A Progressive Fault Detection and
Service Recovery Mechanism in
Mobile Agent Systems

WONG, Tsz-Yeung

A Thesis Submitted in Partial Fulfillment
of the Requirements for the Degree of
Master of Philosophy
in

Computer Science and Engineering

(©The Chinese University of Hong Kong
June, 2002

The Chinese University of Hong Kong holds the copyright of this thesis.
Any person(s) intending to use a part or the whole of the materials in this
thesis in a proposed publication must seek copyright release from the Dean of

the Graduate School.

Abstract

In this thesis, we present the approach of deploying cooperating agents to
detect failures as well as recover services in a mobile agent system. Failures
in the mobile agent system can be classified into three types, namely server
failure, agent failure, and link failure. The server failure includes hardware
and software failures in the server where agents reside. This can be handled
by traditional fault tolerance mechanism in distributed systems. We use co-
operating agents to handle agent failure detection. Two types of agents are
involved. One is the agent performing the computation delegated by the owner,
which we call the actual agent. Another agent,namely the witness agent, is the
agent that monitors the actual agent. We introduce a protocol by using a
message passing mechanism between these two kinds of agents to detect agent
failures and recover agent services. This approach can handle server failures,
agent failures, and failures in message passing. It is capable of detecting and
recovering most failure scenarios in mobile agent systems. Finally, the link
failure includes the failure of the linkage of communication network. This can
induce a more severe scenario, such as the network partition. Since link failure
is beyond the control of an agent system, the agent system cannot recover it.
We suggest modification in our approach to ease the impact of the link failure.
We conduct mathematical analysis and reliability evaluation for our approach,
which shows that it is a promising technique in achieving mobile agent system

reliability.

RS

B RHLF > RAIRTE ARSI AL P SRR A E
R o EARDKBALTEANERES B KA AR

RS s AP ITE s URBEBREEWE - AREXKE I
131 R 23 R RY S AR RY 69 48R » RBESRIT AR A R X A #8914
B0 548 BT RAS I o RATVE R IR D) BRE 69 S Ul RS IR R

BT o RMFINT RAERF G REIAE » —FLALTR
B BERBODRARCHIAEBITEL » REBELEF O

REBFECEIA o F—HLZALERYE - S RELE LT R
BYIEAE o RMFINT — BRI R B NGV » 155
AR AAREANB AT M ARISES Tk - BRAY
SRS M5 E A AR 0 SE AR R SRR B - AT HE A
AIEAR IR R o B R B REAE B BAS ER B KRS R L A9 K
e o MR IR BT O4E T M5B M AR R IE o BT
AG| B R EHg 1 R o Blde - F) o RAVR B T S5 EHA M
B 15 B AT 8% M 0GR TR B9 B 4 o RATAEAT T RIS E A
69T SEME R4 0 3035 B33 8 T4 B B 18 SRS SE AR B T — 18
TEEHA o

i

Acknowledgement

In completing the work reported in this thesis, I am most grateful to my
thesis advisor, Dr. Michael Lyu, who has been giving continuous support and
guidance to me throughout the past two years.

I am also obliged to my colleagues in the Department Computer Science
and Engineering, especially Pun-Mo Ho, Cheuk-Man Lee, Tak-Fu Tung, Kai-
Chun Chiu, and Lap-Chi Lau. They have given me invaluable advice and

support in these two years of research life.

iii

Contents

1 Introduction
1.1 Related Work o oo
1.2 Progressive Fault-Tolerant Mechanism
1.3 Organization of This Thesis
1.4 Contribution of The Thesis.

2 Server Failure Detection and Recovery

3 Agent Failure Detection and Recovery

3.1 System Architecture

3.2 Protocol Design Lo oL

3.3 Failure and Recovery Scenarios
3.3.1 When w;_; fails to receive msg ipe « - « « « 0 oo .
3.3.2 When w;_; fails to receive msgl,pe « « « « « - - o o« -
3.3.3 Failures of the witness agents and recovery scenarios
3.3.4 Catastrophic failures,

3.4 Simplificationo

4 Fault-Tolerant Mechanism Analysis
4.1 Definitions and Notations

4.2 Assumptions. L

4.3 The Algorithm L o

v

4.3.1 Informal algorithm descriptions

4.3.2 Formal algorithm descriptions

4.4 Tiveness Proof

4.5 Simplification Analysiso o L.

5 Link Failure Analysis
5.1 Problems of Link Failure

5.2 Solution

6 Reliability Evaluation

6.1 Server Failure Detection Analysis

6.2 Agent Failure Detection Analysis

Bibliography

A Glossary

61
61
62

67
68
71

77

80

List of Figures

1.1

2.1

3.1
3.2
3.3
3.4
3.5
3.6

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

5.1
5.2

Replication deployed in agent system.
Server failure detection daemon.

The server design.o
Steps in the witness protocol.
w;_1 fails t0 T€CEIVe TSP iver « « v o o e
wi—1 Tails t0 TeCEIVe MISGlppe - « « « v v e e
Witness agent failure scenario

The life of a witness agent

Minimum Time of Tyrive and Tiegpe - - - - v v o o o v o 0 o o L.
Theartbeat = € -« o o e e e e
Theartbeat < €% o o e
Server Failure Inter-arrival Distribution.
The system failure arrivals.
System configuration with 2 witness agents only.
w; and terminating message are sent before failure happens.

Failure happens before w; and terminating message are sent.

Failure happens when only the closet witness agent remains.

Choosing a suitable S, is important.

Terminating message waits for link recovery

vl

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

The Round-Trip-Travel Experiment 67
A server model with server failure detection 68

Evaluation result of server failure detection (Level 1 over Level 0) 69

Reliability improvement with server failure detection 70
A server model with agent failure detection 72
Level 1 and Level 2 simulation result. 73

Reliability improvement with agent failure detection and recovery 74

Extra agent per successful round-trip travel. 74

vii

Chapter 1

Introduction

Mobile agents are autonomous objects capable of migrating from one server to
another server in a computer network [1]. When an agent travels to another
server, the agent’s code, data as well as execution state are captured and
transferred to the next server. It is re-instantiated after arrival at the next
server. The ability to roam the Internet is provided by a middle-ware platform,
a mobile agent execution environment. There are agent research projects done
in recent years such as Mole [2]. Also, there are commercial products developed
including Aglets [3], Concordia [4] and Tryllian [5]).

Since agents are objects that are traveling in a computer network, it is
very complicated and difficult for us to estimate the running time of an agent.
It is because the agent may suffer from congestion in the network, or it may
be waiting and executing in a busy server. These kinds of uncertainties raise
problems to the reliable agent system design. The agent owner cannot tell
whether the agent is lost or the execution is delayed. This may lead to two

undesirable situations:

e The agent owner believes that the agent has been lost, but in fact it
is not. If the owner launches another agent, which may cause multiple

executions of the same piece of agent code.

e The agent owner waits for the agent to finish its itinerary, but the agent

is actually terminated due to server or agent failures.

Chapter 1 Introduction 2

Fault-tolerant mobile agent protocol aims to remove the uncertainties dur-
ing the execution of agents. It should ensure that the agent can eventually
reach its destination, or notifies the agent owner of a potential problem. There
are restrictions that every fault-tolerant protocol design should follow in addi-

tion to the above goals.

Blocking-free. Assume that we have a perfect! failure detection mechanism.
We can use simple checkpointing mechanism to safe-guard the agent ex-
ecution. For instance, we can back up the whole agent to permanent
storage in a node. Once a node crushes, the agent in that failed node
is discarded. We can use the backup agent to continue the computation
when the failed node is recovered. However, it is prone to blocking. The

agent execution is blocked until a failure is eventually detected.

Exactly-once. For instance, an user launches an agent to settle a payment.
However, he/she is not lucky enough that the agent is trapped inside a
busy network, and, hence, the delay becomes huge. The user may assume
that the agent may be terminated. Then, he/she launches another agent.
Nevertheless, this extra agent may settle the same payment once more.
This is an undesirable result. Therefore, we have to hold the ezactly-once
execution property since most of the agent operations are not idempotent

(or non-intrusive).

1.1 Related Work

Reliability as well as fault-tolerance are vital issues for the deployment of a
mobile agent system. A number of research work is done in these areas. Some
researchers adopt the use of replication together with failure masking [6, 7).

The idea is to use replicated servers to mask failures. When one server is

IPerfect failure detection mechanism means that if there exists a failure in the system,
we can eventually find it out. However, the time needed to find it out is not guaranteed.

Chapter 1 Introduction 3

Server S1 Server S2 Server Ss

Server So

Figure 1.1: Replication deployed in agent system.

down, we can still use the results from other servers in order to continue the
computation.

Figure 1.1 shows how the above mechanism works. The servers named 57,
So, and S3 are deploying the replication technique. The server Sy, for example,
represents one logical server. In reality, there are three servers running at
the same time, namely, S?, S, and S?. On the other hand, an incoming
agent arriving at S; will be cloned, and three instances of the same agent
will be executing on three distinct physical servers simultaneously. After the
computations of the three agent instances have finished, the results will be
compared. The expected results coming from the three servers should be the
same. If there are failures, the outcomes can be different, or one or more servers
do not response within a certain time, then the majority and available results
will be used. The advantage of this approach is that the computation will not
be blocked when a failure happens. Failures can be masked when most of the
servers are working. Hence, the computation can continue although failures
happened.

However, this fault-tolerant scheme is expensive since we have to maintain
multiple physical servers for just one logical server. Since a failure is a rare

event, it is not cost-effective to maintain multiple servers. Moreover, every

Chapter 1 Introduction 4

replicated server has its own data, and the data in all the replicated servers
must be consistent among themselves. On the other hand, the computation
on different servers may not produce the same and correct result. Thus, it is
a tough task in preserving server data consistency.

On the other hand, Stasser and Pothernel [8] have proposed a protocol in
rollback of mobile agent execution. Their main work includes the introduction
of compensation operation and the classification of agent data. The compen-
sation of an operation aims at undoing the semantic effects of this operation.
Obviously, not all kinds of operation can be compensated. The simplest case
is when the operation is non-intrusive, i.e., it will not change the states of both
the server and the agent. If the operation changes those states, it is desirable
to have a separate compensation operation that can undo all the changes.

Rollback of the execution includes the rollback of data in the server as
well as the rollback of private data inside the agent. The data objects in the
private data space of the agent can be classified into two categories, namely the
strongly reversible objects and the weakly reversible objects. Strongly reversible
objects are data objects the can be compensated by means of an image, or the
checkpointed image, of the objects. Weakly reversible objects are data objects
that may be different from the original data after the compensation, i.e., cannot
be compensated using a before-image. With the introduction of compensation
operations and the classification of the agent data, we can establish an effective

rollback mechanism.

1.2 Progressive Fault-Tolerant Mechanism

Our approach is rooted from the approach suggested in [9]. We distinguish
two types of agents. The first type is performing the required computation for
the user. We name it the actual agent. Another type is to detect and recover

the actual agent. We call it the witness agent. The witness agent always

Chapter 1 Introduction 5

travels behind the actual agent. That means the witness agent will follow the
itinerary of the actual agent. These two types of agents communicate by using
a peer-to-peer message passing mechanism. In addition to the introduction of
the witness agent and the message passing mechanism, we require to log the
actions performed by the actual agents since after failures have happened, the
server has to abort uncommitted actions when the system performs rollback
recovery. Moreover, the approach requires to use checkpointed data [10] to
recover the lost agents.

The key difference between the protocol suggested in [9] and our protocol is
that the former depends on a reliable broadcast, while we allow the network to
be unreliable. That is, we can remedy the failures in transmission of messages
as well as the loss of the agent in the network. In [9], the protocol uses
message broadcasting with a lot of redundant messages. Our message passing
mechanism, on the other hand, is a peer-to-peer one, so we can save a lot of
redundant messages. Moreover, our protocol handles the failures of the witness
agents.

Consequently, we propose a progressive failure detection and service recov-
ery mechanism in four levels [11]. Different levels determine the availability

and data consistency that can be achieved for the mobile agent systems:

Level 0: No tolerance to faults in the mobile agent system

In this level, when the executing agent process dies, either due to the
server failures or the faults inside the agent, it has to be manually
restarted from an initial internal state. That means the execution has
to be restarted by the agent’s owner. On the other hand, the affected
server may leave its data in an incorrect or inconsistent state due to sys-
tem crashes. It may take a long time to restart properly by the manual

initialization procedures.

Level 1: Automatic server failure detection and recovery

Chapter 1 Introduction 6

When a server failure happens, the failure will be detected by another
program (or a daemon). The detection program restarts the server, and
aborts any uncommitted transactions inside the server. This preserves
the consistency of the data inside the affected server. However, the agent
has to start running from the initial state. When the re-transmitted agent
travels to the visited hosts, the data in these servers will be modified
twice. This violates the exactly-once execution property of the mobile

agent systems [12, 13].

Level 2: Automatic agent failure detection and recovery

When a server failure happens, the agents that reside in the failed server
will be lost. The loss of agents can be detected in this level. The situation
cannot be improved without the help of rollback recovery and check-
pointing [10]. The agent performs checkpointing at each host, which
checkpoints the internal state of the agent after the agent’s execution
is completed. When a failure is detected, the checkpointed data can be
retrieved for the recovery of the lost agent. The recovery of the agent
takes place at the server where the agent fails. Therefore, the exactly-
once property is preserved. Moreover, as the internal states of the agent

is checkpointed, we preserve the agent data consistency.

Level 3: Link failure

We can always model a network as an undirected multi-graph. The
network is undirected since we assume that the network is always duplex,
and it is a multi-graph because there are multiple links from one node
to another. We assume that a network is not always a complete graph,
i.e. for a graph G, there exists a vertex u such that the maximum of the
shortest path from u to other vertices in G is larger than 1. We further
assume that the multiple edges are combined into one edge. This means

that the failure of an edge from u to v implies the failures of all the links

Chapter 1 Introduction 7

from u to v.

We start our discussion by assuming that an actual agent, «, is now in
server u and it is ready to migrate to v. A link failure can happen in
three different moments: (1) before « leaves u; (2) while « is traveling
to v; (3) after @ has reached v. The above three cases will have different
consequences. This leads to modifications of the level 2 fault-tolerant

mechanism, which we call the level 8 fault-tolerant mechanism.

In the above classification, the corresponding failure detection and recovery
mechanisms can only handle the stopping failures caused by software faults in
the mobile agents and the mobile agent platform. The hardware failures and

the Byzantine failures [14] are out of the cope of this thesis.

1.3 Organization of This Thesis

This thesis is organized in the following way:

e Chapter 1 (this chapter) is an introduction of the thesis. It gives a brief
description of mobile agent technology. It also states the problems of
fault-prone mobile agent systems, and previous work done in this area.
Moreover, it also outlines the contribution and the organization of this

thesis.

e Chapter 2 gives an outline of the problems as well as solutions dealing
with the servers failure in mobile agent systems. It states the importance

of the server failure detection and recovery.

e Chapter 3 focuses on the details of the agent failure detection and re-
covery mechanisms. It describes the mobile agent system architecture

that supports the proposed mechanism, and outlines the protocol of the

Chapter 1 Introduction 8

mechanism. A detailed discussion on different failure scenarios is pro-
vided, and how the mechanism works on these scenarios is described. It

also includes a simplification of this mechanism.

e Chapter 4 gives a detailed analysis of the proposed mechanism in the
previous chapter. It includes a detailed definition and description of the
mechanism. The analysis includes a liveness proof of the mechanism,

and the analysis of the simplified mechanism.

e Chapter 5 provides an extension of the mechanism. The extended mech-
anism discusses the link failures in the system. Since the link failure can
hardly recover fully, we propose a solution that can remedy this kind of

failures.

e We describe the evaluation of the mechanism in chapter 6. It includes
the Concordia implementation and the simulated experiments of the pro-

posed fault-tolerant mobile agent system.

e Finally, chapter 7 concludes this thesis and provides some directions of

future research.

1.4 Contribution of The Thesis

This thesis makes the following contributions:

e It designs a progressive fault detection and recovery mobile agent system

design by using cooperative agents.

e It provides the impossibility proofs on the liveness of the system and the

analysis of the simplification of the proposed mechanism.

e It develops the reliability evaluation experiments by the agent implemen-

tation and the stochastic petri nets simulations.

Chapter 2

Server Failure Detection and

Recovery

The server failure is much easier to be detected and recovered than the agent
failure. Nevertheless, server failure detection and recovery are vital issues in
the design of a reliable mobile agent system. An agent requires a server to be
hosted and to be provided an environment to execute. If the hosting server
fails, the agent will be lost as an agent is just a piece of running program.
On the other hand, the agent has manipulated objects (or data) in the server.
These objects in the server becomes inconsistent if the modifications done by
the agents are not handled properly. We have to tackle this inconsistency
problem. Moreover, if the server to which the agent migrates fails, the agent
cannot travel to that server. Hence, these problems address the importance
of the server failure detection, and outline a series of tasks required to be
accomplished during the recovery of servers.

Since a server hosts an agent and the agent manipulates objects on the
server, we have to log every action of the agent involving the modifications of
the objects in the server. If a failure happens, all the uncommatied transactions
done by the agent should be aborted. Hence, while the server is restarting, we
have to inspect the log on the permanent storage, and undo all the uncom-

mitted changes. During the recovery of the server, we cannot recover any

Chapter 2 Server Failure Detection and Recovery 10

lost agents since it is impossible for a server to re-instantiate an agent that is
foreign to it.

If the agent cannot detect whether the target server is available or not,
we may lose it while sending it to a failed server. Therefore, we have to
implement the ability to detect the availability of a server for the mobile agent.
We have implemented a method similar to ping for this purpose. With this
implementation, an agent decides to wait in the current server if the target
server ahead is failed. The agent continues waiting until the target server
becomes available. In this implementation, the agent can continue its itinerary.
However, while the agent is waiting, there is a chance that a failure happens
to the server where the agent resides. In this case, we require an agent failure

detection and recovery mechanism. This is covered in Section 3.3

Monitoring Daemon

Server Pool

Figure 2.1: Server failure detection daemon.

Our mechanism to detect and recover a server failure is to launch a daemon
in a machine as shown in Figure 2.1. This daemon is to monitor the availability
of all the servers. We name this daemon the server monitor. The server hosting
this daemon is not a server responsible for receiving and executing any agent;
it is an independent server which is not vulnerable to failures. The advantage

of this approach is that it is easy to implement. However, we may encounter

Chapter 2 Server Failure Detection and Recovery 11

the problem of single point of failure. Since we have only one server monitor in
the system, the failure of the server monitor will cause the level 1 fault-tolerant
mechanism to be failed. In order to ease this problem, we can introduce more
backup worker servers. The worker servers will monitor the primary server.
If the primary one fails, one of the workers will replace the primary one, by
launching the daemon and replacing the primary server.

An alternative approach is suggested by Huang [11]. The main idea of
this approach is to use another program to monitor the availability of the
server program. The detection of the server availability is mostly done by the
operating system by using fork and signal. The server program is the child
program, and the parent program monitors it. When the abort or terminate
signal is captured by the parent program, the parent program re-instantiates
the server program. It is an easy but, yet, elegant approach. However, in
terms of implementation, this approach is not interoperable since it is language

dependent.

Chapter 3

Agent Failure Detection and

Recovery

We discuss the agent failure detection and recovery mechanism, or the level 2
fault-tolerant mechanism, in this chapter. Our approach maintains the exactly-
once property. However, it is block-prone. We introduce the system architec-
ture in Section 3.1. In Section 3.2, we describe the protocol which involves
the cooperations between two different kinds of agents. Different failure and
recovery scenarios are discussed in Section 3.3. It also addresses the scenar-
ios when the mechanism fails, i.e, the catastrophic failures, and we suggest
solutions to remedy these situations. Finally, we have a simplification of the
mechanism. The simplification of the mechanism reduces the complexity of

message passing and the resources consumed by the mechanism.

3.1 System Architecture

We introduce the system architecture of the mobile agents that are capable of
supporting the level 2 fault-tolerant mechanism. In order to detect the failures
of the actual agents as well as recover the failed actual agent, we design another
type of agents, namely the witness agent, to witness and monitor whether the

actual agent is alive or terminated. Due to the introduction of the witness

12

Chapter 3 Agent Failure Detection and Recovery 13

agent, we have to design a communication mechanism between both types of
agents. In our design, they are capable of sending messages to each other. We
call this type of messages the direct messages. The direct message is a peer-to-
peer message. Since a witness agent always lags behind the actual agent, the
actual agent can assume that the witness agent is at the server that the actual
agent just previously visited. Moreover, the actual agent certainly knows the
addresses of the visited servers. Therefore, the peer-to-peer message passing
mechanism can be established.

There are cases that the actual agent cannot send a direct message to a
witness agent. There can be several reasons, e.g., the witness agent is on
the way to the target server. There should be a mailboxr at each server that
keeps those unattended messages. We call this type of messages the indirect
messages. These indirect messages will be kept in the permanent storage of
the target servers.

On the other hand, every server has to log the actions performed by an
agent. The logging actions are invoked by the actual agents. The information
logged by the agent is vital for failure detection as well as recovery' . Also,
the hosting servers have to log which objects have been updated. These logs
are required when performing the rollback recovery.

Last but not the least, when a server failure happens, we have to recover
the lost agent due to the failure. However, an agent has its internal data,
which is also lost due to the failure. Moreover, if we allow the agent to start
computing from the starting point of the itinerary, the exactly-once property
will be violated. Therefore, we have to checkpoint the data of the agent as well
as rollback the computation when necessary. The servers are required to have
a permanent storage to store the checkpointed data in the server. Moreover,
the servers have to log messages in the permanent storage of the server in order

to perform rollback of executions. The overall design of the server architecture

! The importance of logging is addressed in Section 3.3

Chapter 3 Agent Failure Detection and Recovery 14

is shown in Figure 3.1.

Pl ace Pl ace
Communi cat i on
Channel
Messages Checkpoi nt Log Messages Checkpoi nt Log
Server S Server Sjq

Figure 3.1: The server design.

3.2 Protocol Design

Our protocol depends on messages passing as well as messages logging to
achieve failure detection. Assume that, currently, the actual agent is at server
S; while the witness agent is at server S;_;. Both the actual agent and the
witness agent have just arrived at S; and S;_; respectively. We label the actual
agent as o and the witness agent as w; ;.

We first discuss the behavior of the actual agent «. It plays an active role
in this protocol. After o has arrived at S;, it immediately logs a message,
10g¢ ,ive> ON the permanent storage in S;. The purpose of this message is to let
the coming witness agent, w;_; know that the actual agent, «, has successfully
arrived at this server. Next, a informs w;_; that it has arrived at S; safely by
sending a message, MSG., .ip0r 10 Wi 1-

Then, o performs the computations delegated by the owner on S;. When it
finishes the computations, it immediately checkpoints its internal data in the
permanent storage of S;. Then, it logs a message log,,,. in S;. The purpose

of this message is to let the coming witness agent know that « has completed

Chapter 3 Agent Failure Detection and Recovery 15

its computation, and it is ready to travel to the next server S;.;. In the next
step, a sends w;_; a message, msgr.,,., in order to inform w;_; that « is ready
to leave S;. At last, o leaves S; and travels to Sj;1.

The witness agent is more passive than the actual agent in this protocol. It
will not send any messages to the actual agent. Instead, it only listens to the
messages coming from the actual agent. We assume that the witness agent,
w;_1, just arrives at S;_1. Before w;_; can advance further in the network, it
waits for the messages sent from the actual agent, . When w;_; is in S;_4, it
expects receiving two messages: one is msg’,,.,. and another one is msg},,,.-
If the messages are out-of-order, msg;,,,. will be kept in the permanent storage
of S;_;. That means msg.,,,. is considered as unattended? , and becomes an
indirect message until w; | receives msg., ... When w;_; has received both
mMSg.rive a0d MSGL,,. ., it spawns a new witness agent namely w;. The reason
of spawning a new agent instead of letting w;_; migrate to S; is that originally
w;—1 is witnessing the availability of «. If a server failure happens just before
w;_1 migrates to S;, then no one can guarantee the availability of the actual
agent. More details about this problem will be discussed in Section 3.3. Note
that the new witness agent knows where to go, i.e. S;, because both msg’, ..
and msg!,,,. contain information about the location of S; where « has just
visited.

Figure 3.2 shows the flow of the protocol. The actual agent, «, just arrives
at S; and the witness agent w; ; also arrives at S; ;. First, a logs the message
log! . ive in S; [Step (1)]. Then, « sends the message msg’, to w; 1 [Step
(2)]. « then performs the computation. After « has finished all the tasks, it
checkpoints its data in S; [Step (3)]. We assume that the checkpointing action
is one of the computations of the actual agent. That is, if the checkpointing

action fails, the actual agent will abort the whole transaction. This is an

2Unattended messages means the target receiver is not in the server, e.g., the witness
agent is on the way

Chapter 3 Agent Failure Detection and Recovery 16

@)

Place - RN Place

B

1 @4

®)

Checkpoint Log Checkpoint Log

Server S ; Server S

i
(1) log message log arrive
i
(2) send message msg
arrive
(3) after computation, checkpoint the data.

(4) log message log !
leave

i
(5) send message msg leave

Figure 3.2: Steps in the witness protocol.

important step since this property guarantees that the checkpointed data will
be available if the actual agent has finished computing. Also, it is important
for the recovery of the lost actual agent. Then, « logs the message msgf,,,. in
S; [Step (4)]. Before « leaves S;, it sends the message msgl,,,. 10 wi—1 [Step
(5)]. Finally, « leaves S; and travels to S;;1. Upon receiving msgl,,,., wWi—1
spawns w;, and w; travels to S;. The procedure goes on until o reaches the last

destination in its itinerary.

3.3 Failure and Recovery Scenarios

In the previous section, we have described the basic of the level 2 fault-tolerant
mechanism while this section is extending the previous protocol. In this sec-
tion, we discuss different scenarios with the presence of faults. We describe
the actions of the witness agents in order to detect the loss of the actual and
the witness agents and recover the lost agents. We also disclose the purpose

of the direct and indirect messages as well as the log messages. Moreover, we

Chapter 3 Agent Failure Detection and Recovery 17

introduce a more kind of agents and a more type of messages.

The purpose of the logs and the messages is to guarantee the actual agent
has finished up to a certain point of the execution of the actual agent. If
a server failure occurs in between a log and a message, we can determine
when and where the actual agent fails. We assume that there will be no
hardware failures. This assumption can forbid the possibility that the log
message cannot be recorded in a the permanent storage. However, other kinds
of failures like the software faults in the mobile agents or in the mobile agent
platforms can happen. In following subsections, we will cover different kinds
of failures including the loss of the actual agents and the loss of the witness

agents. We describe several scenarios as follows.

3.3.1 When w; ; fails to receive msg’,..,.
The reasons that w; ; fails to receive msg’,. ... can be classified as follow:
1. The message is lost due to an unreliable network;
2. The message arrives after the timeout period of w; 1;
3. « is terminated when it is ready to leave S;_1;
4. « is terminated when it has just arrived at S; without logging; or

5. « is terminated when it has just arrived at S; with logging.

If the failures are because of the first two reasons, i.e., the actual agent is
not terminated, and the message logged in S;, 10g’, .., can help solving this
problem, as log’,,... is a proof for the existence of « inside S;. The witness
agent can send out a probe, p;, to search for log:,,... in S;. If the log message is
found, p; can re-transmit msg:,,.,. in order to recover the lost messages. The
probe is another agent. Its responsibility is to search for target log messages

in a specified server.

Chapter 3 Agent Failure Detection and Recovery 18

If w;_; fails to receive msg' . because of the loss of the actual agent, there
are chances that the problem of missing detection arise. In the fifth case, since
the log message log’,, .. is present, the probe would wrongly determine that
the actual agent is still alive. However, the actual agent is terminated, so the
recovery of the actual agent would be missed. Fortunately, this case can be
handled and will be discussed in the next subsection.

If the failure is caused by the third or the forth cases, the probe will not be
able to find log!,,;,. in S;- Then, we can use the checkpointed data stored in
Si_1 to recover the lost actual agent. Therefore, the probe is required to carry

along the checkpointed data when it travels to S;.

@

Place Place

Checkpoint Log Checkpoint Log

Server S ; Server S

(1) witness agent spawn a probe. The probe travels
tos

(2) probe is carrying the checkpointed data

(3) probe inspects the Log in S
i

i
(4)ifthe Login S has log arrive
then the probe re-transmit it.

(5) If not, recover the agent by using the checkpoint data

Figure 3.3: w;_; fails to receive msg’, ...

Figure 3.3 shows the execution steps of the probe p; to detect agent failures
when the witness fails to receive log!,. ;... w;_1 Waits for the message, msg’, ..e;
for a timeout period. If the timeout period is reached, it creates the probe p;.
p; then travels to S; [Step (1)]. Since it may be required to recover a lost agent,
it travels with the checkpointed data [Step (2)]. Upon arriving at S;, it searches

the permanent storage of S; for the message (0g’,.... [Step (3)]. If 10g%, ;e 18

Chapter 3 Agent Failure Detection and Recovery 19

found, it re-transmits msg’,, .. in order to recover the lost message [Step (4)].
However, missing detection may happen at this step. If the log message is
not found, p; will recover « in S; by using the checkpointed data [Step (5)].
At last, p; re-transmits the message msg’,. ... Note that we recover the lost
actual agent in S; instead of S; ; because when p; detects that a recovery is
required, we can immediately recover that actual agent in S;. If we perform
the recovery in S;_i, p; has to send a message to S;_; in order to inform w;_;
that a recovery is required. There is a risk of losing such message.

In the meanwhile, w;_; waits for another timeout period. This is essential
since the message that is re-transmitted from S; ; may be lost again. Or,
another failure may strike S;. Such a failure may terminate both the probe p;
and the newly recovered actual agent. Therefore, w;_; should wait until the
message msg’ . . arrives.

Note that it is possible that p; reaches S; while « is still on the way.
However, the occurrence probability of this case should be low. Since both «
and p; have to travel from S; ; to S; in the same network, they suffer from
more or less the same network latency. Although there may be many routes
from S;_; to S;, we can set the timeout of w;_; to be large enough to overcome

the difference of speeds among these routes.

3.3.2 When w;_; fails to receive msg!,,,,

The reasons that w; ; fails to receive msg},,,. can be classified as follow:
1. The message is lost due to an unreliable network;
2. The message arrives after the timeout period of w;_1;
3. « is terminated when it has just sent the message msg’,,;,.; Or

4. « is terminated when it has just logged the message [0g}, .-

Chapter 3 Agent Failure Detection and Recovery 20

As it is mentioned in the previous subsection, the fifth case of the previous
subsection will be investigated here. Recalling from the previous section, the
probe mis-interprets the log message log’ . in S;. The probe would believe
that the msg’, ;.. is lost in the network. However, the agent is actually lost.
This case results in missing detection and the probe will re-transmit the ex-
pected message, msg’. . . regardless of the availability of the actual agent.
Thus, we can expect that the witness agent is not able to receive msgl,,,.-
Therefore, the last case of the previous subsection can be categorized as the
third case of this subsection.

If the failure happens because of the first two reasons, it can be solved by
the similar way as the previous subsection. w;_; can send a probe, again p;, to
search for log},,,. in the log file of S;. However, we may also have the problem
of missing detection if the failures is due to the fourth case. That is, the actual
agent is terminated but we have not detected it. These two cases can be settled
as follow. When p; re-transmits msg.,,., wi—1 assumes that o has successfully
left S;. Therefore, w;_ 1 spawns w;, and, eventually, w; travels to S;. However,

i+1

wrrive ITOIM ¢ since « is already terminated and does

w; will never receive msg
not exist in S;11. Consequently, we can successfully detect the agent failure
by the third case of the previous subsection.

If the failure happens because of the third case, we can handle it by detect-
ing if log},,,. exists. Since log},,,. is absent, this implies that the actual agent
is lost while it is performing its computation. In this case, since the actual
agent is lost, the partially completed task by the actual agent should be un-
done. Therefore, it is required to rollback those operations in order to preserve
the data consistency in S;. We treat the whole computation process as a single
transaction. Since the transaction is not committed, we have to abort all the
uncommitted actions. We can use the log in S; to recover the data inside S;.

The rollback recovery is not done by the probe, p;. Instead, it is performed

during the recovery of the server. Therefore, when the probe cannot find the

Chapter 3 Agent Failure Detection and Recovery 21

log message log}.,.., it can immediately use the checkpointed data to recover
the actual agent. After the recovery is completed, the recovered actual agent

can start performing its computation in S;.

@

Place Place

mE] = E

Checkpoint Log Checkpoint Log

Server S ; Server S

(1) witness agent spawn a probe. The probe travels
tos
i

(2) probe is carrying the checkpointed data

(3) probe inspects the Log in S

i
(4)ifthe Login S has log leave
then the probe re-transmit it.

(5) If not, recover the agent by using the checkpoint data

Figure 3.4: w;_; fails to receive msgl, .

The execution steps of the probe when log! . is missing is very similar to
the steps in Figure 3.3. It is shown in Figure 3.4 Note that for both failure
scenarios, the recovery of the actual agent takes place on the server where the
actual agent is expected to be hosted, i.e., in S;. Moreover, when the actual
agent is recovered, it immediately performs the computation in 5; regardless
of the state before the failure occurs. This simplifies the implementation of

the agent failure detection mechanism.

Chapter 3 Agent Failure Detection and Recovery 22

3.3.3 Failures of the witness agents and recovery sce-

narios

Before the actual agent completes its itinerary, there are witness agents spawned
along the itinerary of the actual agent. The youngest witness agent, is witness-
ing the actual agent. On the other hand, the elder witness agents are neither
idle nor terminated; they have another important responsibility: an earlier
witness agent monitors the witness agent that is just one server closer to the

actual agent in its itinerary. That is :

Wog =Wl Wy —> - —>W; —>Q

where “—” represents the monitoring relation.

We name the above dependency the witnessing dependency. For instance, if
a isin S;. w; 1 is monitoring «, and w; o is monitoring w; 1. This dependency
cannot be broken. Assuming we have the following failure sequence: S;
crushes first and then S; crushes. Since S;_; crashes, w;_; is lost, hence no
one monitoring «. If no one recovers w;_; in S;_1, then no one can recover «
after S; has crushed. This is a disastrous scenario (Figure 3.5 illustrates this
scenario.). Therefore, we need a mechanism to monitor and recover the lost
witness agents. This is achieved by the preserving the witnessing dependency:
the recovery of w;_; can be performed by w;_s, so that « can be recovered by
Wi—1-

Note that there are other more complex scenarios, but as long as the wit-
nessing dependency is preserved, agent failure detection and recovery can al-
ways be achieved. In order to preserve the witnessing dependency, those wit-
ness agents that are not monitoring the actual agent receive periodic messages
from the witness agent that they are monitoring. That mean w; sends periodic

messages to w;_1 in order to let w;_; knows that w; is alive. We label this

Chapter 3 Agent Failure Detection and Recovery 23

message as msg.;,.- when w;_; cannot receive msg,,,. from w;, the reasons

can be classified as follow:

1. The network is congested or unreliable;
2. The system load of .S; is high; or

3. w; is dead.

No matter what the reason of the failure is, w;_; can always assume that w;
is dead. w; 1 will spawn a new witness agent, namely w;, in order to replace the
lost witness agent in S;. Since there is no special data stored in the witness
agent, only initializing the states of the new witness agent is required (see
Figure 3.6). When w; arrives at S;, it re-transmits the message msg’,,. to
w;—1. If it is a false-detection, i.e., the message is lost, but the witness agent
is still in S;, we should prohibit multiple instances of w; from executing.

Figure 3.6 summarizes the life cycle of a witness agent. When a witness
agent w; is first created, it travels to its destination S; [State (1)]. When
it reaches S;, it starts waiting for the message msg't! ~[State (2)]. If the

message comes earlier than w;, w; can find it in the mailbox at S;. After
msgitl . has been received, w; starts waiting for msg) ! [State (3)]. At last,
a leaves S;11. Then, w; spawns w;,1. Its job is then switched from monitoring
« to monitoring w;;. In the meanwhile, it continuously sends msg,, . to
w;_1 periodically [State (4)]. However, not all witness agents are starting its
life from State 1. Some witness agents start its life from State 4 as they are
responsible of recovering the lost witness agents.

When the actual agent has finished all the computations in its itinerary,
all the witness agents should be terminated. The method of terminating the
agents along the itinerary can be done by sending a sequence of terminating

message along the itinerary of the actual agent. We name that message l0germ.-

logterm Will be kept in the permanent storage of the servers. When a witness

Chapter 3 Agent Failure Detection and Recovery 24

agent finds this log message in its hosting server, it will be terminated. A
similar but detailed approach is described in [15], which deals with a different

agent application for an orphan detection problem.

3.3.4 Catastrophic failures

The witness agent protocol cannot guarantee that all failures can be detected
and recovered. First of all, the witnessing dependency cannot be always pre-
served. The weakness is at the starting node of the witness dependency, wy,
which is not monitored by any agents. Hence, when Sy fails, wy cannot be
recovered. This will shorten the witness dependency.

Secondly, if the above shortening process goes on, the whole witnessing
dependency will collapse if a series of failures completely destroy the witnessing
dependency. Though the possibility of such failure series is extremely small, if
it happens, the protocol will fail.

We provide a solution that can ease the catastrophic failures. The owner
of the actual agent can send a witness agent to the first server, Sy, in the
itinerary of the agent with a timeout mechanism in order to handle this failure
series. The effect of sending this witness agent is similar to the case when a

i+1

wive- 1his method can recover wy and the

witness agent, w;, fails to receive msg
witness dependency effectively with an appropriate timeout period. However,

the drawback is that the owner has to send out periodic agents to Sp.

3.4 Simplification

Note the witnessing dependency is useful only when several servers fail in a
short period of time. Nevertheless, this dependency uses a lot of resources
along the itinerary of the actual agent. If we can assume that no two or more
servers can fail at a short period of time, we can simplify our mechanism by

shortening the witnessing dependency. The dependency then becomes:

Chapter 3 Agent Failure Detection and Recovery 25
Wi—1 > W; = O

where “—” represents the monitoring relation.

Since no two servers can fail simultaneously, two witness agents are suffi-
cient to guarantee the availability of the actual agent. When a failure occurs
in S;, w;_1 can recover w; after the server is recovered. When a failure happens
in S;_1, we can let the dependency to be further shortened. It is because when
a travels to S;i2, a new dependency involving w;, w;y1, and a will be formed,
and the simplified protocol resumes. Finally, when w; spawns w;y1, we can
terminate w;_; by sending a terminating message from S; to S;_;. The key of
this simplification is how long is the period between two failures. We would

have a detailed analysis in section 4.4.

Chapter 3 Agent Failure Detection and Recovery

Server S, Server S Server S

(1) Failure strikes server S "
Witness dependency is broken

(2) Failure strikes server S i
Actual agent is terminated

(3) Witness agent at S .p fecovers Witness agent at S ;

2 -1

(4) Witness agentat S ., recovers the actual agent

1

Figure 3.5: Witness agent failure scenario

I+ . i+1
. msg . arrives msg arrives
arrives at S ; arrive leave
witness
agent's
state
| | |
| | |
| | | _
@ | L L >
| |
| |
,,,,,,,,,,,,,,, I
3) 1 h i+1
| | waiting for msg
| | alive
‘ ‘ and
@ | \ _
| |) L
| | sending msg
| | alive
@ / \ \
| | |
| |
| | |
/ i+1 time
i+1 waiting for msg
waiting for msg . leave
arrive

travellingto S
I

Figure 3.6: The life of a witness agent

26

Chapter 4

Fault-Tolerant Mechanism

Analysis

In this chapter, we have a mathematical analysis over the whole level 2 fault-
tolerant mechanism including the proof of the liveness of the mechanism and
the possibility of the mechanism simplification. We define notations in the
mechanism in our first section. We then define the fault-tolerant mechanism
both formally and informally in order that we can have a correct and sound
analysis over the whole mechanism or algorithm. Lastly, we will have liveness

proofs of the algorithm as well as an analysis of the mechanism simplification.

4.1 Definitions and Notations

Every actual agent bears a unique identification number 7. The witness agents
and the probes that are monitoring the liveness of the actual agent ¢ have the
same agent ID number i. The system distinguishes these 3 kinds of agents by
recognizing their types ! .

An actual agent with agent ID 7 has an itinerary list .%;. .Z; is a list of

server names Sy, ... Sp,_1, where m is the number of servers in the itinerary.

'In object-oriented programming language like JAVA, we use classes to distinguish them.

27

Chapter 4 Fault-Tolerant Mechanism Analysis 28

There are totally n servers in the system. A server S; contains a processing
unit &; and a stable storage .%#;. We define the server failure of our system.
We assume that there only exists stopping failures. Other failures such as

Byzantine failure [14] do not exist. “A server failure of S;” defines :

Z; fails to advance in the computation of agents, and the storage

#; fails to operate.

This implies that the storage .#; does not fail if the processor &7, is working.
On the other hand, when &7; fails, .#; should also fail. We further define that
when a server failure occurs in S;, all the agents inside S; will be terminated.

The time of the system is measured in rounds. Every event in the system
should last for an integer multiple of rounds. We assume that the processors
in different servers are having the same computing speed. We further assume
that the amount of computation needed for every agent at every processor is

the same. We define the time constants for different events in the system.

e We denote the time needed for an actual agent to complete computation

in server S; be e; rounds.
e The time needed for an agent to travel from S; to S; be a;; rounds.
e The time needed for a message to travel from S; to S; be m;; rounds.
e The time needed for a probe to recover an actual agent in S; be r,;.

e The time needed for a server monitor (Level 1) to inspect and recover S;

be Tsi-
where e;, aij, mMij, Taiy Ts; €N, and e, aij, M4j, Taiy Ts > 0.
We also define different variable time periods in the system.

e Denote the time for server monitor to recover a failed server be T} ccover-

Chapter 4 Fault-Tolerant Mechanism Analysis 29

e Denote the timeout of waiting for msg:,... be Torrive-
e Denote the timeout of waiting for msg},,.. be Tieave-
e Denote the timeout of waiting for msg’,;,. be Taiive-

e Denote the period of the heartbeat message, msg',.,., be Theartbeat

where Tarrivea CFlea.'uea Talz’vea Th,eartbeat S N7 and,

Ta'rri'uea leeaveu Talz’vea Theartbeat 2 0.

4.2 Assumptions

e For simplicity, we assume that the topology of the network is a complete
graph. This implies that every agent and message can travel to every

server in the system.

e We further assume that the number of rounds needed for message travel
be unique throughout all the servers, i.e., m;; = m*,Vi,j € {0,1,...,n—

1}, and m* € N.

e The same token applies on agent travel, i.e., a;; = a*,Vi,j € {0,1,...,n—

1}, and a* € N.

e The above also applies on server recovery time, ie., ry; = 75, V i €

{0,1,...,n—1} ,and rf € N.
e Moreover, ro; =75, Vi€ {0,1,...,n—1} ,and rf € N

e There is no harm to have the above assumptions since we can assume

that m*, a*, r} and r} are upper bounds of the required time.

Chapter 4 Fault-Tolerant Mechanism Analysis 30

4.3 The Algorithm

In this section, we define the level 2 fault-tolerant mechanism in details. This
includes the algorithms of the actual agent, the witness agent, as well as the
probe. We first describe the algorithms informally to let the readers to have
an brief understanding of the algorithms. Following the informal descriptions
of the algorithms, we state the formal algorithms. For generality, we introduce

the following notations:

e During the actual agent is traveling through its itinerary, we label the

actual agent that is residing or traveling to .S; be «;.

o We let the witness agent that is residing or traveling to S; be w;.

4.3.1 Informal algorithm descriptions

Actual Agent:

When an actual agent «; arrives at S;, where i € {0,...,n— 1}, it
logs the message log’,,.,. on %. On the next round, it sends out
msg.,.we 0 wi_1 in S;_1. It starts executing the required compu-
tations from the next round. After the execution has completed, it
logs log}, .. on -%. It sends another message msg;,,,. to Si—1 be-

fore leaving S;. Eventually, it migrates to S;; on the next round.

Failure Handling:

1. Before «; can migrate to S;11, o; has to check if S;; is avail-

able or not.

2. If yes, a; migrates.

Chapter 4 Fault-Tolerant Mechanism Analysis

3. If not, o; waits until S;,; is available again.

Witness Agent:

When a witness agent, w;, arrives at S;, where i € {0,...,n — 2},

i+1
arrive

i+1

it waits for the message msg arrive

for T, rive Tounds. If msg
does not arrive after 7}, rounds, a probe, p;;1, will be sent to

Sit1- w; starts waiting for another Ty, rounds.

i+1
leave

+1

arrive fl“OHl

w; starts waiting for msg after it has received msg

i+1

leave d0€S DOt arrive after

Sit1, and it waits for Tjeqpe rounds. If msg
Tleave TOUNdsS, a probe, p;;1, will be sent to S;;;. w; starts waiting

for another T}.4,. rounds.

i+1
alive

i+1

leave? from Si'i‘l’

After receiving msg w; starts waiting for msg

i+1

v live does not arrive after Tgye

and it waits for Ty;,. rounds. If msg
rounds, w;;1 will be spawned and travels to S; ;. On arrival, S;;

i+1

will start sending msg,j;,.

by pre-setting its internal state.

On the other hand, on arriving at S;, w; starts sending msg’;;,, to

w;_1 with period Theertbeat-

Failure Handling:

1. Before the newly spawned w; can migrate to S;, w; has to

check if S; is available.
2. If yes, w; migrates.

3. If not, w; waits until S; is available again.

Chapter 4 Fault-Tolerant Mechanism Analysis 32

Probe:

For each probe p;, where i € {0,...,n — 1}, depending on its in-
ternal state, it searches for either log’,.. . or logi .. after it has
arrived at S;. If the search is successful, it re-transmits msg’,. ;.
or msgl,,.. accordingly. If the search fails, it recovers ; by using

the checkpointed data from S;_;.

Failure Handling:

1. Before the newly spawned p; can migrate to S;, p; has to check

if S; is available.
2. If yes, p; migrates.

3. If not, p; waits until .S; is available again.

4.3.2 Formal algorithm descriptions

The description of every kind of processes, or agents, is divided in three parts,
namely states, msgs, and trans (style in Lynch’s book [16]). The states segment
represents the internal states, or variables, of the process. Every state has its
own domain as well as initial value. The msgs segment specifies when and
what messages that the process will send. Lastly, the trans segment describes

under what conditions that the internal states of the process will change.

Also, we adopt the previously defined timeout bounds, i.e., Ty ives Ticaves Latives
and Theartpeat, in the formal algorithm description. The following descriptions

are written in C language-like format.

Chapter 4 Fault-Tolerant Mechanism Analysis 33

Actual Agent:
states;:

execute_rounds € N, initially 0.

previous_state € {executing, send_message,

migrating}, initially send_message.

current_state € {executing, send-message, migrating},

atially migrating.
msgs;:

if previous_state is migrating and current_state is erecuting, then
send msgtiw'rive to Si—l

else if previous_state is executing and current_state is send_message,

then

send msg;,ge 10 Si—1

end if
trans;:

if current_state is send_message, then

previous_state := current_state

current_state := migrating
else if current_state s migrating, then

log the message log", ...
previous_state := current_state

current_state := executing

Chapter 4 Fault-Tolerant Mechanism Analysis 34

execute_rounds := 0

start execute jobs.
else

if execute_rounds = e;, then

log the message log},,..
previous_state := current_state

current_state := send_message
else
execute_rounds := execute_rounds + 1

end if

end if

if current_state is migrating, then

if Sit1 18 available, then
migrate to S;iq

end if

end if

Witness Agent:
states;:

watt_arrive_rounds, wait_leave_rounds, wait_alive_rounds, heartbeat_rounds
€ N, nitially all are 0

current_state € {wait_arrive, wait_leave, spawn_witness, wait_alive},
wmiatially is wait_arrive

send_heartbeat € {true, false}, initially is true

Chapter 4 Fault-Tolerant Mechanism Analysis

msgs;:

if send_heartbeat = true, then

send msg’ e 10 Si—1

send_heartbeat := false

end if
trans;:

message := get message from channel
if current_state is wait_arrive, then
if message is not null, then
current_state := wait_leave
else

if wait_arrive_rounds = Tyrrive, then
create probe p;i1
pir1 — current_state := search_arrive
send pi+1 to Sitq

wait_arrive_rounds := 0

else

watt_arrive_rounds := wait_arrive_rounds + 1

end if

end if
else if current_state is wait_leave, then

if message is not null, then
current_state := wait_alive

else

35

Chapter 4 Fault-Tolerant Mechanism Analysis

if wait_leave_rounds = Tieqpe, then
create probe p;iq
pi+1 — current_state := search_leave
send piy1 to Si1

waitt_leave_rounds := 0

else

wait_leave_rounds := wait_leave_rounds + 1
end if
end if
else if current_state is spawn_witness, then
spawn w;yq
send out wi11 to Siy1
current_state := wait_alive

else if current_state is wait_alive, then

if message is not null, then
wait_alive_rounds := 0
else

if wait_alive_rounds = Ty, then
SPaWnN Wit
wir1 — current_state := wait_alive
send out wiy1 to Siy1

wait_alive_rounds := 0

else

watt_alive_rounds := wait_alive_rounds + 1
end if

end if

Chapter 4 Fault-Tolerant Mechanism Analysis 37

end if

if heartbeat_rounds = Theartbeat, then

send_heartbeat := true

heartbeat_rounds := 0

else
heartbeat_rounds := heartbeat_rounds + 1
end if
Probe:
states;:
current_state € {search_arrive, search_leave, send_arrive, send_leave,
terminate}, initial value pre-set by w; 1
msgs;:
if current_state is send_arrive, then
send msg., ive 10 Si—1
else if current_state is send_leave, then
send msgloupe 10 Si1
end if
trans;:

if current_state is search_arrive, then

Chapter 4 Fault-Tolerant Mechanism Analysis 38

if 10g! ..o 18 Mot found, then
current_state := terminate
TeCOVEr o
a; — previous_state := migrating
a; — current_state := executing

else

current_state := send_arrive
end if

else if current_state is search_leave, then

if log!. .. 1S not found, then
current_state := terminate

TeCover o
o; — previous_state := executing

o; — current_state := ezxecuting

else

current_state := send_leave
end if

else if current_state is send_arrive or current_state is send_leave,

then

current_state := terminate

else
process termination

end if

Chapter 4 Fault-Tolerant Mechanism Analysis 39

4.4 Liveness Proof

In this section, we present the liveness proof of the proposed mechanism. We
sketch the outline of the proof first. Inside the Section 4.1, we have defined
several time constants as well as three distinct variable time measurements,
namely Tprrives Tieave, and Typipe. Our goal is to prove that the system will not
be blocked forever under certain conditions. If the system is blocked forever, at
least one of the above variable time measurements will reach infinity. Hence,
the first few steps of our proof are aimed to derive the lower and upper bounds
of those variable time measurements. Given that the itinerary of the agent is
not infinite long, if the upper bounds of all variable time measurements are

not approaching infinity, then the system should not be blocked forever.

* *
Lemma 4.1 7] < Tecover < 0T

Proof.

This lemma is the analysis of the level 1 fault-tolerant mechanism. In
the worst case, all servers are stopped, and the monitor starts inspecting and
recovering the servers from S;;;. Hence, the upper bound is n * r;. The lower

bound is trivial, i.e., r}.

S *
Ty < Threcover < 1T

Lemma 4.2 We define the lower bounds for various timeouts:
1. Tarrive 2 0

2. 71lea.'ue 2 e*

3. Talive 2 a* +m*

Chapter 4 Fault-Tolerant Mechanism Analysis

o finishes
wrecelves computation
message w arrives and sends
and leaves message
pli p2§ p3§ p4§ p5§ DGE
< : :
’ H S H H
: VL §
. § :
. NI ;
’ H B H
’ H N H
. : o
H A
: < <
. i o /
AN : o ‘
N : . ; ’
R ; , ; ,
a ~ . m ‘“m
N : 4 H ’
N - : p
A : ’
“ i
. le |
a sends o arrives | |
message and sends e*
and leaves message

Figure 4.1: Minimum Time of T},,;pe and Tjeqye

Proof.

1. Lower bound of T}, iye.

Figure 4.1 shows the time-space diagram (by Lamport [17])
of the system. Ty, e iS counting at the moment that w;_;
arrives at S;_1. When «;_; sends msgf;llve, on the next round,
it migrates to S;. When q; arrives at S;, it sends msg’,,;,. on
the next round. Hence, it takes a* +e*+2. On the other hand,
w;_1 also takes a* + €* + 2 rounds to travel from S;_o to S;_1
(p4 in Figure 4.1).

Tarrive 2 0

Chapter 4 Fault-Tolerant Mechanism Analysis 41

2. Lower bound of Tjqye.

The time between an actual agent executing its job and sending
the leave message is the time e* (between p, and pg in Figure
4.1).

5o Teave > €7

3. Lower bound of Ty;ye.

The time between the witness agent being created, spawning

. . . Z . * *
another witness agent, and receiving msg;;,. is a* + m*.
. Talive Z a* + m*

|

Lemma 4.2 is an important lemma. It states the number of rounds that
the witness agents have to wait without the presence of faults. Hence, inside
the implementation of the witness agent, we can set the timeout periods to be

those lower bounds. It is because we can assume that faults are rare events.

Definition 4.1 Let 7 be the inter-arrival time of failures of S;, Vi € (0,1,...,n—
1), and 7 € N.

Definition 4.2 Let Sy be a 1 x m vector, where

St={(fos frs- > fm-1) : fm € {0,1,...,n—1} and m € Z*+*U{0}},
and [[Sf[[= m

S defines a failure sequence with inter-arrival time 7. It implies, without loss

of generality, Sy, fails first, then, after 7 rounds, Sy, , fails.

Lemma 4.3 a*+¢e¢* < 7 < oo if the system is not blocked forever.

Chapter 4 Fault-Tolerant Mechanism Analysis 42

Proof.

It is trivial that the upper bound of 7 is 00, i.e., no failure. To prove the lower
bound of 7, we require to calculate (I) the minimum rounds for a; migrating
to Siy1, and (IT) the minimum rounds for w; to spawn w; 1. First of all, we
assume that there exists a failure sequence S% = (i,1,...) where [|S%|| = oo,

i.e., all failures happen only in S;.

(I) - S% = (4,4,...) .. there must be a moment of time that a; is waiting

for the recovery of S;, and S; is just recovered.

During «y;_; is migrating to S;, there should be no failure happens other-
wise the actual agent will be lost. The migrating of «; takes a* rounds.

Also, the execution takes e* rounds.
L T>a 4 et

(IT) Tt takes a* rounds for w; can successfully migrate from S;_; to S;.

It takes another min (T, rive) + Min(Tjeqve) rounds for w;y; can success-

fully migrate from S; to S;;1.

Tarrive 2 0 and Eeave 2 6*

T>a" +¢€*

From (I) and (II), we conclude that:

T>a" +e€*

Corollary 4.1 It is impossible for o to complete its itinerary if 7 < a* 4 e*.

Proof.

This corollary follows from Lemma 4.3. |

Chapter 4 Fault-Tolerant Mechanism Analysis 43

Assertion 4.1 r; <e*

Assertion 4.1 guarantees that the time of the agent recovery should be
shorter than the agent execution time The time needed to have an agent re-
covered is the migrating time for the probe plus the agent recovery time, i.e.,
a* 4+ ;. We do not desire to have an incomplete recovery. Hence, a* + 7, < 7
must hold. If 7} = e*, there is a chance of an incomplete recovery by Lemma
4.3. Therefore, it would be nice to have r} < e*. It is also a reasonable asser-
tion because the agent recovery should not be as time consuming as the agent

execution.

Lemma 4.4

0 S Tarrive S ’I'LT: + a* + TZ

Proof.

We use induction to proof the upper bound of T, iye-

Let Tmaz) be the upper bound of Ty, Where, ||Sf|| = k.

arrive(k

o If £ =0, from Lemma 4.2, it is trivial that T327%,) = 0.

o If k=1,
Suppose that a failure strikes .S; at the round that w;_; arrives at S;_1.
At the same round, the timer of 7,,,;,. will start counting.
. Torrive > 0, we choose the time that w;_; should wait be 0.

. A failure happens at S;, T, rive, Will be reached momentarily.

However, w;_1 is not required to wait for T,..oper Tounds. Instead, it
should be T}¢coner —m* rounds. Hence, T) will the sum of T} .coper —

arrive(l

m*, the agent traveling time, the agent recovery time, and the message

Chapter 4 Fault-Tolerant Mechanism Analysis 44

traveling time.

Tmaac = (Trecover - m*) + CL* + T': + m*

arrive(1)

* *
= Trecover +a + Ta

o If k=K,

(I) Let the failure sequence be §% = (4,1, .. .,i) where ||S%|| = £'.
After the first failure is recovered, the time when the next failure
happen is 7. However, the time when the p; reaches S; and recovers
o isa* + 7.

.. If the second and further failures can affect the upper bound of
Tgﬁfﬁ,e(k,) =>7<a" +r;.

cat+ef* <7 = e <r; = Contradiction with Assertion 4.1.

. We can conclude that only the first failure can affect T7TI5, .

. O< max

arrive(k’)

IN

* *
T'recover + a + Ta

< nr*+a*+r,

(II) Let the failure sequence be S’ where S’ # S'.

Other failures not happening in S; cannot affect Ty;pjpe Of w; 1. It is
because if the failure happens on S;_1, i.e., w;_1 will be terminated,
Torrive counting of w; 1 will be discarded. The only way that can

extend Ty, ,ive 1S the failures that terminate ;.

.. Only consecutive failures happening on S; can affect T}, of

Wi—1-

Chapter 4 Fault-Tolerant Mechanism Analysis 45

Lemma 4.5
" < Tieave < k(nri+a*+7r))+ (k—1)e" +2m’
where £ is the number of failures, £ € N, and a* +e* <7 < a*+e* + 71

Proof.

We also use induction to proof the upper bound of Tjcue.

leave

Let Tmex) be the upper bound of Tj.q. Where, |[Sy|| = k.

e If £ = 0, from Lemma 4.2, it is trivial that 7}?&%(0) = e*.

o If k=1,

Suppose that a failure strikes S; after «; sends out msg,,.,. and before
«; sends out msgl.,,..- We have 2 cases here, either the computation has
finished or it has not finished. Since we only have 1 failure, we can treat
these 2 cases as 1. Since we are estimating the upper bound, we assume
that the failure happens when the computation is about to be finished,

i.e., at least 1 round is remaining.

"~ At the moment that S; crushes, w;_; is waiting for msg,,,. for e* —

m* — 1 rounds.
. S; is recovered after Tpecoper — (€* — m*) — 1 from the view point of
Wi—1-
" Tlg%)afa(l) = Trecover - (e* - m*) —1+a" + 7‘; +e+m*
= Trecover + a” + 7'2 + 2m* —1

< nry+a +r,+2m*

o Ifk =k,

Chapter 4 Fault-Tolerant Mechanism Analysis 46

(I) Let the failure sequence be S = (4,1, ..., 1) where |[S[| = £'.

After the first failure is recovered, the time when the next failure
happen is 7. The time when p; reaches S;, recovers «;, and the

recovered «; sends msgl,,.. is a* + 1’ + e*.
. If the second and further failures can affect T35, 1),

= 7 < a"+7r;+e" must hold.

cattet <7t <a*+r;+e* o1y >0, which is always true.

.. We can conclude that the failure sequence S, if
a* +e" < 17 < a4+, + e, the failure sequence S’f will always

prohibit the computation from advancing.

ﬂreriz%i(k') = Trecover - (6* - m*) -1+ (a* + r; +e* — 1)
+(Trecover +a* + T'Z +e* —]_) + . 4+mt
= kl(Trecover +a* + T'Z +e* — 1) +2m* — e*

< K(nri+a +7r2)+ (K —1)e" +2m*

(IT) Using similar argument in Lemma 4.4, if we have a different failure
sequence, the estimation of the upper bound of T}, is still the

same.

Lemma 4.6

a* +m* _ nr; + 2a* + 2m*
mazx < Tative < min
Theartbeat nr;‘ + a* + e

Proof.

Let Toe i) be the upper bound of Ty, Where, |[Sy|| = k.

alive

Chapter 4 Fault-Tolerant Mechanism Analysis 47

o If k£ = 0, from Lemma 4.2, TG0) = a* + m”.
However, msg’,.. . is a series of periodic messages. The time between two

successive messages iS Theartpear- HeNce,

max

. * *
alive(0) = mln(a +m ; Theartbeat)

o If k=1,
In order to calculate the T77C), we have to choose the moment of failure

i+1

wiive T the longest duration.

which prohibit w; from receiving msg

.". The right moment should be just before the message is sent.

(:;lilql;ﬁ(l) = a* + m* -1 + Treco'uer + a* + m*
= Trecover +2a" +2m" -1

< nry, +2a" +2m* (4.1)
o Ifk=F,

(I) Let the failure sequence be S = (i + 1,4+ 1,...,7 + 1) where
S5l = &'.

If the second failure can affect T ;.\, then 7 < a*
cat+ef <1t<a* .e* <0. Hence, the result is a contradiction.
.. The second failure will not affect the upper bound of the timeout.

i+1

" live 18 periodic, further failures might affect 77797

However, msg alive (k)"

.. How the failures affect the timeout bound depends on Tjeqripeat-

If the next failure can affect Taive ry> then 7 < a* + Theartbeat

. Theartvear > € 1n order to have a longer Tm‘;ﬁ(k,). (*)

Chapter 4 Fault-Tolerant Mechanism Analysis

48

Py P, ps Py
: i Timeout
i i reset
A
: o
: ,
H ,
%) ' m 4 m
Y !
i !
<
]fzecovers w arrives Failure Recovery
rqm 1st occurs occurs
failure

Figure 4.2: Theartbeat > €*

- If Th,ea'rtbeat > 6*,

Figure 4.2 shows corresponding time-space diagram.

i+1

In this

case, no msg,;,,. Will be sent since another failure happens be-

i+1

alive 1S sent.

fore msyg

- g gy 18 the time between p, and py plus a* +m”.

. maxT _ * * * *
< Lalive(ky = Trecover + (6" —m™) +a” +m
= Trecover +a*+¢€”

< nry+a+e€

- If Theartbeat S 6*,

(4.2)

Figure 4.3 shows the time-space diagram of this scenario. At ps,

maxs) is determined. At p3, a failure happens. But, msg

alive(1

i+1
alive

can be sent before the failure happens. Hence, the timeout of

w; will be reset at p,.

i+1

Chapter 4 Fault-Tolerant Mechanism Analysis 49

Py P, Ps Py P
: i Timeout : ! Timeout
i i reset P reset
— ,
: ,
i s
§ mi
) i m :
<
?g;ml/gtr s w arrives Failure Recovery
: oceurs occurs
failure

Figure 4.3: Theartveat < €*

Tﬁ%ﬁ(k,) is the time between p, and ps plus a* + m*.

. max _ * * *
- - Lalive(k') — Trecover - (6 - Theartbeut) +a +m

< nry4+a"+m* (4.3)
From (4.1), (4.2), and (4.3),

) nr; + 2a* + 2m*
Thative < muin
nr; +a* + e

We assert that the logic argument (*) is correct. Therefore, we have

nry+a*+e < nr;+a +m’

= e < m

(IT) Other failures not happening in S;;; can only affect Ty time of
witness agents other than w;. It can only also affect 7,y and

Tieave if the failures have terminated c.

i+1

Chapter 4 Fault-Tolerant Mechanism Analysis 50

.. Only consecutive failures happening on S;;; can affect Tp;,. of

w;, and it is handled in previous cases.

Corollary 4.2

0< Theartbeat S 6*

Proof.
This result follows from the proof of Lemma 4.6.

Choosing Theartpeat < €* can mask one failure, and have a shorter T;,..

|
Corollary 4.3
maz(a® +m*, €) < Tuywe < nri+2a*+2m*
Proof.
This result follows from Corollary 4.2 and Lemma 4.6.
|

After defining and proving several assertions, definitions, and lemmas, we

have enough knowledge to prove the liveness of the system.

Theorem 4.1 The system is blocked iff Sy = (¢,4,...) and a* +¢e* <7 <

a* +e* +r;, where ||Sf|| =00, and ¢ € (0,1,...,n —1).

Proof.

“=" We are making use of Lemma 4.5 and its proof.
".» The system is blocked ... One of the timeouts must — oo.

From Lemma 4.1, 4.4, 4.5 and 4.6, only the upper bound of Tjcey. is

proportionally increasing with the number of failures.

Chapter 4 Fault-Tolerant Mechanism Analysis 51

From the proof of Lemma 4.5, all the consecutive failures must be hap-

pening on the same server with maximum inter-arrival time a* +e* +1r}.

Moreover, as Tjeqpe —> 00, kK — 00.
SoSp=(4,7,...) anda" + e <7 <a " +e +71
where ||Sf|| = 00, and ¢ € (0,1,...,n —1).

“<" We are making use of Lemma 4.5 again.
From Lemma 4.5, £ — 00 = Tjeqpe — 00.

" Tleave — 00 = «; never finishes computation in S; as infinite failures

are happening on S;.

.. The system is blocked.

|
Theorem 4.1 states that the system can still be blocked conditioning on
the inter-arrival time of failures of a server. We can estimate the probability

that the conditions will happen as follow.

Definition 4.3 Let N;(t) be a counting process such that, at time ¢, there
are NN;(t) failures happened in S;. Let Tj;) denote the elapsed time between
the (k — 1)*" and the k" failure at S;. We let the failure inter-arrival time

distribution be an exponential distribution. Hence,

1—e M ift>a"+e*
P{Tk(z) >t | Tk—l(i) = S} =

0 otherwise
where); is the mean.
Definition 4.3 states that the server failure inter-arrival distribution is a

conditional exponential distribution (see Figure 4.4). If the time is less than

a* + e*, the probability is zero. Otherwise, the probability distribution is

Chapter 4 Fault-Tolerant Mechanism Analysis 52

Server Failure Inter-arrival Distribution

08 [

06

Probability

04T

02r

ar+e*)
Time

Figure 4.4: Server Failure Inter-arrival Distribution.

exponential. This follows from Lemma 4.3 since Lemma 4.3 states that 7 >

a* + e* in order that the system will not be block forever. Hence,

Pla*+e <1t<a" +e +r)} = P{Tys>a" +e" +r, | Timip) = s}
— P{Tyu) > a" + € | T14) = s}

— e—)\i(a*—i—e*)(l _ e—)\ir;)

4.5 Simplification Analysis

In this section, we analyze the conditions for the successful deployment of
the simplification of the level 2 fault detection and recovery mechanism. In
Section 3.4, we have discussed logically that if the inter-arrival time between
two failures is long enough, two witness agents are sufficient to monitor the
actual agent. We want to analyze the lower bound of the failure inter-arrival
time. This failure inter-arrival time is not 7 in Definition 4.1. 7 is the failure
inter-arrival time of one server. We are now interested in the failure inter-

arrival time throughout the system. Figure 4.5 shows what the system failure

Chapter 4 Fault-Tolerant Mechanism Analysis 53

arrival is. It is the sum of the arrivals of each server in the system. The
total arrivals (bottom axis in Figure 4.5) shows the same pattern as the failure
sequence Sy defined in Definition 4.2, i.e., Sy = (i—1, 4, 1 —1, i+1, i—1, i+
1, 4, i—1).

t ¢ f ¢ s,

Figure 4.5: The system failure arrivals.

Definition 4.4 Define .7 be the inter-arrival time of the failures throughout
the system, .7 € N

Definition 4.4 defines the failure inter-arrival time of the system. The
system failure arrival composes of the failure arrivals of every server in the
system. Hence, .7 > 0 should hold because there are chances that 2 servers
failures at the same time. Also, it is obvious that .7 < oo since there can be
no failures in the system. We analyze the lower bound of .7 in the following

lemma.

Chapter 4 Fault-Tolerant Mechanism Analysis 54

Lemma 4.7 If two witness agents are sufficient to maintain the liveness of

the system, then

a* +e*,
T >mazr | 2a* 4+ m*,

* *
Trecover + a + m

Proof.

This Lemma is the analysis of the simplification of Level 2 fault-tolerant mech-

anism (see Section 3.4).

Since 2 witness agents are sufficient, the required witness agents should be,

without loss of generality, w;_5 and w;_1 with «; in S; (see Figure 4.6).

Figure 4.6: System configuration with 2 witness agents only.

We first analyze the case that w;_; is terminated (part (a)). Since the middle
witness agent is lost, the race between the recovery of w;_; and the termination
of w;_o arises. If the termination is faster, then, without any witness agents,
the system is in a dangerous state. We will calculate when the failure should

happen in order that two witness agents are sufficient.

Then, we analyze the case that the last agent is terminated (part(b)). Since
the remaining witness agent may be terminated soon, we will analyze when

the next failure should come.

Chapter 4 Fault-Tolerant Mechanism Analysis 55

Finally, we analyze the case that «; is terminated (part (c)). It becomes

the races between the recovery of «; and the termination of w;_;. If w;_ is

terminated, w; o becomes the only surviving witness agent and it takes the

responsibility of recovery w;_i.

(a) Let S;l) =(@—1,i—2,4, 1—1,...), where ||SS})|| = 0.

The failure sequence Sscl) will first disable w;_1, then w;_o. If .7 is small

enough, «; will also be terminated.

According to Figure 4.7, at p;, o; finishes its computation, and then it

sends leave message to w; 1. At po, a failure strikes S; ;. It depends

on whether both the terminating message and spawned w; have been

transmitted or not.

(D

(IT)

If both the terminating message and spawned w; are transmitted
successfully, then there will be only w; and «;4; left in the system

because the terminating message from w;_; will terminate w;_».

According to Sscl), the next failure will happen in S; at time p;.
Hence, 7 > a* + e* must hold in order that w; can have enough
time to spawn and send w;;; to S;j;1. Otherwise, there will be no

witness agents left in the system. Therefore, we have
T >a" +e€ (4.4)

If both the terminating message and spawned w; are terminated by
failure, w;_o will still survive. We assume that msgfll_iie is sent at
time one round before the failure happened on S;_; (one round be-

fore p, in Figure 4.8). Hence, w; o has to wait for maz(Trecover —

Chapter 4 Fault-Tolerant Mechanism Analysis

Failure happenson S i1 a*+e*

o6

Another failure happens on Si

I
Py P DO

H H ,‘
iterminate: ,
imessage

: . :
: ;o :
H ’ H H
P : :
P : :
X ; ; S.
RANN : : -1
PR : :
~ H H
’ S :
i + H
, P
, H ~
m : N :
’ H H H .
, H N i warrives
p ; : N
H H A
: : < e S.
. : : sl . N
~ H H ~
N H H ’ ’ N
N : I ’ W A
N H HE ’
[of ~ : E/ ’
N H o m m
. : i p
N A ,
~ E, 7
“

ex

Figure 4.7: w; and terminating message are sent before failure happens.

Chapter 4 Fault-Tolerant Mechanism Analysis 57

Failure happenson S i1

N\

Another failure happenson S i

/

P, i p 2i Ps i P, i
— < = :
ialive i N i-2
imessage , : Tl
; . ; .
5 ‘ 5 W o
H ’ H N
H ’ : N
Py Recovery : “
e completes
B i H
/e o
o ; . ;
‘ ; : Recovery time
’ H H
’ H
’ H
‘ ;
H 4 q S.
N : ; ; i
N ’ ’
S H . .
. oy ,
. - ,
a iy f'm -
N “ ’
N s .
~ ’ ’
RV
S.
. - i+1
.a
e* N

Figure 4.8: Failure happens before w; and terminating message are sent.

Chapter 4 Fault-Tolerant Mechanism Analysis 58

m*, min(Tyive)) rounds before w; o recovers w;_.
We let S;Q) =(@—-1,9—2,1—1,...), where ||S§f2)H = oco. Together
with Corollary 4.3,

T > max(Trecover —mM*, a* +m*, €¥) (4.5)

must hold in order that w; can survive.

Furthermore, the next failure may terminate w;_; again. Hence,

5o T > a" +min(Tywe) = 7 > a* + maz(a* +m*, e*) (4.6)

Failure happenson S, Anothe}?ﬂe happenson S, |
Py | P, Py P, |
<~ : i-2
® |
m
X
: K i-1
a “m
s
‘e > I
e*

Figure 4.9: Failure happens when only the closet witness agent remains.

(b) Let S = (i — 2, —1,4,...), where ||S]| = cc.

Chapter 4 Fault-Tolerant Mechanism Analysis 59

(c)

From Figure 4.9, the required time between the first two failures should

be the difference between py and ps. Hence,
T >e +a" —m' (4.7)

Let S&f’) = (i,i—1,1—2,...), where ||S§c3)H = o0.

Failure on S; may terminate «;. The next failure arrival time should be

after w;_; sending out p;. Otherwise, the recovery would be missed.

.. In this case, the first failure can happen before (i) msg’,,;,., or (ii)

) .
MSY)pave 18 SENL.
= (i) T > Turrive — a* —m* — 1%, or (ii) T > Tieape — a* — m* — 17

:> 9 > TT’@CO’UE'I‘ - m*7 or y > TT’@COU@T + m*

.- We have to choose a larger time to guarantee that the recovery can

proceed.

" y > Trecover + m* (48)

On the other hand, the second failure disables w;_;. w;_o will be respon-

sible to recover w;_1.
In this scenario, w; o has to recover w; 1 in order to recover «; eventually.
The lower bound of .7 will be: .7 > Tyipe — a* — m*

:> g > T’recover + a* + m*

5o T > Threcover +m* must hold in order that a witness agent can recover

an actual agent.

On the other hand, 7 > Trecover + a* + m* must hold in order that a

witness agent can recover another witness agent.

2o T > Treooper + 0" +m”* (4.9)

Chapter 4 Fault-Tolerant Mechanism Analysis 60

.. We conclude the maximum value of the minimum bound by equations (4.4)

to (4.9)

(a* + e, \

max(Trecover - m*a a* + m*a 6*),
* * _ *

T > man a”+e mr,

a* + mazx(a* +m*, e¥),

TT@COU@T + m*ﬁ

K TTGCOUCT' + a* + m*)

/ a* + e, \

*
Trecover -—m,

a* +m*,

= max e*

)
2a* + m*,

*
TT'GCOUGT' + m ’

\ TTCCO’UET + a/* + m* /

/a*+e*, \

= max 2a* + m*,

\ Trecove'r + a/* + m*)

Chapter 5

Link Failure Analysis

In this chapter, we discuss the issues of link failure. In the first section, we
define what link failure is. Moreover, we address the problems raised from
link failures. We propose partial solutions to remedy the problems of link
failure in the next section. It is an extension of the level 2 fault-tolerant
mechanism. We discuss how the proposed solutions can cooperate with the
level 2 fault-tolerant mechanism. We name the modified mechanism the level

3 fault-tolerant mechanism.

5.1 Problems of Link Failure

When a link failure happens, say the link between the servers S; and S; is
broken, there will not be messages nor agents that can travel from S; to Sj,
and vice versa. We cannot nor recover a link failure, but we can detect it. In
order to tackle this problem, first, we have to assume that the link failure will
be recovered eventually. In other words, the link failure lasts for an arbitrary
length of time, but not forever. Otherwise, the agent will never reach the
target server nor return to the destination (or the home server).

In our model, although there can be many routes going from one server to
another, we abstract the routes into a single link. A link failure represents the

un-availability of a link between two servers, say S, and S, (we name such an

61

Chapter 5 Link Failure Analysis 62

edge (Sy,Sy))- That implies all the routes between S, and S, are disabled.
Therefore, if an agent at server S, wants to travel to S,, it will stop advancing
to S, and waits at S, until the link is enabled again. Fortunately, a link failure
does not mean that S, is not reachable. There can be other paths from S, to
Sy.

Network partitioning is a disastrous consequence of link failures. Inside a
network graph, there are edges called cut edges. The failures of those edges
will separate the graph into disconnected partitions. This implies there are
chances that the agent will be trapped inside one of these partitions. If all
the unvisited servers, the destination and the agent are on the same partition,
the agent can still complete its itinerary. However, if the destination or some
unvisited servers are in different partitions, it is impossible for the agent to
reach the remaining servers on its itinerary until the failure of cut edges is

recovered.

5.2 Solution

In this section, we discuss some partial solutions to ease the problems of link
failure. In a mobile agent system, every agent has its itinerary which is pre-
assigned in the home server. Suppose the agent is in S, and its next server
is S,. When the edge (S,,S,) fails, this leads three scenarios. The three
scenarios depend on the position of the actual agent when the failure happens.
The three different scenarios result in different consequences based on the level

2 fault-tolerant mechanism.

1. Link failure occurs before the agent starts traveling to Sy;

Consequence: the agent cannot proceed so it it waits in S, until the edge

(Su, Sy) recovers.

2. Link failure occurs while the agent is on the way to S,;

Chapter 5 Link Failure Analysis 63

Consequence: the agent is lost (or only parts of the agent can arrive at
Sy. Instead of treating the partial agent as a valid one, we treat the
agent is lost in the network). A proper recovery of the agent should take

place.

3. Link failure occurs after the agent has arrived at v.

Consequence: we assume that we are imposing the level 2 fault-tolerant
mechanism. The messages sending between S, and S, will not be able to
reach their destinations deal to the link failure. Hence, the level 2 fault-
tolerant mechanism will fail. However, the actual agent is still available.
There may be chances that the actual agent can successfully reach the

destination without the witness agents.

We discuss the mechanisms for tackling these three scenarios in the following

subsections.

Scenario 1 - before the agent travels to 5,

In this case, the agent stops advancing and is caught in S,. Instead of waiting
for the recovery, it can travel to another unvisited server, say S, in its itinerary
list. The decision on whether traveling to S, or waiting for the link recovery
in S, is based on the number of trials in detecting the availability of the target
Sy. If the number of trials is beyond a pre-defined threshold, the agent gives
up traveling to S, and will instead travel to S,». The determination of the
threshold is application dependent.

If the edge (Sy, Sy) is not a cut-edge, the actual agent can eventually travel
to S, without the recovery of (S,,S,) by the above mechanism. However, the
actual agent may need to know the topology or routing information of the
network in order to make an appropriate choice of S,,. If the information is
available, the process of choosing v’ can be more efficient, and an alternative

route can be determined for the actual agent migrates to v eventually. Figure

Chapter 5 Link Failure Analysis 64

5.1 illustrates this approach. Unfortunately, the routing information of the
whole network is usually not easy to be retrieved. More importantly, the
routing information may change after the agent has gathered it. Nevertheless,
if there is no unvisited servers in the same partition, the agent can only wait

for the recovery of the cut edge.

/

edge is failed Key:

C - current position of the agent
N - next destination of the agent
U - unvisited server

V - visited server

Figure 5.1: Choosing a suitable S, is important.

Scenario 2 - when the agent is traveling to 5,

When the link failure happens as the agent is traveling, the agent is assumed
to be lost. Since the actual agent fails to migrate to S,, there will be no
MSGorrive S€Nding towards the witness agent in S, i.e. w,. Eventually, after
the link is recovered, the actual agent will be recovered in S,. In this scenario,
one possible design is to allow the witness agent to recover the actual agent
in another server, say S,,. Such an option can increase the efficiency of the

protocol. However, as the witness agent cannot guarantee whether the actual

Chapter 5 Link Failure Analysis 65

agent has survived in the link failure or not, the witness agent cannot and
should not make the decision to recover the execution of the actual agent at

another server. It must wait for the link recovery.

Scenario 3 - after the agent has traveled to 9,

In this scenario, the level 2 fault-tolerant mechanism still works, but it may
become less efficient. When the actual agent is in S, two messages, which are
MSGorrive 30d Mmsgp, ... Will be sent towards u. However, since the link is broken,
the messages cannot reach S,. Instead of waiting for the successful message
transmissions, the actual agent keeps on advancing. When the actual agent
resides in a server, it leaves indirect messages there for the witness agents
(because there is no witness agents receiving those messages). The actual
agent stops traveling until it either reaches the destination or is terminated by

a server failure.

cutedge u @ I

/ Key:

cut edge is failed
W - position of the witness agent

T - server with terminating message
V - visited server

D - destination

Figure 5.2: Terminating message waits for link recovery

Chapter 5 Link Failure Analysis 66

On the other hand, w, keeps on trying to send probes to S,. When it suc-
ceeds as the link is recovered, the probe will re-transmit the expected messages

by using the log messages in S,. Then, the process goes on until:

1. the probe finds that the actual agent is lost at one of the servers.

2. the witness agent reaches the destination.

In the first case, since the actual agent has left indirect messages along its
itinerary, the witness agents can use these messages to catch up until it reaches
the server where the actual agent is terminated. Eventually, the probe starts
the recovery process. In the second case, it may be inefficient if the witness
agents are not terminated until they reach the last server of the itinerary. It
would be more efficient if we send terminating signal through the itinerary
of the actual agent when the actual agent reaches the destination. The ter-
minating signal is just another log message, denoted as it [0giern,- When a
witness agent finds the logy..,, message inside a server, it will be terminated.
Although the link failure will also block the terminating message, when the
link is recovered, the witness agent will be terminated within one hop since
the next server already records the loge,, message. Figure 5.2 illustrates the

above scenario.

Chapter 6

Reliability Evaluation

The reliability evaluation of our protocol is conducted by Stochastic Petri Net
simulation [18, 19] using SPNP [20] as well as agent code implementation by
using Concordia [4]. Reliability in this thesis is measured by the success rate

of actual agents in completing their scheduled round-trip travels.

Figure 6.1: The Round-Trip-Travel Experiment

Our experiment aims at counting the number of successful round-trip trav-
els in a network of agent servers. We introduce a server called home, i.e., the
machine of the agent owner. The home server is responsible for transmitting

agents when the agents start traveling as well as for receiving agents when

67

Chapter 6 Reliability Evaluation 68

they finish traveling on the network. We carry out the experiment by using
different itineraries with various lengths. We assume that the home server is
error-free while the other servers are error-prone. We inject failures into every
server. In each server, we create a daemon running together with the agent
server (or the agent platform). The daemon will randomly kill the process of
the agent server. We have another daemon that monitors all the servers. We
name it the server monitor. When it discovers that an agent server is dead, it

restarts the agent server process within a specified time.

6.1 Server Failure Detection Analysis

Server monitor

— — = > guardarc

— > input/output arc

— inhibitor arc

Agent Itinerary

Figure 6.2: A server model with server failure detection

Figure 6.2 shows the Stochastic Petri Net that models the server failure
detection mechanism for one server. The shaded part on the left describes

the states of an agent inside a server. The transitions on that part are mainly

Chapter 6 Reliability Evaluation 69

timed transitions. They model the time spent on traveling between two servers
and the time required for the computation of an agent. The shaded region on
the right is the server monitor. It also contains timed transitions. These
transitions model the time spent on detecting the availability of a server and
the time required to perform a recovery. The non-shaded place in the middle
states the availability of the server. When there is a token inside that place,
the server is available. However, if there is no token inside that place, the
server fails, and all agents inside the server are lost. Figure 6.2 only shows the
model of one server. We can put several servers together to form a chain. That
chain represents the itinerary of the agent. Our experiment is carried out by
connecting different numbers of these modules to represent different numbers

of servers in the agent itinerary.

Level 0 and Level 1 Mechanisms Analysis

100

80 [

60

40

Successful Percentage

21

L
0 5 10 15 20
Number of Servers

Level 0 (Concordia) —>X&—
Level 1 (Concordia) - +

Level 0 (Simulation) — -
Level 1 (Simulation) —[—

Figure 6.3: Evaluation result of server failure detection (Level 1 over Level 0)

The results of using both the Concordia implementation and the SPNP

Chapter 6 Reliability Evaluation 70

Reliability Improvement of Level 1 Mechanism over Level 0

Reliability Improved (%)
iy a (2] ~ o]
o o o o o
o o o o o

w
(=]
o

N
o
o

100

L L
0 5 10 15 20
Number of Servers

Figure 6.4: Reliability improvement with server failure detection

simulation are shown in Figure 6.3. The experiment compares two levels of
fault-tolerance. One type represents the level 0 fault-tolerant mechanism im-
plementation while another type represents level 1 implementation. This ex-
periment illustrates how much the reliability is improved by the server detec-
tion and recovery mechanism with a given server failure rate. The result shows
that the successful percentage of an agent with level 1 implementation drops
much slower than the system with level 0 implementation. With the mea-
surement of 20 servers in the agent itinerary, the successful rate of the agents
with level 1 implementation falls between 55 and 60 percents. The successful
percentage of the level 0 implementation, on the other hand, falls below 10
percent for both simulation experiment and Concordia implementation. Fig-
ure 6.4 shows the overall improvement of the level 1 implementation versus
the level 0 implementation. The increasing slope implies that the advantage
of level 1 implementation becomes more significant as the number of servers

increases.

Chapter 6 Reliability Evaluation 71

The result measured by using simulation shows a monotonic increasing re-
lation between the successful rate and the number of servers. As the number
of servers increases, the number of successful round-trip-travels decreases pro-
gressively. It is a reasonable observation since the chance of waiting for the
recovery of a failed server increases, the probability of the agent loss while it

is waiting will also increase.

6.2 Agent Failure Detection Analysis

We perform the same experiment for the evaluation of the agent failure detec-
tion and recovery. In the previous subsection, we can observe that with the
server failure detection and recovery, the system still suffers from the loss of
agents. Therefore, the goal of the agent failure detection and recovery mech-
anism is to increase the percentage of successful round-trip travels by level 2
mechanism.

Figure 6.5 shows the Stochastic Petri Net that models both the server fail-
ure detection and recovery as well as the agent failure detection and recovery
mechanisms. The two shaded modules on the right are similar to the structure
of the server failure detection and recovery model (Figure 6.2). The modules
on the left represent the additional structures that are required for the agent
failure detection. We can observe from the model that the number of compo-
nents required for the agent failure detection is much more than that for the
server failure detection alone. This implies that the agent failure detection is
more expensive and complex.

Our experiment is carried out by simulation with up to 20 servers, which
is shown in Figure 6.6. The result indicates that the successful percentage of
a round-trip travel in the level 2 fault-tolerant mechanism is further improved
with respect to that with only the level 1 fault-tolerant implementation. The

level 2 fault-tolerant mechanism can always recover failed agents, i.e., we have

72

Chapter 6 Reliability Evaluation

lojiuow IaAIss

I-suopgol

snjels jusbe ssaulm

jone
1uabe
-/ SSaUIM

Kresauny Juaby

AT puas

Buissed abessap

10n

A server model with agent failure detecti

Figure 6.5

Chapter 6 Reliability Evaluation 73

a 100 percent recovery. Figure 6.7 depicts the reliability improvement of the
level 2 fault-tolerant mechanism over the level 1 fault-tolerant mechanism.
The result shows that the reliability is further enhanced. It reaches about
80 percent with an itinerary of 20 servers. However, one side effect is that
whenever we have recovered an agent, the new agent may encounter another
failure. This generates extra agents. Figure 6.8 shows the results of the number
of extra agents (in percentage) per successful round-trip travel against the
number of servers. It indicates that as the itinerary becomes longer, more extra
agents will be required. This shows that more resources will be consumed and

consequently the complexity of the system is increased.

Level 1 and Level 2 Mechanisms Simulation Analysis

T T e e e e i S S S e e e S R

80

60

Successful Percentage

40

21

L
0 5 10 15 20
Number of Servers

Level 1 Simulation —>X<—
Level 2 Simulation - +

Figure 6.6: Level 1 and Level 2 simulation result.

Note that level 3 fault-tolerant involves link failures for more complicated
scenarios, which is not included in our experiment for this thesis. This requires

efforts in future research.

Chapter 6 Reliability Evaluation 74

Reliability Improvement of Level 2 Mechanism over Level 1 Mechanism
100 T T T

80 T

60

40

Reliability Improved (%)

201

0 L L L
0 5 10 15 20

Number of Servers

Figure 6.7: Reliability improvement with agent failure detection and recovery

Extra Agents Required

140

100

80

Extra agent (%)

60

40

o L L L L
0 2 4 6 8 10

Number of Servers

Figure 6.8: Extra agent per successful round-trip travel.

Conclusion and Future Work

In this thesis, we categorize the fault-tolerance of mobile agent systems into
four levels. We also analyze different failure scenarios that may happen in the
mobile agent systems. Moreover, we design a progressive fault-tolerant scheme
that can detect the server, the agent, and the link failures. We further discribe
the mechanism, which uses a global daemon, communication messages, and
checkpointing techniques, that enables us to detect and recover these failures
by employing cooperative witness agents. We provide mathematical analysis
of the mechanism. The analysis has shown a impossibility result of the liveness
of the system. It shows that the liveness of the mechanism conditioning on the
server failure arrival rate. The analysis also provides proves on the possibility
of simplification of the mechanism. We conduct reliability evaluation of the
proposed mechanism for server failures and agent failures. The result shows
that, under the condition for up to 25 servers, with the server failure detection
only (level 1), we achieve a significant improvement of the successful rate of
the agent round-trip travels by two hundred percents. In addition to the server
failure detection, we further improve the reliability by using the agent failure
detection (level 2) by two hundred and seventy-five percent over server failure
detection. However, the cost becomes higher when we want to achieve a higher
level of fault-tolerance. Quantitative results for trade-off study between agent
resources and reliability of the proposed scheme are provided in this thesis.
In the future, we can model and perform more complex experiments on

the level 3 fault-tolerant mechanism. Also, we can perform a more detailed

75

analysis of the mechanism such as the probability distribution of the system
failure inter-arrival time. Note the fault detection and recovery mechanism
can only tackle the stopping failure. We can further extend the mechanism to

handle the Byzantine failure.

76

Bibliography

1]

2]

3]

[4]

[5]
[6]

A. H. Chan, T. Wong, C. K. Wong, and M. R. Lyu, “Design, implementa-
tion and experimentation on mobile agent security for electronic commerce

)

applications,” in Proceedings of the International Conference on Parallel
and Distributed Processing Techniques and Applications, pp. 1871-1878,

2000.

J.Baumann, F.Hohl, K.Rothermel, and M.Strasser, “Mole - concepts of
a mobile agent system,” Special Issue on Distributed World Wide Web

Processing: Applications and Techniques of Web Agents, vol. 1, no. 3,
pp- 123-127, 1998.

D.Lange and M.Oshima, “Mobile agents with java: the aglet api,” Spe-
cial Issue on Distributed World Wide Web Processing: Applications and
Techniques of Web Agents, vol. 1, no. 3, pp. 111-121, 1998.

D.Wong, N.Paciorek, T.Walsh, J.DiCelie, M.Young, and B.Peet, “Con-
cordia: an infrastructure for collaborating mobile agents,” in Proceedings
of 1st International Workshop, MA’97, pp. 86-97, Lecture Notes in Com-
puter Science 1219, 1997.

Tryllian, “http://www.tryllian.net/.”

S. Pleish, , and A. Schiper, “Modeling fault-tolerant mobile agent exe-
cution as a sequence of agreement problems,” in Proceedings of the 19th

IEEE Symposium on Reliable Distributed System, pp. 11-20, 2000.

7

[7]

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

S. Pleisch and A. Schiper, “Fatomas - a fault tolerant mobile agent system
based on the agent-dependent approach,” in The International Conference

on Dependable Systems and Networks, pp. 215224, 2001.

M. Strasser and K. Pothernel, “System mechanisms for partial rollback of

Y

mobile agent execution,” in Proceedings of 20th International Conference

on Distributed Computing Systems, pp. 20-28, 2000.

D. Johansen, K. Marzullo, F. B. Schneider, K. Jacobsen, and D. Zagorod-

> in Pro-

nov, “Nap: Practical fault-tolerance for itinerant computations,’
ceedings of the 19th IEEFE International Conference on Distributed Com-

puting Systems, pp. 180-189, 1999.

V. F. Nicola, Checkpointing and the Modeling of Program Execution Time,
pp.- 167-188. M. Lyu (ed.). John Wiley & Sons, 1994.

Y. Huang and C. Kintala, Software Fault Tolerance in the Application
Layer, pp. 139-165. M. Lyu (ed.). John Wiley & Sons, 1994.

K. Rothermel and M. Stasser, “A fault-tolerant protocol for providing
the exactly-once property of mobile agents,” in Proceedings of 17th IEEE
Symposium on Reliable Distributed Systems, pp. 100-108, 1998.

M. Stasser and K. Rothermel, “Reliability concepts for mobile agents,”
International Journal of Cooperative Information Systems (IJCIS), no. 4,
pp- 355-382, 1998.

M.Pease, R. Shostak, and L. Lamport, “Reaching agreement in the pres-
ence of faults,” Journal of ACM, vol. 27, pp. 228234, April 1980.

J. Baumann and K. Rothermel, “The shadow approach: An orphan detec-
tion protocol for mobile agents. technical report tr 1997/09,” tech. rep.,

Faculty of Computer Science, University of Stuttgart, 1997.

78

[16] N. A. Lynch, Distributed Algorithms. Morgan Kaufmann Publishers, San
Mateo, CA, 1996.

[17] L. Lamport, “Time, clocks and the ordering of events in a distributed
system,” Communications of the ACM, vol. 21, pp. 558-565, July 1978.

[18] L. Tomek and K. S. Trivedi, Analyses Using Stochastic Reward Nets,
pp. 231-248. M. Lyu (ed.). John Wiley & Sons, 1994.

[19] D. Xu and Y. Deng, “Modeling mobile agent systems with high level petri
nets,” in IEEFE Systems, Man, and Cybernetics,, pp. 3177-3182, 2000.

[20] C. Hirel, B. Tuffin, and K. S. Trivedi, “Spnp: Stochastic petri nets, version
6.0.,” in 11th International Conference of Computer performance evalua-

tion: Modeling tools and techniques, Lecture Notes in Computer Science

1786, Springer Verlag, 2000.

79

Appendix A

Glossary

Si
n
«
Wi
Pi

7
logm‘rive

7
msg, arrive

7
log leave

7
MSYGieqve

l OGterm

€;

Server i.

Total number of servers in the itinerary of the actual agent.
The actual agent.

The witness agent in Server ;.

The probe migrates to Server 1.

The log message logged by the actual agent at Server ¢
when the actual agent arrives at Server .

The message sending from the actual agent at Server i to
the witness agent in Server ¢ — 1 when the actual agent
arrives at Server 1.

The log message logged by the actual agent at Server ¢
when the actual agent is ready to leave Server i.

The message sending from the actual agent at Server i to
the witness agent in Server 7 — 1 when the actual agent is
ready to leave Server i.

The terminating message sending from the actual agent
when it arrives at the last server of its itinerary.

The number of rounds needed for an actual agent to com-

plete computation in server S;.

80

TT' ecover

Tarrive

ﬂeave
Talive

Theartbeat

The upper bound of ¢;,Vi € {0,1,...,n— 1}.

The number of rounds needed for an agent to travel from
S; to S;.

The upper bound of a;;, V4,5 € {0,1,...,n —1}.

The number of rounds needed for a probe to recover an
actual agent in S;.

The upper bound of r,;, Vi € {0,1,...,n—1}.

The number of rounds needed for a server monitor (in Level
1 fault-tolerant mechanism) to inspect and recover S;.
The upper bound of rg, Vi € {0,1,...,n —1}.

The number of rounds for server monitor to recover a failed
server.

The timeout for w;_; waiting for msgt .. .

The timeout for w;_; waiting for msgl,,.-

The timeout for w;_; waiting for msg’,.. ..

The period of the heartbeat message msg’ .

81

