend the above mechanism to allow

communication among heterogeneous distributed environments by mapping dif�

ferent interface de�nition languages to the same XML schema� such that they

can have a common language to communicate�

Chapter
 Conclusion ���

We have also presented a real example of applying our mechanism to imple�

ment a scalable mediator�based query system� This helps to make our query

system to be more scalable across �rewalls and across heterogeneous distributed

environments�

Lastly� we evaluated the performance of the mediator�based query system

in order to measure the overhead of our mechanism� We showed that the light�

weighted add�on components used in our mechanism gave extra workload to

the system� but the overhead is acceptable as the latency is very small when

compared to the Internet latency� Enhancements on performance and security�

the advantages and disadvantages of our mechanism were also presented�

We conclude our contributions in the following ways�

� A generic mechanism for distributed objects to communication across

�rewalls has been proposed�

� An extension of the mechanism to support callback feature has been pro�

posed�

� A schema for mapping CORBA IDL to XML format has been proposed�

and a translator for that has also been implemented�

� An extension of the mechanism to support generic remote object calling

in heterogeneous environment has been implemented�

� A mediator�based query system has been implemented to demonstrate

our work�

Our mechanism is a generic and simple tool for the integration of distributed

systems in heterogeneous platforms and across �rewalls� With consideration

to the overhead� our mechanism is still very suitable to be applied to Internet

platforms� which as the workplace for next generation applications�

Bibliography

�
� Wolfgang Emmerich� Engineering Distributed Objects� John Wiley � Sons�

Ltd� New York� USA� �����

��� A� Leon�Garcia and I� Widjaja� Communication Networks� McGraw�hill

International Editions� �����

��� Object Management Group� ftp���ftp�omg�org�pub�docs�formal�������

�
�pdf� The Common Object Request Broker� Architecture and Speci�cation�

Revision �
�� August
����

��� Rudolf Schreiner� Corba �rewalls� An introduction

and analysis� Technical report� Object Security Ltd��

http���www�objectsecurity�com�whitepapers�corba�fw�main�html�
����

��� IONA Technologies� Orbix Wonderwall Administrator�s Guide� June
����

��� Visigenic Software� Inc� Visigenic Gatekeeper Guide� February
����

��� Mark Elenko and Mike Reinertsen� Xml � corba� Application Development

Trends� September
����

��� D� Box� Simple Object Access Protocol �SOAP� �
�� Wide Wide Web

Consortium� http���www�w��org�TR�SOAP�� May �����

��� UserLand Software� Inc� http���www�xmlrpc�com�spec� XML�RPC Speci�

�cation� October
����

��

�
�� Financial Toolsmiths AB� http���xiop�sourceforge�net�� XIOP Homepage�

�

� N� Brown and C� Kindel� Distributed Component Object Model Protocol

� DCOM��
�� http���www�globecom�net�ietf�draft�draft�brown�dcom�v
�

spec����html� January
����

�
�� Sun Microsystems� http���java�sun�com�j�se�
���docs�guide�rmi�index�html�

Java Remote Method Invocation �RMI��

�
�� IONA Technologies� http���www�iona�com�docs�orbix�����
���comet�html��

OrbixCOMet Desktop Programmer�s Guide and Reference� �����

�
�� Sun Microsystems� http���java�sun�com�products�rmi�iiop�index�html�

RMI over IIOP�

�
�� Wide Wide Web Consortium� http���www�w��org�TR������REC�xml�

����
���� Extensible Markup Language �XML� �
� �Second Edition�� �����

�
�� D� Martin� M� Birbeck� M� Kay� and B� Loesgen et al� XML� Wrox Press�

USA� �����

�
�� F� Boumphrey� O� Direnzo� J� Duckett� and J� Graf et al� XML Applica�

tions� Wrox Press� USA�
����

�
�� J� Widom� Data management for xml� Research directions� IEEE Data

Engineering Bulletin ������ July
����

�
�� S� Abiteboul� P� Buneman� and D� Suciu� Data on the Web� from rela�

tions to semistructured data and XML� Morgan Kaufmann Publishers� San

Franciso� USA�
����

���� Sun Microsystems� Java Servlet Speci�cation Version �
�� October �����

��
� Sun Microsystems� http���java�sun�com�products�servlet� Java Servlet

Technology�

���

���� Alexander Nakhimovsky and Tom Myers� Professional Java XML Pro�

gramming with servlets and JSP� Wrox Press� December
����

���� Reuven M� Lerner� At the forge� Introducing soap� Linux Journal�

���
�

�� ���
�

���� Ron Ben�Natan� CORBA� A Guide to Common Object Request Broker

Architecture� McGraw�Hill�
����

���� Randy Otte� Paul Patrick� and Mark Roy� Understanding CORBA� Pren�

tice Hall�
����

���� Michael Rosen� David Curtis� and Dan Foody� Integrating Corba and Com

Applications� John Wiley and Sons� October
����

���� Rubin Brain� Understanding DCOM� Prentice Hall PTR� Upper Saddle

River� NJ� USA�
����

���� Sing Li and Panos Economopoulos� Visual C�� � ActiveX COM Control

Programming� Wrox Press� Canada�
����

���� Gopalan Suresh Raj� A detailed comparison of corba�

dcom and java�rmi� Technical report� Web Cornucopia�

http���www�execpc�com� gopalan�misc�compare�html�
����

���� Sun Microsystems� http���java�sun�com�docs�books�tutorial�rmi�index�html�

Java RMI Tutorial�

��
� Object Management Group� Java to IDL Language Mapping Speci�cation�

Version�
�� June
����

���� Object Management Group� IDL to Java Language Mapping Speci�cation�

New Edition� June ���
�

���� G� Wiederhold� Mediators in the architecture of future information sys�

tems� IEEE Computer Vol �� No �� March
����

���

���� Hui Lin� Tore Risch� and Timour Katchaounov� Object�oriented mediator

queries to xml data� In Proc
 of �st Intl
 Conf
 on Web Information Systems

Engineering� �Vol ��� pages �� ��� Hong Kong� China� June ����� ACM

Conference�

���� D� Florescu� A� Deutsch� A� Levy� D� Suciu� and M� Fernandez� A query

language for xml� In Proceeding of Eighth International World Wide Web

Conference� W�C�
����

���� AT�T� http���www�research�att�com� m��xmlql�� XML�QL� A Query

Language for XML�

���� The Apache Software Foundation� http���jakarta�apache�org�tomcat�

Jakarta Project Subprojects� Tomcat�

���� R� Fatoohi� V� Gunwani� Q� Wang� and C� Zheng� Performance evaluation

of middleware bridging technologies� In Proc
 of ���� IEEE Int
 Symp
 on

Performance Analysis of Systems and Software �ISPASS������ pages �� ���

Austin� TX� USA� April �����

���� J� Gettys� J� Mogul� H� Frystyk� L� Masinter� P� Leach� and T� Berners�

Lee� Hypertext Transfer Protocol � HTTP��
� �RFC�� The Internet Society�

June
����

���� H� Nielsen� J� Gettys� A� Baird�Smith� E� Prud
hommeaux�

H� Lie� and C� Lilley� Network Performance Ef�

fects of HTTP��
�� CSS�� and PNG� W� Consortium�

http���www�w��org�Protocols�HTTP�Performance�Pipeline�html� June

����

��
� A�O� Freier� P� Karlton� and P�C� Kocher� The SSL Protocol � Version �
��

http���ftp�nectec�or�th�CIE�Topics�ssl�draft�INDEX�HTM� March
����

���

���� Sun Microsystems� HTTPS support in Java Plug�in through JSSE� May

���
�

���� E� Damini� S� Vimercati� S� Paraboschi� and P� Samarati� Fine grained

access control for soap e�services� In The Tenth International World Wide

Web Conference� pages ��� �
�� Hong Kong� May ���
� International

World Wide Web Conference Committee�

���� E� Damini� S� Vimercati� S� Paraboschi� and P� Samarati� Xml access con�

trol systems� A component�based approach� In Proc
 of the ��th IFIP ��
�

Working Conference in Database Security� Amsterdam� The Netherlands�

August ����� International World Wide Web Conference Committee�

���� M� Kudo and S� Hada� Xml document security based on provisional au�

thorization� In Proc
 of the 	th ACM Conference on Computer and Com�

munication Security� pages �� ��� Athens� Greece� November ����� Inter�

national World Wide Web Conference Committee�

���� J� Paajarvi� XML Encoding of SPKI Certi�cates� Internet Draft�

���

Publications

� Wing Hang Cheung� Michael R� Lyu� Kam Wing Ng� Integrating Digital

Libraries by CORBA� XML and Servlet In Proc
 of The First ACM�IEEE

Joint Conference on Digital Libraries �JCDL����� Roanoke� VA� USA�

June� ���
�

�� Wing Hang Cheung� Michael R� Lyu� Kam Wing Ng� Tunneling Across

Firewalls by Using XML and Servlet� An Experiment on CORBA� In

Proc
 of The �nd International Conference on Internet Computing �IC�������

Las Vegas� NV� USA� June� ���
�

�� Wing Hang Cheung� Michael R� Lyu� Kam Wing Ng� A Scalable Medi�

ator System beyond Firewalls using CORBA� XML� and Java Servlets�

In Proc
 of the joint meeting of the �th World Multiconference on Sys�

temics� Cybernetics and Informatics �SCI ����� and the 	th International

Conference on Information Systems Analysis and Synthesis �ISAS ������

Orlando� FL� USA� July� ���
�

���

