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Abstract

Video is increasingly becoming the favorite medium for many communication

entities for its extraordinary expressive power. With the fast advancement

of network bandwidth and high-capacity storage devices, large scale digital

video library systems are growing rapidly. However, such an expanding video

repository gives rise to new challenges to both the end users and the content

providers. Since it is time consuming to download and browse through the

whole contents of the video, browsing and managing the video database can

be quite tedious. To solve this problem, video summarization, which engages in

providing concise and informative video summaries to help people to browse

and manage video files efficiently, has received more and more attention in

these years.

Basically there are two kinds of video summaries: static video story board,

which is composed of a set of salient images extracted or synthesized from the

original video, and dynamic video skimming, which is a shorter version of the

original video made up of several short video clips.

This thesis presents our work on automatic video summarization. First,

we present our early work on a greedy method-based video skim generation

approach. Several important features are extracted from the video. Given

ii



the distribution of the important features, a greedy selection algorithm is used

to select video segments to form a video skimming. A refinement process is

employed to increase the coherency of the video skimming.

Then, we propose a graph optimization-based video summarization frame-

work. The workflow of this framework consists four major steps: (1) video

structure analysis, (2) video scene analysis, (3) graph modeling and optimiza-

tion. Both a dynamic video skimming and a static video summary are gen-

erated as the content preview for a video document. By doing optimization

on the graph, can ensure both the temporal coverage and the visual content

diversity of the video summary.

In order to adapt the high-level semantic information of the video, we have

designed a semi-automatic video annotation system to help the user to effi-

ciently create content descriptions for each detected video shot. Given the

semantic content descriptions of the video shots, we employ the mutual rein-

forcement principle to calculate an importance measure for each video shot,

then create video summaries based on the importance measure and shots ar-

rangement patterns. Experiments show that the new approach achieves better

performance than our previous approaches.

We have implemented the three proposed video summarization frameworks,

provided the functionality to the users and conducted some subjective experi-

ments. The user tests show that the video summaries generated by our frame-

work are able to guarantee both the balanced content coverage and the visual

coherence.
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論文摘要 

 
隨著現今寬帶網路和大容量記憶體的快速發展， ᵞ ᵕ — ᵷϥḟḄ

ṇⱱ ‎Ϥ ᵷ ᵩ⁴ ᶑ ϥṊⱱ ᵣ ϣḫ Ṷᾬḟᴠ ϣ

ᴵ Ṱᶢ ， ᴋṬ ᵀἢϥ>對於最終用戶而言，ẚᵕ

ᴢ ᴵ ₃ ᵍϣ很 ᴋḃ ᵣ ₃ᾮ₭☼ ϥ對於視頻資料庫

的管理者而言，管理海量的視頻資料也是一件不方便的工作。為了解決以上問題，

近年來出現了視頻摘要技術，其目的是從視頻中摘取片斷組成簡略摘要，供用戶快

速流覽以節省流覽時間。視頻摘要有靜態和動態兩種形式，靜態摘要由一系列靜止

圖像組成，而動態摘要則是由一系列動態視頻片斷組成。>

>

我們在本論文中描述我們在視頻摘要方面所做的工作。首先我們提出一種基於視頻

特徵的摘要演算法。若干種重要特徵被提取出來，並用貪心演算法根據其分佈選出

視頻摘要片斷。我們還使用了一個平滑過程來提高所得到的摘要的平滑度。>

>

我們還提出了一個基於視頻結構資訊和圖優化的視頻摘要方案。首先我們分析待摘

要視頻的結構資訊，基於此資訊，我們建立一個圖來描述每個段落中的鏡頭之間的

視覺相似度和時序關係。最終的摘要鏡頭由在此圖上搜索一條最長路徑而得到。動

態和靜態摘要均能由此方案生成。>

>

為了進一步提高摘要的質量，我們提出了一種基於語義的摘要方案。我們設計並實

現了一個半自動的視頻內容標注系統來幫助用戶有效地標注視頻。基於得到的語義

描述，我們使用互支援機制得到視頻鏡頭的重要性度量。基於此度量，我們可以得

到新的視頻摘要。>
 
我們實現了以上提出的幾種視頻摘要方案並且進行了一系列試驗以測試其效果。從
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Chapter 1 Introduction 4

the mutual reinforcement principleand video summaries are thus gener-

ated upon this importance measure. The performance of our newwork

is compared with our previous work.

1.3 Thesis Outline

The thesis is organized as follows. Chapter 2 reviews some technologies related

to our research work emerged in recent years. First, we describe the develop-

ment of today's large scale digital video libraries. Then boththe static video

summary generation and the dynamic video skimming generationtechniques

will be reviewed. We also review the work done on intrinsic video struc-

ture analysis, which provides important information that helps us to generate

meaningful video summaries.

Chapter 3 describes our early video skimming generation method based on

video feature detection and a greedy method.

Chapter 4 describes our video structure analysis procedure. Weillustrate

how we process the raw video data and recover the shot-group-scene struc-

ture information. After the video scene boundaries have been determined,

video shot arrangement pattern strings are analyzed and recorded as candi-

date elements for video skimming. The structural informationand the shot

arrangement pattern strings are stored for further video summary generation.

Chapter 5 describes our graph-optimization-based video summary gener-

ation method. To generate a dynamic video skimming, �rst, we analyze the

content complexity and distribute the total skimming length to each of the

scenes; second, each detected video scene is modelled into a graph, then the

representative video shots are selected by solving a constrained-longest path

problem on that graph. Both the generation of moving image video skim and

the static video storyboard will be discussed. Experiments show that our video

skimming selection scheme does generate meaningful video summaries to the
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users.

Chapter 6 describes our e�ort engaged in video content annotation and se-

mantic video summarization. We have developed a semi-automatic system to

assist the user to make semantic annotation to video shots e�ciently. Given

the semantic content description of the video content, we usemutual rein-

forcement principle to derive an importance measure for each annotated video

shot. Similarly with previous chapter, we employ video arrangement pattern

strings as the video skim candidates. Finally, the most important video shot

strings are selected as the �nal video skimming. The performance of the new

method is compared with our previous work done using low-level features, and

we conclude that using semantic information does help to generate a better

video skimming.

Finally, Chapter 7 concludes the whole thesis and discusses our future work.



Chapter 2

Related Work

Video summarization engages in providing concise and informative video sum-

maries in order to help people browsing and managing video �les more e�-

ciently. As a valuable tool, video summarization has receivedmore and more

attention in recent years. Basically here are two fundamentally di�erent kinds

of video summaries:static-image summaryand dynamic video skimming. The

static-image summary, also known as a static storyboard, is a smallcollection

of salient images extracted or generated from the underlyingvideo source. The

dynamic video skimming, also known as moving skim, or multimedia summary,

consists of a collection of video clips, as well as the corresponding audio seg-

ments extracted from the original sequence and is a shorter version of the

original video. In this thesis, we call this type of abstract a video skimming.

In this chapter, we review some recent technologies related to static video

summary and dynamic video skimming generation.

2.1 Static Video Summary

A static video summary is a collection of images that can represent the under-

lying video content. In recent years, much work has been done on static video

summary generation. According to the method used to extract representative

images, we can classify static video summary methods into sampling-based,

6



Chapter 2 Related Work 7

mosaic-based, motion-based and shot-based methods.

Early work selects video key frames by random or uniform sampling the

video image sequence, like the MiniVideo system [63] and Video Magni�er [39].

These methods are straightforward and e�cient. However, since they do not

analyze the contents of the video at all, it is unable to guarantee that the

important contents can be covered by the selected key frames.

When the camera motion can be detected, a mosaic image can be con-

structed to represent the contents of a dynamic video shot with camera mo-

tion (pan, tilt, zoom, translate) [28, 72, 38, 2]. Although this approach is

quite informative to represent a dynamic shot, it still has several drawbacks.

First, it only provides an extended panoramic spatial view of the entire static

background scene, but contains no information about the moving object in

the foreground. Moreover, recent mosaic generation methodsare not robust

enough. In the situation that the background-foreground of the scene is chang-

ing frequently or the camera operation is quite complex, thecurrent mosaic

generation algorithms tend to achieve poor performance.

Based on the temporal dynamics of the video by motion analysis, vari-

ous techniques to control the selected number of key frames have been ad-

dressed [67, 65, 66]. Most of them are based on image pixel di�erence [27] or

optical 
ow [71, 33]. In [26] motion and human gesture analysisare employed

to create summaries for video taped presentation �les.

Video shots are the building blocks of edited videos. Video shot transitions

include hard cut, wipe, and fade in/outs. Video shot transition detection has

been suggested in various work [15, 16, 80, 79, 44, 53, 13, 29, 6,32, 4]. Since a

shot is an image sequence captured continuously, its visual content can be rep-

resented by its �rst frame. In order to cover the content of the dynamic video

shots, in the work reported in [80], the key frames are extracted in a sequential

fashion for each shot. Particularly, the �rst frame within the shot is always

chosen, and then the color-histogram di�erence between the subsequent frames
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and the latest key frame is computed. Once the di�erence exceeds a certain

threshold, a new key frame will be extracted. A similar work is also reported

in [75]. In [51], a design pattern based video analysis method isproposed to

discover high-level structure information. In [82], the authors propose to ex-

tract key frames using an unsupervised clustering scheme. Basically, all video

frames within a shot are �rst clustered into certain number of clusters based on

the color-histogram similarity comparison where a threshold isprede�ned to

control the density of each cluster. Next, all the clusters that are large enough

are considered as key clusters, and a representative frame closestto the cluster

centroid is extracted from each of them. Color-based algorithms are robust

to background noises and motion, but their performance highly depends on

particular threshold selection.

Normally, a piece of edited video may contain a lot of video shots. The fact

gives rise to a new problem, for most users do not prefer to view hundreds of

un-organized key frames to understand the contents of a video.

Edited videos depict a story just like an article, they also havea similar

structure just like articles do. Later work concentrate on organizing the shot

images by analyzing and utilizing the intrinsic video structure. In [50], the

content of a video is organized in a tree structured manner. From top to bot-

tom, a video consists of several scenes, each of which is like a paragraph in

an article; each scene is composed by several semantically-related video shot

groups; each video shot group is composed by several visually similar and tem-

porally adjacent video shots. The tree structure is presented tothe user as

an abstraction of the video content. High-level scene structurebased on shot

similarity has been also addressed in [21]. [74] constructs a scenetransition

graph (STG) for a video by time constrained clustering on the video shots. In

the scene transition graph, each video shot cluster is represented by one node

in the graph, while the transitions between nodes re
ect the structure of the

video. Spectral graph clustering has been proposed in [54] forimage region
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detection, and in [45, 43], the method is used to cluster the detected video

shots for high-level structure recovery. In [69], a comic book-style video sum-

mary is generated such that the size of selected images are adjusted according

to their importance. The video structure re
ects how the editor chooses and

arranges video shots, which is very valuable information for video summariza-

tion. Hierarchical representation of video contents has beenproposed in [55],

in which a hierarchical video content representation is built, and a tree style
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Table 2.1: Comparison of major static video summary generationmethods
Methods Advantages Disadvantages

Shot-based methods Comprehensive content Often generate too many
[15, 80, 53, 13, 29, 6] coverage un-organized video key frames

Motion-based methods Can adapt to the motion Often generate too many
[67, 65, 66, 26] characteristics of the video un-organized video key frames

Mosaic-based methods Can well re
ect the camera Not robust under intense
[28, 72, 38, 2] motion motion and complex background

V-ToC and STG Reveal the high-level The video shot grouping
[50, 74, 21] structure of the video algorithm is not very robust

2.2 Dynamic Video Skimming

Compared with static video summary, dynamic video skimming preserves the

dynamic properties of the original video, thus it is more attractive and helpful

to the user. Moreover, the audio information is also preserved thus the video

skimming is able to make more senses.

The moving video skimming can be classi�ed into two types:Overview

and Highlight. Facing a new movie, mostly the user is totally unaware about

the content. They can only specify a target length and hope to see enough

detail about the movie. The request may be like \Give me three minutes of

preview showing what this movie is about", and we call this kind of video

skimming \overview". But for speci�c domain like sports video and news, the

user already knows some domain speci�c knowledge and he may just request

those video shots that he is interested in. In this situation, therequest may

be like \Give me three minutes of video about goals and cornerkicks". This

kind of video skimming is called \highlight".

For overview generation, early attempts include the VAbstract [47] and

MOCA project [47, 29]. In the VAbstract system, the most characteristic

video segments are extracted to form a movie trailer. The frames with high-

contrast are detected as the parts containing important contents, while the

frames having largest frame di�erences are extracted as the high-action parts.

In order to preserve the basic mood of the original movie, the scenes that have



Chapter 2 Related Work 11

color composition similar to the average color composition of the entire movie

are included in the skimming. Moreover, the recognition of dialog scenes is

performed by detecting the spectrum of a spoken \a" since \a" occurs fre-

quently in most languages. Finally, all selected scenes are organized in their

original temporal order to form the movie trailer. There aresome interest-

ing ideas in this system, but some parts of the algorithm are too simple to

be e�ective and will need a lot of improvement. The researchers also lack a

thorough user study to support their conclusions. In the MoCA project, which

is an improved version of VAbstract, special events such as closed-up shots of

leading actors, explosions, and gun�re, are detected to help determining the

important scenes.

Another straightforward approach to save the video viewing time is pro-

posed by speeding up the playback speed of the original video. As studied by

Omoigui, et al. [46] at Microsoft Research, the entire video could be watched

in a shorter amount of time by fast playback with almost no pitch distortion

using the time compression technology. CueVideo system provides faster play-

back speed when playing long, static video scenes and slower speedfor short,

dynamic video scenes [48]. Although the playback time has beenreduced but

the temporal property of the original video is distorted, which may mislead

the users about the nature of the original video. Similar work











Chapter 3

Greedy Method Based Skim

Generation

In this chapter we describe our early work done for video skimming gener-

ation. Generating a perfect summarization of a given video requires good

understanding of the video semantic content. However, understanding the

semantic content of the video is still far beyond the capability of today's in-

telligent systems, despite the signi�cant advances in computer vision, image

understanding, and pattern recognition algorithms. So, we can only rely on

extracting and analyzing some low-level features to generate video summaries.

There are two major objectives for a video skimming. First, we want

to browse only the major contents of the whole video from the skimming.

Second, we want to shorten the duration of the skimming in orderto browse it

e�ciently. According to these two objectives, our video skimming is designed

as follows. A video skimming is combined by a set of video segments,which

contain the important video features of the source video. These important

features are in fact the most valuable contents of the video. The skimming

with more important features is better in quality, as it collects the major video

contents. However, our �rst problem is the di�erent users' preferences about

the importance of video features. We �nd that each user may havedi�erent

opinions on whether a video feature is valuable in a video. As aresult, the

16
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quality of a video skimming really depends on each user's preferences. Besides

the quality of a video skimming, the duration depends also on the need of

each user. Since a longer video skimming contains more video contents while

a shorter one can be browsed e�ciently, then a user needs to make adecision

on either getting more information or spending less time on theskimming.

Therefore our second problem is to customize the video skimmingaccording

the time constraint provided by the user. We propose a statisticalapproach

to select the contents for the video skimming. In our system, we accept user's

input about their preferences on the set of video features that we provided.

We can then calculate a score for each video segment based on the user's

preferences, such that if the score is high, the video segment contains more

preferred video features; otherwise, it contains less preferred video features.

Under a user de�ned time constraint, we can only select those segments with

higher scores into our video skimming, such that the skimming contains more

preferred video features. The generated video skimming is therefore able to

�t into user's appetite. Since there may be too many discontinuous and short

segments selected into the video skimming, it is di�cult for a user to browse it

comfortably. To resolve this we propose an adaptive merging process to merge

close segments so that the coherency of the video skimming can be improved.

The overview of our feature-based video summarization generation framework

is shown in Figure 3.1.

3.1 Selected Video Features for Video Sum-

marization

Before we start our video summarization algorithm, we need to extract a set

of features from the video in order to calculate the score for each video seg-

ment. In our system, we employ �ve video features. They are: human face
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Feature extraction
    Constraint
      Solver

          Video Summary A

    Refinement

  Smoother Video 

Summary B

    End

User specified
parameters

User not satisfied

User satisfied

Change parameters

Raw Video

Figure 3.1: Flowchart of the framework

detection result, male voice recognition result, female voice recognition result,

audio volume level, and caption text detection. These features bring us impor-

tant information about the video content and serve a good indication of video

content that should be put into the video skimming [42]. The formulation of

the feature scores is quite simple. For those video frames that has a speci�c

feature, its corresponding feature score is 1 and otherwise 0.

3.2 Video Summarization Problem

Given the set of feature score distribution functions, the target of video sum-

marization is to obtain the video skimming that mostly represents the con-

tents of the original video. To achieve this, we can select the video skimming
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such that given the target length, the feature score summation on the video

skimming segments is maximized. Then the problem can be formulated as in

Problem 3.1:

Problem 3.1 Given a set of video feature distribution functionsf f j g, a time

threshold L vs, and the extracted video segmentsf Vi g obtained from a set of

video feature extraction functions, �nd the �nal video skimming, f Vgskim , a

non-overlapping extracted video, such that it maximizes thetotal feature score

summation, that is

f obj (f Vi g) =
X

Vx 2f Vi g

X

j

f j (Vx ) (3.1)

f Vgskim = arg max
f Vi g

f obj (f Vi g) (3.2)

subject to the constraint length(f Vgskim ) = L vs.

From the users' point of view, a smoother video skimming may seem better

than a jumpy one. The more broken segments the video skimming contains,

the more jumpy the video skimming will be. The solution is to decrease the

number of video segments in the video skimming so that the skimming may

look more coherent and smoother. We thus de�ne the transition of an extracted

video to describe the smoothness of the extracted video skimmingas follows:

De�nition 3.1 A transition in the non-overlapping extracted video is de�ned

as the cardinality of the video as #(f Vi g). It is the number of segments in

f Vi g.

With the above de�nition we can extend Problem 3.1 as follows.

Problem 3.2 Given a set of video feature distribution functionsf f j g, a time

threshold L vs, and the extracted video segmentsf Vi g obtained from a set of

video feature extraction functions, �nd the �nal video skimming, f Vgskim , a
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non-overlapping extracted video, such that it maximizes thetotal feature score

summation, that is

f Vgskim = arg max
f Vi g

f obj (f Vi g) (3.3)

and minimize the transition number #(f Vgskim ), subject to the constraint

length(f Vgskim ) = L vs.

We use a greedy method-based approach to solve Problems 3.1. Since we

use the summation of the feature score as the importance measure of each

frame, we �rst calculate the feature score summation value for each video

frame, then sort them according to their feature score values, and select the

L vs frames with highest scores. The time complexity for the greedy method is

O
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gun shots and explosion, and the color of �re. Table 3.2 shows theselected

features and the corresponding parameters speci�ed in the experiment.

Table 3.2: Parameters for movie clips
Features Weight

f 1:Gunshot/explode noise 0.45
f 2:loud voice 0.25
f 3:Face occurrence 0.10
f 4:Fire Color 0.20
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column pixel difference. At the same time, it is also the easiest one to compute

among the three functions.

From all the three dissimilarity functions, we can see that when there is a
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Camera flash points


After non-linear window
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After thresholding


Figure 4.3: Flash effect elimination

4.1.2 Fade Detection

In document videos, it is common to use fade in/out (dissolve) as the transition

between different video shots, for it feels less abrupt than direct shot cut.

However, the cut detection fails to detect fade in/outs for the pixels changes

gradually and does not yield apparent jumps in the pixel difference function.

On the middle slice image in Figure 4.4, we can easily see the fade patterns.

We may regard that the fade in/out area between video shot shi and shj as

the interpolation result of the two intensity functions of the two video shots.
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Figure 4.4: Cue features for video fade detection

So that the variance function on the fade area will become a parabola shape [44],

as shown in Figure 4.4. In most cases, the lowest point of the parabola will be

at the center of the fade area.

To detect parabola shapes, we follow the approach in [44]. We employ

a parabola template then calculate the normalized auto-correlation between

the variance function and the template. Peaks are considered as indication of

parabolas. We combine the peaks in the n-step difference and the parabola

shapes in the pixel column variance as the sign cues for fade occurrence. The

experiment shows that combining the two cues does yield an effective method

for video fade detection.
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4.2 Video Shot Group Construction

A video shot’s role is just like a sentence in articles. The visual content of a

video shot can be represented by its key frames. A video shot group Sgi is the

intermediate entity between video scenes and video shots, which is composed

of several visually similar and temporally adjacent video shots. Thus from top

to down, a video has a four-level hierarchical structure: video, video scenes,

video shot groups, and video shots [50]. Figure 4.5 shows the hierarchical

structure of a video.

Figure 4.5: Hierarchical video structure

In the remaining part of this chapter, we use lshi , lSgj and lSci to repre-

sent the length of video shot shi, video shot group Sgj, and video scene Sci,

representing the total number of images containing in them respectively.

The structure of a video is built in a bottom-up manner. After we have

determined the video shot boundaries, we continue to build up the hierarchical
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as the measure for average motion intensity, which is defined as:

mishi =

∑in � 1
j=i1

|1 − HistCorr(fij , fij +1)|

n − 1
. (4.11)

Similarly, the motion intensity similarity between video shots shi and shj

is defined as:

misimi,j =
min(mishi ,mishj )

max(mishi ,mishj )
. (4.12)

The middle slice image of a video shot can be analyzed to find some motion

cues. Panning camera brings about slope line patterns in the middle slice im-

age, while the static camera yields horizontal lines in the middle slice image. In

this chapter, we only detect and process the camera panning situation. By first

doing a pass of edge detection and an edge orientation (gradient) histogram,

we can successfully detect camera panning. We then classify the camera pan-

ning into three styles: panning left, panning right and no panning. If two video

shots have the similar panning style, the panning similarity between them will

be 1 or otherwise 0. The panning similarity between video shot shi and shj
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4.2.2 Video Shot Grouping by VToC

In [50], the authors proposed the VToC (video table of contents) algorithm

to group the visually similar video shots. The VToC algorithm set up the

video shot-group-scene structure with the following time-constrained grouping

method. First, two measures are calculated for each video shot:

1. Color histogram of the entire shot key frame image.

2. Shot activity, as the average color difference of the frames contained in

the shot.

In this chapter, we use the video shot similarity measure defined in Equa-

tion 4.13 in the VToC construction procedure.

To determine if a video shot shi should be put in group gj = {shj1 ...shjm },

a shot-to-group similarity should be calculated. The shot-to-group similarity

is calculated as:

simshi ,gj = max
t

simi,jt , (4.14)

which is the maximum similarity or

simshi ,gj =

∑

t simi,jt

m
, (4.15)

which is the average similarity.

The temporal distance dT (shi, shj) between video shots shi and shj is de-

fined as the temporal distance between their center image frames. Conse-

quently, the temporal distance between video shot shi and video shots group

gk is defined as:

dT (shi, gj) = min
t

dT (shi, shkt ), (4.16)

where shkt ∈ gk.

When the shot pairwise similarity is obtained, the VToC algorithm makes

the video shot groups in the following way, as shown in Algorithm 4.1:
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Algorithm 4.1 VToC Video Shot Grouping Algorithm

Input: The set of video shots SH = {sh1....shn}, the shot pair similarity
{simij} for all i,j ∈ {1...n};
Output: The set of video shot groups G = {g1....gm}
1. Add the first group g1 to G, assign sh1 to g1;
for shi ∈ SH do

for gj ∈ G do

calculate the shot-to-group similarity simshi ,gj ;
if simshi ,gj ≥ sth and dT (shi, gj) ≤ Tth then

assign shi to gj

else

add new shot group gk to G, assign shi to gk

end if

end for

end for

The performance of VToC algorithm is significantly influenced by the sim-

ilarity threshold sth. However, since different video shot groups may have

different proper similarity thresholds, so that the time-constrained grouping

with a hard threshold may not be able to correctly detect all video shot groups

and is likely to generate a lot of over-groupings and miss-groups.

4.2.3 Spectral Graph Partitioning

Spectral graph clustering [54] is a recursive clustering method proposed to

segment images into regions based on the color similarity and spatial distance

between image pixels. In [54], a complete graph is constructed with the pixels

in the image as vertices and on each edge there is a weight describing the

color similarity and spatial distance between image pixels. The graph is then

recursively partitioned into smaller clusters, on each partitioning, a global

optimal normalized cut is calculated to ensure the performance. Finally the

original image is segmented into coherent regions.

The graph partitioning can be migrated from image segmentation to other

clustering scenarios, in which if the graph can be built. Our shot clustering
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problem is one of such cases that can utilize the spectral graph clustering.

Given a series of video shots, we can also construct a graph G(V,E), where V

is the vertex set, in which each element corresponds to a video shot. E is the

edge set, in which the edges connects each shot pair in V . On each edge eij

there is an edge weight wij, which is a measure of the visual similarity between

the two video shots.

Given the graph G(V,E), we may cut the vertex set V into disjointed sets

A and B, and compute the Normalized Cut Value to evaluate a cut:

NCut(A,B) =
cut(A,B)

assoc(A, V )
+

cut(A,B)

assoc(B, V )
, (4.17)

where

cut(A,B) =
∑

i2A,j2B

wij (4.18)

is the cut value and

assoc(A, V ) =
∑

i2A,j2V

wij (4.19)

is the association of A with the vertex set V , an example figure is shown in

Figure 4.6. In the figure, the vertex set V is divided into vertex set A and B.

The edges contribute to cut(A,B) is red, the edges contribute to assoc(A, V )

is green, while the edges contribute to assoc(B, V ) is blue.

The meaning of the cut value is the total similarity summation between

partition A and B. The meaning of the association is in fact the total similarity

summation within the vertices in partition A and B. A good partition would

create two self-similar and mutual-dissimilar partitions.

We hope that by cutting the graph into A and B, we can separate the

dissimilar vertices into different parts. First, Cut(A,B) should be small for we

want the dissimilar vertices be separated. Second, the values of assoc(A, V )

and assoc(B, V ) should be large for cluster A and B should contain similar

video shots. Thus the optimal graph cut problem can be formulated in Prob-

lem 4.1 as follows:
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Figure 4.6: Spectral graph cut sample

Problem 4.1 Given the complete graph G, find the optimal partition Cut(A,B)

for G such that the Normalized Cut Value

NCut(A,B) =
cut(A,B)

assoc(A, V )
+

cut(A,B)

assoc(B, V )

is minimized.

According to [54], the NCut minimization problem can be transformed into

solving a standard eigen system:

D� 1
2 (D − W )D� 1

2 x = Λx. (4.20)

Here D is a diagonal matrix, dii =
∑

j wij. And W is the shot similarity

matrix. The eigenvector corresponding to the second smallest eigenvalue can

be used to partition V into A and B. A detailed mathematical demonstration

can be found in [54].

We can recursively construct sub-graphs A and B and solve the eigen sys-

tem to get finer clusters until some ending conditions are met. In this way we

can partition the vertex set into smaller sets. When the elements in a vertex
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set are “similar” enough we cease the partitioning process. Then we get several

video shot groups and a series of “single” video shot groups, in which only one

video shot is in the group. We put all the single un-grouped shot together to

form a background video shot group. With this grouping information we can

easily build up the video scene structure. The merit of this recursive algorithm

is that every time it splits the vertex set, a global optimal cut is found thus

the clusters can better be adjusted to the nature of the original data. The

recursive algorithm is described in Algorithm 4.2.

Algorithm 4.2 Recursive Clustering Algorithm based on Spectral Graph Par-
titioning

Input: The set of video shots SH = {sh1....shn}, the shot pair similarity
{simij} for all i,j ∈ {1...n};
Output: The set of video shot groups SG = {sg1....sgm}
1. Add the first group sg1 to SG, assign sh1 to sg1;
for shi ∈ SH do

for sgj ∈ SG do

calculate the shot-to-group similarity simshi ,sgj ;
if simshi ,sgj ≥ sth and dT (shi, sgj) ≤ Tth then

assign shi to sgj

else

add new shot group sgk to SG, assign shi to sgk

end if

end for

end for

The graph partitioning algorithm outperforms the highly threshold-dependent

window sweeping algorithm, for every time the algorithm generates a new clus-

ter, it considers the global similarity information and the splitted clusters are

global optimal [54]. It is also easy to create self-adaptive thresholds for clus-

ters with different sizes, while the hard-threshold based grouping algorithm

tend to over-divide groups or fail to classify different groups, according to the

fixed threshold. Some shot groups generated by each method are shown in

Figure 4.9 and Figure 4.10.

According to the definition of the video shot groups, we can pose a time
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threshold, Tth, to the intervals between consecutive video shots in the detected

video shot clusters, then we split the cluster into video shot groups if the

interval is greater than Tth.

4.3 Video Scene Detection

After we have detected the video shot groups, we can continue to find the video

scenes. According to our definition there are two kinds of video scenes, loop

scenes, which is composed by more than one video shot groups, and progressive

scenes, which is composed by a series of visually dissimilar video shots.

According to the definition, the contents of interlaced video shot groups

should be relevant thus should be put in the same scene, which is a story unit

in the video like a paragraph in an article. Given the detecte
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Here we give some definition for video shot string analysis.

1. A video shot string str is defined as a series of consecutive video shots

{sh1....shx}, with the group label string {lb1...lbx}; The importance value

of a video shot string Istr is defined as Istr =
∑x

j=1 vj, vj is the importance

value of video shot shj.

2. A non repetitive shot string (nrs string) is defined as a video shot string

{sh1....shx}, ∀i, j ∈ {1...x}, lbi 6= lbj.

3. A k-non repetitive shot string (k-nrs string) is defined as a non repetitive

shot string with length k. We use {k-nrsj} to denote a set of nrs string

with length k.

4. If stri is the sub-string of strj, we say that strj covers str
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2-nrs strings


4-nrs strings


Figure 4.8: Several detected nrs strings

Given a video shot shi and a k-nrs string strj = {shj1 ...shjk }, we can

define the visual similarity between them as:

sim(shi, strj) =
k

∑

x=1

sim(shi, shjx ) ×
Length(shjx )

∑k

y=1 Length(shjy )
. (4.21)

After that, we can define the visual similarity function between two k-nrs

strings stri and strj:

sim(stri, strj) =
∑

x

sim(shix , strj) ×
Length(shix )

∑

y Length(shiy )
, (4.22)

where shix ∈ stri. In the next chapter we will discuss how we model the

video shot strings in a video scene with a graph based on their similarities and

temporal orders.

4.5 Experiments

In this section we evaluate the algorithms proposed for video structure analysis.

We carry out the experiments on a PC platform with win2000 OS, P4 2.0GHz

CPU and 512MB RAM. The video processing module is developed with Visual
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C++, based on Microsoft DirectsShow SDK. We employ several documentary

videos and several movie clips as the test data set.

For video shot cut detection, we have implemented our proposed approach

and appled it to several test videos from movie and documentary video. The

experimental results are shown in Table 4.1. We compare the result with the

approach in [42] and found that our method indeed outperforms the previous

method in [42], in which the shot cut detection accuracy reported varies from

63.4% to 85.9%. The difference should lie in our non-linear neighborhood

filtering. From the resulting data we can see that our method is quite robust

and accurate, in most cases, our method achieves a correct detection rate

around 95%.

Table 4.1: Video cut detection results. F.D. means False Detection and M.D.
means Missed Detection

Video type Length Ground truth Detected F. D. M. D. Accuracy
Movie 477 sec. 166 157 0 9 94.6%
Movie 1440 sec. 237 235 6 8 96.6%

Document 1380 sec. 147 141 3 9 94.3%
News 40 39 1 1 95.0%

For fade detection, our result is shown in Table 4.2. The fade detection

process is more sensitive to noise, thus its accuracy is not as good as the video

shot cut detection. In the experiments the accuracy ranges from 75% to 85.7%.

Table 4.2: Video fade detection results
Video type Length Ground truth Detected F. D. M. D. Accuracy
Document 620 12 10 1 3 75.0%
Document 1380 21 23 5 3 85.7%

Movie 477 4 3 0 0 75.0%

For videos shot group formation, we have implemented the graph cut al-

gorithm and the window-sweeping algorithm in [50]. Some sample video shot

groups generated by the two algorithms are shown in Figure 4.9 and Fig-

ure 4.10.
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Figure 4.9: Several detected video shot groups by the ToC method

From the detected video shot groups we can construct the video scenes.

However, as video scene is a high level concept, the ground truth of “video

scene boundary” is difficult to be defined objectively. So in the following ex-

periment we employ the “Human opinion” as the ground truth. Table 4.3

and Table 4.4 summarize some results for scene detection generated by spec-

tral graph clustering method and the original ToC method (F. D. for False

Detection and M. D. for Missed Detection).

From the experimental result data in Table 4.3 and Table 4.4, we can see

that the spectral clustering method outperforms the ToC method in correctly
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Figure 4.10: Several detected video shot groups by spectral graph partition

detecting video scenes. Our video skimming selection procedure is based on

the video structure information detected with this method, which is shown in

the next chapter.

4.6 Summary

A video has its intrinsic structure just like an article does. In this chapter,

we describe our work done on analyzing the structure information of the video
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however, since they are composed of several video shot groups, their content

complexity should relate with both the number of video shot groups it contains

and the lengths of the member video shot groups. To quantitatively evaluate

the complexity of a loop video scene based on these two factors, we define

the content entropy of a video scene and employ it as the measure of content

complexity, as shown in Equation 5.1:

Entropy(Sci) =
∑

Sgj 2Sci

−
lSgj

lSci

log2(
lSgj

lSci

). (5.1)

5.1.2 Target Skim Length Assignment

With the above definition, given the target video skimming length Lvs and the

length of the video Lv, the skim ratio rs is thus Lvs
Lv

. We determine the skim

length Sl of each of the video scenes in the video as follows:

Step 1. For each progressive scene Scx,

Slx = lScx × rs. (5.2)

If Slx is less than the preset threshold t1, we discard scene Scx as short

skimmings do not make sense to people.

Step 2. Suppose that after we have assigned a part of the Lvs to some pro-

gressive scenes, the left skim length is L0
vs. Then, for the loop scenes

{Sc1...Scn},

Sli = L0
vs ×

Entropy(Sci) × lSci
∑n

j=1 Entropy(Scj) × lScj

. (5.3)

In a similar manner, we discard Sci if Sli is less than a preset threshold

t2.
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Step 3. Suppose that after Step 2, the remaining loop scenes are {Sc0
1...Sc0

m},

then for the remaining video scenes we set

Sli = L0
vs ×

Entropy(Sc0
i) × lSc′i

∑m

j=1 Entropy(Sc0
j) × lSc′j

. (5.4)

The above skim length assignment algorithm ensures that more important

scenes are assigned with more skim length, thus the balanced content coverage

can be achieved. Moreover, loop scenes are assigned with more skim length,

since they are regarded as more important than the progressive scenes.

5.2 Graph Modelling of Video Scenes

Coherency is another important goal that the video skimming should achieve.

If a lot of breaks are included in the video skimming, the user may feel that it

is jumpy and less enjoyable. Since video shots are continuous image sequences

and they are the building block of videos, in our work, we select complete

video shots as the elements in the video skimming to guarantee the coherence

of the video skimming. Moreover, we employ nrs strings as skim candidate to

achieve better coherency.

With each scene’s target skimming length determined, we need to select

several video shots according to the skim length of each video scene and gener-

ate the final skimming. The selected video shots should be able to cover both

the visual diversity and the temporal distribution of the original video scene;

meanwhile, the coherency of the video skim should be ensured. To achieve all

these objectives simultaneously, we model each video scene with a graph based

on the video nrs shot strings it contains, then we select the skimming video

shots by performing optimization on that graph.
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5.2.1 Decompose the Video Scene into Candidate Video

Strings

Since the non-repetitive string (nrs strings) is a longer coherent part of a

video and it contains no visual redundancy, it is a very good candidate to be

selected into the video skim. To model the scene as a graph, we first need to

decompose the video scene into a set of non-overlapped nrs strings Nrslstr .

However, there are still some problems to meet. First, the longer the nrs

strings are, the more coherent the final selected video skim will be. On the

other hand, if the candidate nrs strings are too long, the content coverage

might not be able to get guaranteed. Another problem is that there may be

more than one method to decompose the video scene into a set of video shot

strings.

So we propose the following bounded decomposition process for a video

scene:

1. We specify an integer lustr, which is the upper bound of shot number in

the nrs strings to be decomposed from the video scene.

2. We decompose the video scene shots into a set of nrs strings whose

length is upper bounded by lustr. Given a video scene Sci, we note the

nrs string set decomposed from the scene as Nrsk if we set the parameter

lustr with value k. Note that there are more than one possible methods

to decompose the video scene into a set of nrs strings. For simplicity,

every time we decompose the first longest nrs string from left to right.

For example, the Nrs3 set for a video scene {1245141316} should be

{124, 514, 13, 16}.

We can use the integer lustr to control the coherence of the extracted video

skim. As a special case, the Nrs1 set of a scene is just all the video shots it

contains. The longer lustr is, the more coherency will the selected skim be, but
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the content coverage might decrease accordingly.

5.2.2 The Spatial-Temporal Relation Graph

Based on the shot nrs strings we detect from the video shot list, we define the

spatial-temporal relation graph as follows:

The spatial-temporal relation graph Gst(V,E) is a graph defined on a video

shot string set Ssh = {str1, ....strn} such that:

1. Gst(V,E) is a complete graph.

2. Each vertex vi ∈ V is corresponding to a video shot string stri in Ssh

and vise versa. On each vi there is a weight wi which is equal to the

length of video shot string stri.

3. On each edge eij ∈ E, there is an edge weight weij which is equal to the

spatial-temporal dissimilarity function Dis(stri, strj) between video shot

strings stri and strj. The direction of edge eij is from the temporally

earlier shot string to the temporally later video shot string. Thus G is

acyclic.

A simple example of the spatial-temporal relation graph on a scene is shown

in Figure. 5.2. The vertex weight (shot string length) and edge weight are

shown as numbers in the brackets associated with the vertices and edges in

the graph.

To determine the value on each edge, we define the spatial-temporal dis-

similarity function between two video shot strings stri, strj as:

Dis(stri, strj) = 1 − sim(stri, strj) × e� k� dT (stri ,strj ), (5.5)

and

weij = Dis(stri, strj). (5.6)
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Figure 5.2: Spatial temporal dissimilarity graph on five shot strings

Here sim(stri, strj) can be any visual similarity measure between video shot

strings, and here we use the definition given in the previous chapter: dT (stri, strj)

is the temporal distance between the temporal middle points of video strings

stri and strj, in terms of frame number. k is the parameter to control the

slope of the exponential function, also in terms of frame number. An example

of dissimilarity function between video shots in a sample video is shown in

Figure 5.3:

To allow for a good coverage of both the visual and temporal contents of the

video scene, we define the dissimilarity function such that it changes linearly

with the visual similarity, but exponentially with the temporal distance. Such

a dissimilarity definition will guarantee those visually dissimilar video shot

strings are chosen, and it can guarantee that the chosen video shot strings will

be well distributed on the time axis, so that a good temporal coverage of the

original contents can be achieved.

