

i

The Structured-Element Object Model for

XML

MA Chak Kei

A Thesis Submitted in Partial Fulfillment

of the Requirements for the

Degree of Master of Philosophy

in

Computer Science & Engineering

Supervised by:

Prof. Michael R. Lyu

 The Chinese University of Hong Kong

July, 2002

The Chinese University of Hong Kong holds the copyright of this thesis. Any person(s)

intending to use a part or whole of the materials in the thesis in a proposed publication

must seek copyright release from the Dean of the Graduate School.

ii

The Structured-Element Object Model for XML

submitted by

MA Chak Kei

for the degree of Master of Philosophy
at the Chinese University of Hong Kong

Abstract
The Extensible Markup Language (XML) is widely used in exchanging and storing

information for various Internet-enabled applications. In general, XML represents

semi-structured data with no rigid schema, and the basis for processing XML data is to

establish a suitable data model for XML data. There has been a lot of work for modeling

XML data into relational and object-relational models to facilitate better information

management. However, for XML data modeling in application development, an

object-oriented data model can reflect the concepts of components in object-oriented

programming languages more appropriately, which benefits building of reusable

software components.

Consider that many complex data structures like relational data and various indexing

trees are frequently used in many programs, storing their contents in XML would bring

a lot of convenience and flexibility. However, application programmers are mainly

interested in the high-level information it carries but not all the details in indexing or

schema modeling. An abstraction for complex data objects would simplify the programs

and shorten the development time. Therefore, we will present an XML data modeling in

which the physical data representation and the logical data representation are more

flexibly coupled.

In this thesis, we present the Structured-Element Object Model (SEOM) for XML data.

The model combines features from the Document Object Model and the data binding

iii

technologies. In the Document Object Model, the logical data closely reflects the

physical data representation in XML file, i.e., the DOM closely resembles the XML data

model as in W3C XML specification. Data binding technologies, on the other hand,

reflects semantics in XML data by representing a logical entity as a data object, but it

does not maintain the XML document structure anymore.

SEOM, however, combines the features of both XML processing models and delivers

features from both models. It adopts the tree structure of DOM and introduces an

additional node, Structured-Element (SElement). The SElement resembles the interface

of a DOM Element. It has an internal data structure to model an individual logical entity.

It also implements additional interface to allow queries being made to its internal data

structure. With the SElement type, SEOM Document brings great convenience for

developing XML application by representing complex data objects under a hierarchical

organization.

In this thesis, we will cover the Structured-Element Object Model in details, including

its data modeling, schema, parsing and querying. We will also describe a web-based

XML query system, which is built to demonstrate how the SEOM helps in a real

application.

iv

可擴展標示語言(XML)上結構元素物件模型

作者：馬澤祺

修讀學位：哲學碩士

香港中文大學計算機科學及工程學部

論文摘要

在互聯網程式應用上，可擴展標示語言(XML)正被廣泛應用於信息交換與貯存方

面。XML 定義了一種無固定資料格式 (Schema)的半結構形態資料，而為 XML 資

料設計資料模式(Data Model)就成了處理 XML 文件所載資料的第一步。其中，以

關聯式(Relational)模形或是物件關聯式(Object-Relational)模形這兩種方法去描述

及處理 XML 資料已在資訊管理方面已取得不少發展。而在程式設計方面，以物件

導向(Object-Oriented)模形去描述資料則當可更貼合物件導向程式中的使用元件和

模組的習慣，這將更乎合”可重覆使用軟體元件”的概念。

XML 的半結構形態使它可以方便且有彈性地裝載諸如關聯式資料結構或者不同的

索引樹結構等很多不同的複雜資料結構，然而，對於應用程式設計師而言，更重

要的是高層次的應用資料，而非細節如索引資料或資料格式等。另一方面，將複

雜資料結構抽像化更可簡化程式的設計及縮短編寫程式所需的時間。為此，我們

提出了一種 XML 資料模型，其設計可以讓實體資料結構和邏輯資料結構以更靈活

的方式結合。

在這篇論文中，我們提出了應用於 XML 上之結構元素物件模型(SEOM)。這個模

v

型結合了文件物件模型(Document Object Model)及資料繫結技術(Data Binding)的

特點。文件物件模型表現了近似 W3C 定義的 XML 資料模型，其邏輯資料結構相

當近似予 XML 檔案的實體資料結構。另一方面，資料繫結技術以資料本身的邏輯

結構為中心，將 XML 資料以資料物件的方式呈現，然而這種方法卻不能保留 XML

中的樹狀結構。

我們提出的 SEOM 是以文件物件模型的樹狀資料結構為基礎，並引入了新的資料

結點 – 結構元素(Structured-Element)。結構元素以文件物件模型中的元素為本使

其能夠興文件物件模型的樹狀資料結構結合，而其內裏則另藏資料結構以模擬程

式中的邏輯資料結構。同時，結構元素加入了新的程式介面用以查詢內藏的資料

結構。結構元素的引入使 SEOM 文件能夠輕易地在同一樹狀結構下裝載不同的複

雜資料結構，從而使 XML 應用程式的開發更為方便快捷。

在這篇論文中，我們會詳細剖釋結構元素物件模型，包括其資料模型、格式定義、

文件剖析程序和資料查詢。另外，我們還會介紹一個網上 XML 查詢系統以展示

SEOM 能怎樣幫助 XML 應用程的的開發。

vi

Acknowledgements

I would like to take this opportunity to express my gratitude to my supervisor, Prof.

Michael R. Lyu for his generous guidance and patience given to me in the past two

years. His support and encouragement, as well as the inspiring advice are extremely

essential and valuable in my research papers (published in IC’2001) and my thesis.

I am also grateful for the time and valuable suggestions that Prof. Irwin King and Dr.

Yiu Sang Moon have given in marking my term papers. Without their effort, I will not

be able to strengthen and improve my research projects and papers.

I would like to thank Edward Yau and Sam Sze for their insightful advice and

enlightening research ideas. Special thanks should be give to my fellow colleagues,

Nicky Ng, K.K. Ng, T.Y. Wong, P.M. Ho, Kenny Kwok, Vincent Cheung, Anson Lee,

Joe Lau, Anny Chiu, K.F. Jang, who have helped me in solving programming and

computer problems, given me encouragement and supports, and given me a joyful and

unforgettable university life.

Finally, my thanks must go to C.Y. Lee and H.Y. Lam for their unfailingly support in

those times when I wondered if I could make my degree to the end.

vii

Table of Contents

ABSTRACT ... II

ACKNOWLEDGEMENTS ...VI

TABLE OF CONTENTS ... VII

LIST OF TABLES ..XI

LIST OF FIGURES...XIII

CHAPTER 1. INTRODUCTION .. 1

1.1 ADDRESSING AND MANIPULATING XML DATA ... 1

1.2 THE STRUCTURED-ELEMENT OBJECT MODEL (SEOM)..................................... 3

1.3 RELATE RESEARCH.. 4

1.4 CONTRIBUTION.. 5

1.5 THESIS OVERVIEW... 6

CHAPTER 2. BACKGROUND TECHNOLOGIES ... 7

2.1 OVERVIEW OF XML .. 7

2.1.1. XML Basic Syntax... 8

2.1.2. Namespaces in XML ... 8

2.2 OVERVIEW OF XML SCHEMA .. 9

viii

2.2.1. W3C XML Schema.. 10

2.2.2. Schema Alternatives ... 13

2.3 OVERVIEW OF XPATH .. 13

2.4 OVERVIEW OF DOM .. 15

CHAPTER 3. OVERVIEW OF STRUCTURED-ELEMENT OBJECT MODEL

(SEOM) 18

3.1 INTRODUCTION .. 18

3.2 OBJECTIVES... 20

3.3 GENERAL CONCEPTS IN SEOM ... 21

3.3.1. Data Representation ... 21

3.3.2. Data Binding .. 24

3.3.3. Data Access .. 25

CHAPTER 4. SEOM DOCUMENT MODELING.. 27

4.1 DATA MODELING ... 27

4.1.1. Simple XML Data Model .. 28

4.1.2. SEOM Data Model ... 32

4.2 SCHEMA MODELING .. 41

4.2.1. SEOM Schema .. 42

4.2.2. Creating a Schema.. 46

CHAPTER 5. SEOM DOCUMENT PROCESSING... 51

5.1 SEOM DOCUMENT PROCESSING ... 51

ix

5.2 THE CLASSES... 51

5.2.1. SEOM Document Class .. 52

5.2.2. Abstract SElement Class... 55

5.2.3. Generic SElement Class ... 56

5.2.4. Implementation SElement Classes.. 57

5.3 XML PARSING AND DATA BINDING ... 59

5.3.1. Parsing Process .. 60

5.4 QUERYING ... 62

5.4.1. Query Wrapper and Result Wrapper .. 62

5.4.2. Embedding in XPath... 68

CHAPTER 6. AN WEB-BASED SEOM DOCUMENT QUERY SYSTEM 71

6.1 WEB-BASED SEOM DOCUMENT QUERY SYSTEM.. 71

6.2 CLIENT-SERVER ARCHITECTURE.. 71

6.3 THE SERVER .. 74

6.3.1. Data Loading.. 74

6.3.2. Implemented SElement – R-Tree... 74

6.3.3. Network Interface ... 80

6.4 CLIENT SIDE .. 82

6.4.1. The Interface... 82

6.4.2. Programmatic Controls .. 85

CHAPTER 7. EVALUATION.. 88

x

7.1 EXPERIMENT WITH SYNTHETIC DATA .. 88

7.2 QUALITATIVE COMPARISON ... 90

7.3 ADVANTAGES... 91

7.4 DISADVANTAGES ... 92

7.5 MEANS OF ENHANCEMENT .. 93

CHAPTER 8. CONCLUSION ... 94

BIBLIOGRAPHY... 97

xi

List of Tables

Table 2.1 Some simple data-types in XML Schema..11

Table 4.1 Types in simple XML data model... 28

Table 4.2 Operations for Document in simple XML data model 29

Table 4.3 Operations for Element in simple XML data model....................... 30

Table 4.4 Operations for Attribute.. 31

Table 4.5 Operations for Character Data in simple XML data model............ 31

Table 4.6 Operation for Node in simple XML data model............................. 31

Table 4.7 Operations for NodeList in simple XML data model 31

Table 4.8 Operations for AttributeSet in simple XML data model................. 32

Table 4.9 Types in SEOM... 34

Table 4.10 Generic Operations in SEOM... 35

Table 4.11 Operations for Document in SEOM ... 36

Table 4.12 Operations for Element in SEOM... 37

Table 4.13 Operations for SElement in SEOM .. 39

Table 4.14 Operations for Attribute in SEOM.. 39

Table 4.15 Operations for CharData in SEOM... 39

xii

Table 4.16 Operations for Node in SEOM ... 40

Table 4.17 Operations for NodeList in SEOM ... 40

Table 4.18 Operations for AttributeSet in SEOM... 40

Table 7.1 Comparison of XML accessing methods.. 91

xiii

List of Figures

Figure 3.1 Structure of an SElement .. 24

Figure 3.2 Relationship of Data, Schema, Class, and Object Instant 25

Figure 4.1 An Example of SEOM Schema... 50

Figure 5.1 An Example of SEOM Document... 52

Figure 5.2 Creation of SElement and Relation Between Different SElement

Classes .. 55

Figure 5.3 Structure of an Implementation SElement 57

Figure 5.4 Parsing Process of SEOM Document ... 61

Figure 6.1 The Architecture of the Web-based SEOM Document Query

System .. 73

Figure 6.2 R-Tree.. 75

Figure 6.3 User Interface of the Web-Client .. 83

Figure 6.4 Server Address, Document Name, and Context Node 83

Figure 6.5 The Navigation Panel and the Parameter Dialog 84

Figure 6.6 The Information Panel... 84

Figure 6.7 Program Flow of Client... 85

Figure 6.8 XSL Stylesheet in XML Island ... 86

xiv

Figure 7.1 Document Construction Time ... 89

Figure 7.2 Random Seeking Time ... 90

1

Chapter 1.

Introduction

1.1 Addressing and Manipulating XML Data

The Extensible Markup Language (XML) [1, 6, 38, 43], accounting for its

interoperability and open-standard, is widely used in exchanging and storing

information for various Internet-enabled applications. The "semi-structure" property

of XML allows users to represent different data flexibly and enhances the

development of information systems in data interchange and data storage. It provides

a common format for expressing both data structure and contents with in plain text.

Moreover, its power is strengthened by various kinds of emerging XML-technologies

such as XSLT, XPath [39, 42], XQuery, etc. The existence of simple-to-use

application programming interfaces (API) such as SAX and DOM also facilitates

rapid development of XML-enabled applications.

One characteristic shared by XML applications is that they are working with data

heavily [4, 40]. XML allows diverse and rapid-changing data structures to be

represented, which eases the life of storing, validating and manipulating the data. For

manipulation of XML data in programs, the Document Object Model (DOM) plays a

significant role.

The Document Object Model (DOM) [3, 41] is at first designed as a platform- and

language- neutral application programming interface (API) for valid HTML and

well-formed XML documents. It defines the logical structure of documents and the

2

way a document is accessed and manipulated. With the Document Object Model,

programmers can build documents, navigate the document structure, and add, modify,

or delete elements and contents. That will be convenient to bind an XML document

to a DOM structure to access, change, delete or add data to the document with DOM

API.

The DOM API models an XML document data in a tree-like data structure, where the

XML elements and character data are modeled as data nodes in the tree. Thus the

programmers can access and manipulate the XML data easily through the methods

provided by the "node" objects. However, under the Document Object Model, the

accessing methods for document nodes are defined by the parent/child relationship

and the sibling relationship, which would be insufficient and inefficient in many

cases. As a result, the XPath is often incorporated into the programming interface to

allow flexible accessing of various parts of the XML document.

DOM is good for manipulating XML data and provides a large degree of freedom to

the programmers. Based on the W3C XML specification, the DOM and XPath adopt

a basic XML data model and offer a direct mapping for XML data types. However,

the development effort will be increased dramatically when the data becomes more

complex. To simplify the development process, abstracting is a commonly used

technique. The Java Architecture for XML Binding (JAXB) [34], for example,

compiles an XML Schema to generate class for handling XML data, thus the

programmers do not need to parse the XML file into a DOM structure followed by

reading the data values out from the DOM structure.

Moreover, one of the mostly mentioned advantages for XML, its “semi-structured

data” property, is not well addressed in this basic XML data model. The

“semi-structured” property of XML allows it to flexibly represent various kinds of

data, ranging from structured tables in relational databases, spatial-indexing

structures in tree-like form, to unstructured data in web contents [4, 5, 7]. The basic

XML data model, despite its flexibility in capturing all possible structures existing in

3

an XML document, it does overly simplify the document into branches-and-nodes

only structure, and does not address the different properties for various data

structures. The understanding of document structure is thus left as a job for the

application programmers, which is an unnecessary waste of programming efforts.

1.2 The Structured-Element Object Model (SEOM)

XML is a new standard for representing and exchanging data on the Internet.

Modeling XML data for Web applications and data management is a hot topic in

XML research area.

In general, XML represents semi-structured data with no rigid schema [2]. When

XML is used in application development, data access inside an XML document is a

major consideration. For huge documents, primitive filtering features (e.g. string

matching in XPath) may not be efficient enough, and an indexing structure may be

employed to increase the search speed. For an effective indexing, metadata is needed

to provide understanding on the contents in the document [7, 8, 10].

Based on the Document Object Model, we proposed the Structured-Element Object

Model (SEOM) for representing XML data. The model adopts the DOM tree

structure with an additional node, the Structured-Element (SElement). The SElement

represents a logical entity and it embeds an internal data structure for storing extra

information, such as the indexing information. The internal data structure itself can

also be used to store the data in a more efficient manner than in a generic tree

structure. The SEOM Document brings great flexibility in representing complex data

objects under a hierarchical organization.

In order to bind the physical XML data representation to the Java classes that

implement SElement type, we define a schema [9] for declaring SElement objects.

The schema declares an SElement object by specifying how the XML elements are

mapped into the target object’s internal data.

To demonstrate our work, we implement a web-based XML query system. The query

4

system is based on the Structured-Element Object Model. It adopts a client-server

architecture. The server will parse an XML file into SEOM Document. The client

will connect to the server, retrieve information on the document and the current node,

prompt user to select a query operation, and send the query to the server. Results will

be displayed and the user may further navigate the document by selecting a node

from the result.

1.3 Relate Research

XML attracts a lot of attention in web application development and data management.

To model XML data using an object-oriented approach is a hot topic in XML

research area.

Many contributions have been made to the object-oriented model for XML data. For

examples, the Object Exchange Model (OEM) [26] in Lore project [13, 21] and the

Document Object Model extend from generic semi-structured data to XML data. In

OEM, the XML is described as a labeled, directed graph. The nodes in the graph

represent the data elements and the edges represent the element-subelement

relationship. However, this data model does not implement classes or types

definitions, and it does not support encapsulation and object behavior [22] either.

The W3C DOM interface is widely adopted by different programming languages and

scripts for manipulating XML data [4]. It parses XML contents into a hierarchical

tree of node objects. It defines the interface for manipulating these objects and for

some document-level processing. However, the type of defined operations address

only the generic aspect of primitive XML node type; it is possible to enhance the

interface by introducing a mechanism for defining application-specific object

structures and behaviors. The DOM is the basis for us to develop the SEOM, and

details of enhancements will be presented from Chapter 3 to Chapter 5.

The Object-Oriented Representation Model (ORM) [15] is another object modeling

for XML data. It defines a set of rules and steps to transform DTDs and XML

5

document into the model. It capsulizes elements of XML data and manipulation

methods. However, the limitation of DTD makes the model inflexible in adopting

changes in data object types.

Another XML data modeling is presented in [20]. It defines a set of translation rules

proposed for translating XML data, with or without DTDs, into classes or objects for

a mediator. Terminal elements, as well as attributes of elements, in XML data are

modeled as attributes of the object. However, it requires users to have the knowledge

of the object structure and there is no distinguishability being made between public

and private data members.

In our research, we had learned the problems of previously developed models; and

we address these problems in our proposed Structured-Element Object Model.

1.4 Contribution

Briefly speaking, we make the following contributions in our research work:

 We have proposed the Structured-Element Object Model to encapsulate an XML

Element structure as a single extended-Element, named Structured-Element,

with mappings defined in the schema. We implement the R-Tree SElement as an

example in the query system implementation, but this mechanism is generic and

can be applied to different data structures.

 We have proposed an SEOM Schema for mapping XML Element data into

SEOM class objects. The schema is generic to different Element structure types

and allows more flexible representation of the Element structure in XML data.

 We have proposed a query wrapper technique for the Structured-Element object,

which allows programs to retrieve the available query methods from the

SElement, to modify the parameter values in the replied message, and to submit

the query to the object. The query wrapper technique does not require the user

to know the available query methods in advance. It is especially suitable for

implementing queries in an interactive XML system.

6

 We have enhanced the capability of querying by XPath by adding a

Structured-Element query function to the XPath expression. The enhanced

XPath integrates the core features available in Structured-Element. It provides a

powerful mechanism to locate and access XML data under the

Structured-Element Object Model.

 We have implemented a Web-based SEOM Document Query System to

demonstrate our work. This query system applies our mechanism and it can

make queries to XML data using the Element structure with the

structure-specific query methods.

1.5 Thesis Overview

We would explain the contributions described above in details in the coming chapters.

First, we conduct an overview of some related work and technologies in Chapter 2.

We describe XML, XML Schema, DOM, and XPath there, as they are closely related

to and being used intensively in our project.

In Chapter 3, we introduce our Structured-Element Object Modeling, and give and

overview on its functional aspect. Chapter 4 will cover the data modeling and

schema modeling for the SEOM. In Chapter 5, we will describe the processes in

binding XML data to SEOM Document object, as well as in querying data in SEOM

Document.

We demonstrate our mechanism with a web-based query system in Chapter 6, and we

describe in detail the components of that system and how we apply our mechanism to

enhance it for more flexibility.

In Chapter 7, we evaluate the advantages and disadvantages of our approach. We will

also address further enhancement on supporting “semi-structure” in our mechanism.

We then conclude our work in Chapter 8.

7

Chapter 2.

Background Technologies

In this chapter, we will present an overview of some XML technologies as they are

closely related to our research project. The research project is focused on improving

XML usability by enhancing the DOM data structure. We extend the XML Schema

to specify the Element structure, which will be used in binding XML data to Java

classes. Beside a query wrapper technique we introduce into the system, we also add

a query function to the XPath technology and make it a more powerful XML

accessing technology.

2.1 Overview of XML

Extensible Markup Language (XML) [43] is a standard developed by the World

Wide Web Consortium (W3C). It is a markup language derived from the Standard

Generalized Markup Language (SGML). Some design goals for XML are:

 XML shall be straightforwardly usable over the Internet.

 XML shall support a wide variety of applications.

 It shall be easy to write programs which process XML documents.

 XML documents should be human-legible and reasonably clear.

XML is about the description of data. Its specification describes the XML data

format and grammar. The specification makes XML to be a data exchange and

representation standard.

Our research mainly focuses on using XML to support complex data objects [25]

8

such as “Lists of Lists of Lists” or “Trees of Trees of Trees” or even a heterogeneous

type like “Trees of Lists of Trees.” XML provides flexible structure description and

is ideal for storing complex data objects. It allows complex data objects to be sent

over the Internet and to be shared among different applications. Our research is based

on XML and we will address the basic syntax of XML and the XML namespaces in

the following sections.

2.1.1. XML Basic Syntax

XML is a textual representation of data. An XML document uses markups to

describe its logical structure. A basic component in XML is the element. It is

represented as XML tags enclosed in angle brackets. In an XML-aware application,

the XML tags can be handled specially depending on the nature of the application.

Users can define new tags for their needs. For an well-formed XML document, all

XML elements must have a start tag and a close tag, for example, a pair of tags

<name> and </name> may be used to define an XML element that represents

someone’s name. Inside an element we may have text, other elements, or a mixture

of both.

XML also allows us to add attributes to the elements. XML attributes are defined as

name-value pairs in the element’s start tag, whereas the value is a quoted string. For

example, in the element name we just defined, we may add an attribute id to

provide an identity to the person associated with the name, i.e., <name id=”1”>

tells us that this name has the attribute id with value equals to “1”.

XML elements may be nested to form a hierarchical structure. As a well-formed

XML document has exactly one root element, the document can always be modeled

as a tree structure.

2.1.2. Namespaces in XML

When different sets of XML vocabulary definition are shared among a community, it

is possible that name collisions happen between some elements in different sets,

9

which should carry different semantics by their design. XML namespaces adopt a

compound name syntax to distinguish identical names that belong to different

vocabularies.

An XML namespace is a collection of names, identified by a Uniform Resource

Identifiers (URI) reference, which are used in XML documents as element types and

attribute names. The URI references are considered identical when they are exactly

the same character-for-character.

Names from XML namespaces may appear as qualified names, which contain a

single colon, separating the name into a namespace prefix and a local part. The prefix,

which is mapped to a URI reference, selects a namespace. The combination of the

universally managed URI namespace and the document's own namespace produces

identifiers that are universally unique.

To use the XML namespace, a namespace attribute has been added to the start tag of

an element to give the element prefix a qualified name associated with a namespace.