5.2.3 The Optimal Skim Problem

Given the target skimming length Lvs, we can search a path in the spatial-

temporal graph then use the video shots corresponding to the vertices in that

path as the video skimming for the video shot set. A path p = {vx1 , ...vxn } in

the spatial-temporal graph consists of a set of video shot strings {strx1 , ...strxn },
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Figure 5.3: The spatial-temporal dissimilarity function for a sample video with
seven scenes

which is a video skimming whose total length is the summation of the weights

on the vertices vx1 , ...vxn in the path. We let V WS(pi) represent the vertex

weight summation of the path pi. The length of the path is the summation

of the spatial-temporal dissimilarity function between consecutive video shot

pairs.

For this optimal path ps, we have two goals to meet. First, we want to

maximize the length of the path Lps , which is the summation of dissimilarity

function between consecutive video shot strings. Second, we want V WS(ps)

to be as close to Lvs as possible, but not to exceed it. So the problem is a

constrained longest path problem. The result path varies with different target

skim lengths, as shown in Figure 5.4.

We combine the above two goals in the objective function f st
obj, which is

described in the following video skimming generation problem.
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such that it begins with vertex vx, and its vertex weight summation is upper

bounded by lr. We then use po
vx ,lr

to denote the optimal path among all such

paths, which means f st
obj(p

o
vx ,lr

) = maxi f
st
obj(p

i
vx ,lr

). Thus po
v0 ,Lvs

is the path we

want to find.

Then we have the following optimal substructure:

1. f st
obj(p

o
vn ,lr

) = w × (lshn − Lvs), for all lr ≤ Lvs;

2. f st
obj(p

o
vx ,lr

) = maxn
y=x+1[Dis(strx, stry) +

f st
obj(p

o
vy ,lr � lstr y

) + w × lstrx ] × τ(lr, y)

Here τ(lr, y) = 1 if lr − lshy ≥ 0, otherwise τ(lr, y) = 0.

With the above optimal-substructure we can calculate the object function

value of the optimal path f st
obj(p

o
v0 ,Lvs

) and all optimal sub-solutions with the

following video skimming selection algorithm, shown as Algorithm 5.1.

After the objective function of the optimal path is found, we can easily

trace back and find the global optimal path as well as the skimming shots of

the scene. In the case that there are multiple global optimal paths, the trace

back algorithm will also find all of them. We concatenate the skimmings of

each video scene and get the whole video skimming. Note that the algorithm

may generate a video skimming that is a little shorter than the target length

Lvs. As this will not affect much about the content coverage of our video skim,

we randomly select some video shots to fill that length.

The time complexity of this dynamic programming algorithm is O(n2×Lvs),

while the space complexity is O(n × Lvs). For most video scenes, n and Lvs

would not be large and the algorithm completes quite quickly.

5.4 Static Video Summary Generation

In some cases the user may prefer to a static video summary, for the static

summary requires less bandwidth and can be viewed with a glance. In this
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Algorithm 5.1 Video Skimming Selection Algorithm

Input: The spatial-temporal relation graph Gst(V,E) based on the candidate
video string set Strin = {str1....strSn }.
Output: The objective function value for the optimal path po

v0 ,Lvs
, denoted

by fopt.
BEGIN
Set f st

obj[i][j] = 0 for all i,j;
for Lr = TH to Lvs do

Lopt[LastShot][Lr] = −penalty;
end for

for ix = Sn to 0 do

for Lr = 0 to Lvs do

opt = −infinity;
for t = ix + 1 to Sn do

if lt < Lr then

if opt < f st
obj[t][Lr − lt] + Dis(strt, strix ) then

opt = f stobj[t][Lr − lt] + Dis(strt, strix );
end if

end if

end for

f st
obj[ix][Lr] = opt;

end for

end for

fopt = f st
obj[0][Lvs];

END

section we discuss how to generate a meaningful static video summary for the

user.

The graph optimization based approach can easily generate a static video
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Original shots in a scene


Selected nrs shot strings


Figure 5.6: Summarized scene key frames based on nrs shot strings

after they have seen the video skimming, we can get a score that measures
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Video Clip Duration Major events Skim Rate Mfn. Fav.

Document 1 2403 sec. 7 0.15 82.8/85.7 4/6
Document 2 3230 sec. 8 0.15 78.8/76.4 3/7
Document 3 1477 sec. 5 0.15 88.0/86.0 3/7

Movie 1 1183 sec. 9 0.15 82.2/85.6 4/6
Movie 2 602 sec. 4 0.15 77.5/75.0 4/6
Sitcom1 1183 sec. 8 0.15 71.1/76.4 3/7

Table 5.1: User test results with skim rate 0.15. The scores with lustr is equal
to 3 are in bold

Video Clip Duration Major events Skim Rate Mfn. Fav.

Document 1 2403 sec. 7 0.30 94.3/92.9 5/5
Document 2 3230 sec. 8 0.30 88.9/92.9 6/4
Document 3 1477 sec. 5 0.30 96.0/96.0 2/8

Movie 1 1183 sec. 9 0.30 94.4/97.8 5/5
Movie 2 602 sec. 4 0.30 92.5/97.5 3/7

Sitcom1 1183 sec. 8 0.30 84.3/88.2 2/8

Table 5.2: User test results with skim rate 0.30. The scores with lustr is equal
to 3 are in bold

good at a skim rate of 0.15. Moreover, when the skim rate is 0.30, the skimming

content coverage is even better.

We can also see the effect of the parameter lustr. The meaningfulness scores

for both video skimmings with different lustr are quite similar, but in terms of

favorite, most video skimmings generated with bigger lustr value gain better

favorite scores, which means that more people prefer to view more coherent

video skimmings.

For the compression limit of the video skimming, in our experiments, most
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Figure 5.7: An example of static summary

Video scene boundaries


Figure 5.8: Temporal distribution of selected video shots

From the static video summary we observe that the visually dissimilarity

video shots have been selected; also the video shots distribute quite evenly on

the temporal axis, shown in Figure 5.8. Thus we make the conclusion that the

graph optimization-based algorithm is able to simultaneously guarantee the

visual content diversity and temporal coverage.
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5.6 Summary

Video summarization is an important technique for efficient video browsing

and management. In this paper, we formulate the video skimming genera-

tion problem as a two-stage graph based optimization problem. We obtain

the video scene boundaries, determine each video scene’s skim length, then

we model each scene into a spatial-temporal relation graph, and employ dy-

namic programming to find each scene’s optimal skimming. The whole video

skimming is concatenated by each scene’s sub-skimming. We implemented the

proposed algorithm and obtained encouraging experimental results.

In the future, we will further incorporate audio channel analysis to help

our skimming generation. Moreover, intra-shot compression will be studied

to shorten the video shots’ length in order to further magnify the content

coverage.



Chapter 6

Video Content Annotation and

Semantic Video Summarization

In Chapter 4 and Chapter 5 we describe our video skimming generation ap-

proach based on graph modelling and optimization. This approach is able to

guarantee both the temporal coverage and visual diversity of the video skim-

ming. However, just like most of the traditional video skimming generation

methods, the graph-optimization approach still relies on the low-level features

of the original video. Therefore, it may not be able to guarantee that the

generated video skimming contains the semantically important contents.

In this chapter, we describe a dynamic video skimming generation frame-

work utilizing high-level video semantic information. Figure 6.1 shows the

overview of our framework. We first segment the video into video shots, and

then we annotate each of the shots with a semi-automatic annotation tool.

To guarantee the balanced content coverage, we determine the scene bound-

aries by video structure analysis, and then assign appropriate target skimming

length for each scene. For each video shot, an importance value is calculated

according to the Mutual Reinforcement Principle [78], and the video shots are

clustered according to their semantic content descriptions. Finally, we analyze

the arrangement pattern of the video shots and the important shot strings are

selected as the video skimming. In comparison with the traditional approaches,
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our approach has the following contributions. First, we obtain the semantic

content description of video shots then employ the Mutual reinforcement prin-

ciple to calculate a global importance rank value for each shot. Based on the

importance values, we can ensure that the semantically important contents

can be covered by the video skimming. Second, we analyze the shot arrange-

ment patterns and select shot strings to form a more coherent video skimming.

Our method guarantees both the content coverage and visual coherence of the

video skimming, which are neglected by most other approaches.

Figure 6.1: Overview of the semantic video summarization framework

The chapter is organized as follows. In Section 6.1 we describe our video

annotation procedure. In Section 6.2 we analyze the structure of the video and

describe how we calculate the semantic importance value for each video shot

by mutual reinforcement principle. In Section 6.3 we present our video skim

generation scheme based on shot arrangement analysis. Section 6.4 we show

some experimental results. Finally, we make conclusion in Section 6.5.
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6.1 Semantic Video Content Annotation

6.1.1 Video Shot Segmentation

A video shot is an image sequence captured continuously by a single camera.

It is the basic building block of edited videos like movies, broadcast news, TV

shows, etc. With the methods described in Chapter 3, we can efficiently detect

the video shot boundaries. With the video shots detected, we can further make

annotation for them, and explore the higher level structure of the video. For

each detected video shot shi, we use its first frame kfibegin and the last frame

kfiend as the key frames to represent its visual content.

6.1.2 Semi-Automatic Video Shot Annotation

Given the detected video shots, we can define the content description template,

then create semantic annotation for each of the video shots. Normally when

we see a video, the two questions we mostly want to ask is “Who?” (Who is

the person this video is depicting?) and “What?” (What is the person do-

ing?/What’s happening?). Thus in this chapter, for each video shot’s content

description, we currently use the following two semantic concept contexts to

describe the semantic concept of the video shots:

1.
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measure simij:

simij = t × siml
ij + (1 − t) × sims

ij. (6.3)

and based on measure simij we can use the window sweeping algorithm in

Chapter 3 to find the video shot group and video scene boundaries.

6.2.2 Video Structure and Video Edit Process

The video editing process, described in [20], is as follows. To describe an event

the director will first shoot the environment from several different angles, then

mix the video shots from various angles to assemble the final edited video,

the process is shown in Figure 6.3. For example, to depict a conversation,

there should be some overview shots showing all the people involved at the

beginning and the ending of the scene, and there may be several sets of video

shots depicting each involved actor from different angles. The video shot sets

are depicting the same content (person) but since they might be shot from

different angles so they might not be able to be grouped together by analyzing

the low-level features. However, the shot semantic description can help us to

find such structure.

To better model the intention of the director, we propose a new concept

called semantic video shot group. It is made of a set of video shots that

depicting the same semantic content. However, a semantic video shot group

might not be composed by visually similar video shots. The semantic video

shot group can be viewed as an intermediate entity between video group and

the video scene, and we can expect that video skimming generated upon this

new structure can achieve better performance since it carries the semantic

structure of the video. Another important sign of the director’s intention

is the way he arranges the semantic shot groups. The pattern of the shot

arrangement will be analyzed in Section 6.4.
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Figure 6.3: Movie edit process

6.2.3 Mutual Reinforcement and Semantic Video Shot

Group Detection

Given a video scene composed by a set of annotated video shots and a set of

video annotation concept terms and the corresponding contexts, we need to

measure the relative importance of each video shots and each different concept

term. We employ the following mutual reinforcement principle [78] to detect

the semantic video shot groups and give a importance evaluation for each

detected video shots. Suppose that we have obtained a set of video shot

descriptions D = {d1...dn} based on a set of concept terms T = {t1...tm}

under the description context c, we hope to get a rank to measure the priority

of the description items video shot description set. A weighted bipartite graph

can be built from T to D in the following way: if description di contains

term tj, then we set up a edge between di and tj, and we can compute a

weight wij associated with the edge. wij can be any non-negative measure







Chapter 6 Video Content Annotation and Semantic Video Summarization 84

Figure 6.5: Some classified video shots

When we have found the semantic video shot groups, our video summa-

rization process will be just like an inversion of the video edit process followed

by another edit process. We first group the video shots depicting the same

content, which is just the inversion of movie editing, and then we select some

shots from the same group according to some rules then reassemble them into

the final video skimming.

6.3 Semantic Video Summarization

6.3.1 Summarization Requests and Goals

In the previous chapters we have introduced two kinds of video skimming:

overview and highlight. In this chapter we still concentrate on the movie

overview generation. To obtain a meaningful video skimming, in chapter 5

we have specified three goals that a good video skimming should be able to

achieve. The goals are Conciseness, Balanced content coverage and Visual

coherence.

After we have obtained the formation of the semantic video shot groups
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2. A non-repetitive shot string
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becomes good candidates for video skimming since it is composed by video

shots depicting non-repetitive contents, and is a coherent part of the original

video. By scanning the video shot string we can easily get all k-nrs strings for

all integer k.

We formulate the video skimming generation problem as Problem 6.1.

Problem 6.1 For a video scene, given the target skimming length Lvs, a set

of video shots {sh1...shn} contained in the scene, the corresponding video shot

length set {li}, and the corresponding video shot group label set {lb1...lbn},

find a continuous nrs string set SKIM = {nrsj}, such that:

1.
∑

j ipnrsj is maximized (semantic importance summation is maximized);

2. |SKIM | is minimized;

3. Minimize the duplicated items in SKIM ;

4.
∑

j(lnrsj ) = Lvs;

To solve the Problem 6.1, we propose a greedy method algorithm, which is

described in Algorithm 6.1:

Algorithm 6.1 continues selecting the most uncovered important nrs strings

into the video skimming, and discards the already covered short nrs strings so

that the semantic important contents are selected while the redundancy of the

video skimming is minimized. By this algorithm we obtain a set of coherent

video segments as the video skimming, such that the content coverage and

coherency can be simultaneously achieved.

6.4 Experiments

To test the performance of our proposed approach, we have implemented the

proposed video annotation and summarization framework then apply it to
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Algorithm 6.1 Video Skimming Selecting Algorithm

Input: The set of all nrs strings NRS; The target skimming length Lvs;
Output: The selected nrs set SKIM that form the video skimming
BEGIN SKIM = ∅
STEP 1: Sort the nrs strings in NRS according to their importance value;
while Lvs > 0 do

Select the best nrs string nrsopt, such that:

1. Lnrsopt < Lvs

2. ∀nrsi ∈ N and Lnrsi < Lvs, ipnrsopt ≥ ipnrsi

if Found then

1. SKIM = S ∪ {nrsopt}

2. Lvs = Lvs − Lnrsopt

3. NRS = NRS − {nrst|nrsopt covers nrst}
else if Not found then

GOTO END
end if

end while

END

some movie clips. We employed a PC with 2.0G hz P4 CPU and 512Mb RAM

on the Win2000 OS as the test bed. The system is implemented with Microsoft

VC++. The weight parameter t is set to 0.6, and the time threshold t1 is set

to 4 seconds. Three movie clips and one sitcom clip are processed, for each test

clip, two video skimmings generated at skim rate 0.15 and 0.30 are extracted.

Details about the video clips are shown in Table 6.1.

To evaluate the quality of the generated video skimming, we employ two

criterion: meaningfulness and favorite. Since it is hard to objectively evaluate

a video skimming, we use the following subjective test introduced in Chapter

5 to compare the performance of our new video skimming generation scheme

and the method we proposed in [34]. We have invited 10 test users to watch

the video skimming generated from the video by the two methods at skim
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rate 0.15 and 0.30. To evaluate meaningfulness, we ask the test users to an-

swer several questions about the key events that the video depicts (who has

done what?). The scores are scaled to [0, 100]. To evaluate favorite, we ask

the users to select a “better” video skimming between the video skimmings

generated by the two approaches, and the number of users who choose the

skim as “better” is recorded as the favorite score. Figure 6.7 and Figure 6.8

show the average meaningfulness and favorite scores for the video skims gen-

erated by our proposed method and method in [34] respectively. The number

of continuous video segments contained in the video skimming is employed as

a measure of coherence. The experimental results are summarized in Table 6.1

(Mfn. means Meaningfulness, Fav. means favorite, N.S. means Number of

Segments, SEM means the new semantic approach, GRA means our old graph

based approach).

Figure 6.7: Meaningfulness Scores

Our experimental results are quite encouraging. In terms of the mean-

ingfulness, at the skim rate 0.15, the proposed semantic video summarization

method obtain a quite high mean score 77.95. At skim rate at 0.30, the score

achieved is even higher. Moreover, in most cases, our new semantic approach

has gained a higher score than our previous graph-optimization approach. In
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Figure 6.8: Favorite Scores

Video Clip Duration Actors Events Skim Rate Mfn. Fav. N.S.

Movie1 1403 sec. 9 7
0.15 78.5/82.3 7/3 15/59
0.30 97.1/95.6 9/1 22/89

Movie2 1230 sec. 7 8
0.15 77.5/ 76.4 9/1 16/44
0.30 96.2/ 92.9 10/0 22/65

Movie3 477 sec. 6 4
0.15 82.5/ 80.5 6/4 12/30
0.30 92.5/95.0 9/1 19/46

Sitcom1 1183 sec. 8 9
0.15 73.3/71.1 7/3 24/54
0.30 88.8/84.3 8/2 46/87

Average — — —
0.15 77.95/77.57 7.25/2.75

—
0.30 93.65/91.65 9/1

Table 6.1: User test results. Scores for the new approach are bold

terms of favorite, we can see that although both video skimming is meaningful,

most users would prefer the video skimming generated by the new method at

both skim rates. The major reason should be that the new skim is more coher-

ent. We also find that our new approach generates much less video segments

than the previous approach, which greatly increases the video coherency. From

the experimental results we can make the conclusion that our proposed method

is able to generate a better video skimming in comparison with our previous

work.
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6.5 Summary

In this chapter, we illustrate a novel framework for semantic video summariza-

tion. We provide the users a semi-automatic system to help them annotating

the video semantic contents efficiently. Then we combine the semantic informa-

tion and structure information of the video, compute the semantic importance

for each video shot, analyze the arrangement patterns of the video shots. Fi-

nally, we obtain a dynamic skimming by selecting the key video shot strings.

The experimental results show that our approach ensures both the balanced

content coverage and visual coherence. Experimental results show that the

framework is effective in generating helpful video skimmings.



Chapter 7

Concluding Remarks

7.1 Summary

Video is getting more and more popular now than ever before, due to the rapid

growth of the Internet bandwidth and the growing use of video in education,

entertainment, and information sharing. Many organizations produce huge

volume of video data everyday. Facing the massive data volume, end users

find that it is inefficient to browse a favorite video from the Internet, and

the content providers have to face the tedious work of managing the ever

growing video database. The urgent problem brings a lot of attention to video

summarization, which is a new technology intends to help the users to quickly

grasp the major contents of a video by providing them concise and informative

video content summaries.

The thesis presents our work done on automatic video summarization. We

first specify three goals that a video summary with good quality should achieve:

1. Conciseness–For conciseness, the length of the generated video skim-

ming should be within the user-specified length Lvs; the static summary

should not contain too many images.

2. Balanced content coverage–As the video is a structured document,

the video skimming should be able to represent the original contents
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with balance. At the same time, both the visual diversity and the tem-

poral coverage of the original contents should be reflected by the video

skimming.

3. Visual coherence–One problem for traditional video skimming genera-

tion is that the user often feels that the video skimming is quite choppy.

A good video skimming should increase the coherence of the video skim-

ming while preserving the content coverage.

In conclusion, we have proposed an automatic video content analysis and

summarization framework. First, we analyze the structure of the video. Based

on the structure information, we propose a graph optimization-based approach

to create video summaries that is able to achieve the above three goals. Our

research work also comprises the initial work on video content annotation and

semantic video summarization. To obtain and utilize the semantic information

of the video, a semi-automatic video annotation system is built and video

skimmings are generated based on the semantic content descriptions.

Our research work has the following contributions:

1. We have proposed several targets that a video summary with good qual-

ity should have, and we have achieved them in our framework.

2. We analyze the intrinsic video shot-shot group-scene structure of the

video and employ the structure information to help us in video skimming

generation. The balanced content coverage is thus guaranteed.

3. We model the video scenes into a graph based on the video shots con-

tained in it, and select video shots by searching a constrained longest

path in that graph. Our method is able to cover both the visual content

coverage and the temporal content distribution simultaneously.

4. We propose a semantic video annotation and summarization framework

to help the user to annotate the video shots semi-automatically. An



Chapter 7 Concluding Remarks 95

importance measure is derived from the semantic content descriptions

based on mutual reinforcement principle. Video summaries are then

generated with the semantic descriptions. The performance of our new

approach is compared with our previous work, and we conclude that

utilizing semantic information does help to enhance the quality of the

produced video skimmings.

7.2 Future Work

In this thesis we describe the work we have done on video content analysis and

summarization. A graph-optimization based video summarization framework

and a semantic video summarization framework have been proposed. The

frameworks themselves are quite flexible; many other features and constraints

can be added into this framework as its extension. In the future, we may

enhance the system by incorporating better feature analysis technique into

our framework.

Currently our system provides only limited interactivity for the user. Our

framework can be further extended by incorporating the user defined pref-

erence. The user may specify what he is specially interested in, or what he

is not interested in to make a personalized video summary that is specially

useful to the user. Different ways for different users to describe and express

their preference during interaction with the video summarization system will

be investigated.

For video semantic recovery, one possible way to obtain video semantic

description is using the video production documents. During video document

production, a lot of planning and paper work is produced, like movie screen-

plays, scripts, plans, etc. The information contained in them contains time,

location, order, actor, dialog script, background music, etc., which is detailed

enough for further processing. Moreover, recovering such detailed information
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from produced video automatically is far beyond up-to-date intelligent sys-

tems’ abilities. One good practical way to resolve the semantic gap and obtain

accurate semantic video descriptions is to find a method to better incorporate

Mpeg-7 during video production and we can directly obtain video semantic

description with very low cost, which is a alternative to obtain reliable video

semantic descriptions.



Appendix A

Notations

V d A video.

{Vi} A set of extracted video skimming segments.

fobj({Vi}) The objective function of the video skimming {Vi}.

{Ei} The set of un-selected video segments.

Lvs The target video skimming length.

p({Vi}, {Ei}) The penalty function for the selected video segment set {Vi}

and the corresponding un-selected video segments {Ei}.

N({Vi}, {Ei}) The new objective function for {Vi} with consideration of

the penalty function.

shi The ith video shot.

stri The ith video shot string.

sim(shi, shj) The visual similarity between video shots shi and shj.

sim(stri, strj) The visual similarity between video shot strings stri and
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strj.

dT (shi, shj) The temporal distance between video shots shi and shj.

dT (stri, strj) The temporal distance between video shot strings stri and

strj.

Dis(shi, shj) The spatial-temporal dissimilarity between video shots shi

and shj.

Dis(stri, strj) The spatial- temporal dissimilarity between video shot strings

stri and strj.

nrs The non-repetitive video shot string.

lustr The upper bound for the shot number of nrs shot strings.

Sgi The ith video shot group.

Sci The ith video scene.

lshi The length of ith video shot.

lSgi The length of ith video shot group.

lSci The length of ith video scene.

Entropy(Sci) The content entropy value of video scene Sci.

Gst(V,E) The spatial-temporal relation graph based on a set of video

shot strings.

Lpi The length of the path pi.
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V WS(pi) The vertex weight summation of a path pi.

f st
obj(pi) The objective function for a path pi in the spatial-temporal

relation graph.

po
vx ,lr

The optimal path begin with vertex vx with the vertex

weight summation upper-bounded by lr.

ps The global optimal path corresponds to the video skimming

shots.

G0
st(V,E) The static spatial-temporal relation graph based on a set of

video shots.

p0o
i,n The optimal path begins with vertex vi and the vertex num-

ber is n.

L0o
i,n The length of the path p0o

i,n.

p0
s The global optimal path corresponds to the static video

summary images.

T = {t1...tn} The semantic concept term set.

D = {d1...dn} The semantic content description set.

IP The semantic importance vector. The ith component ipi is

the importance value of video shot shi.

ipstri The semantic importance value of shot string stri.
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