When a namespace is defined in the start tag of an element, all child elements with

the same prefix are associated with the same namespace. The namespace attribute is

placed in the start tag of an element and has the following syntax:

xmlns:namespace-prefix="namespace"

In our research project, the proposed the SEOM schema has the following namespace

definition:

xmlns:seom="http://www.cse.cuhk.edu.hk/~ckma1/SEOM"

2.2 Overview of XML Schema

The XML specification not only describes the XML data format and grammar, but

also specifies the architecture for handling XML data. XML Processor, also known

10

as the XML parser, is part of the architecture. An XML parser ensures that the

presumed XML data is well-formed. XML well-formedness defined in the XML

specification certifies that the XML document has a correct structure and syntax.

An XML parser may also be used to check the validity of the user’s data structure.

Any XML data object is considered a valid XML document if it is well-formed,

meets certain further validity constraints, and matches a grammar describing the

document’s content. The XML parser can use a separate document, generically called

a schema [44], to describe and validate that instance of XML data.

In our research project, the Structured-Element Object Model is specified as schema.

Besides constraining an XML document, with schema we can create an abstract

description of the structure of documents. Applications development can be tied to

the schema rather than to a proprietary document structure.

Moreover, as the schema enforces the document structure (by a validating engine),

document exchange is more convenient since individual applications (the sender and

receiver) do not need to check the document validity. This not only promotes sharing

of data or model between communities, but also makes it easier for different

application to process the same files.

2.2.1. W3C XML Schema

The W3C XML Schema specification [44] is aimed at offering a way to constrain

documents using XML syntax. XML Schemas provide a means for defining the

structure, content and semantics of XML documents. An XML Schema constrains an

XML document by:

 defining elements that can appear in a document,

 defining attributes that can appear in a document,

 defining which elements are child elements,

 defining the order of child elements,

 defining the number of child elements,

11

 defining whether an element is empty or can include text,

 defining data types for elements and attributes, and

 defining default and fixed values for elements and attributes.

The W3C XML Schema has the namespace URI

http://www.w3.org/2001/XMLSchema and it is often associated with the

prefix xsd. Schema Components use the blocks that make up the abstract data model

of the schema. Four primary components include simple type and complex type

definitions, and element and attribute declarations.

simple type

Simple types refer to atoms of data that cannot be divided in terms of XML schema

and we use data-types to define the data-type of information in a simple type.

There are many built-in data-types in the XML Schema specification, some of

which are listed in Table 2.1.

Type Description Example

string Represents any legal character strings Jacky Ma

boolean Represents binary logic true, false, 1, 0

number Represents arbitrary precision decimal
numbers

3.14, 100, 1.0E3

integer Represents the standard mathematical
concept of integer numbers

1, 10, 100

time Represents an instance of time in the
format HH:MM:SS

14:12:30

date Represents a calendar date in the format
YYYY-MM-DD

2001-04-16

Table 2.1 Some simple data-types in XML Schema

complex type

A complex type refers to the content model of an element that can contain other

elements and attributes. A complexType element will hold the definition of a

12

complex type. It has an attribute name to hold the name of the complex type

definition.

Inside a complex type definition, there can be element and attribute declaration, as

well as other constrains components such as the xsd:sequence element which

indicates that the child elements should appear in the order as they are declared.

element

Element is one of the major building blocks in any XML documents. The declaration

of an element is an association of its name with a type. An element element will be

used to declare an XML element, and a type attribute can be added to specify the

data-type of the element. For example:

<xsd:element name=”record” type=”xsd:string”/>

will declare an element named record and the element is associated with the

data-type xsd:string.

attribute

The declaration of an attribute is similar to that of an element. An attribute

element is used to declare the attribute and a name attribute will specify the name of

the attribute we are declaring. Optionally we can specify the data-type for the

attribute value by using the type attribute. For example:

<xsd:attribute name=”date” type=”xsd:date”/>

will declare an attribute named date with the data-type xsd:date as its valid

value. To declare an attribute for an element, however, we have to add the complex

type declaration to the element. For example:

<xsd:element name=”record”>

 <xsd:complexType>

13

 <xsd:attribute name=”date” type=”xsd:date”/>

 <xsd:string/>

 </xsd:complexType>

</xsd:element>

The above example declares an element named record, and adds the date

attribute of xsd:date data-type, and the element contains a string value.

2.2.2. Schema Alternatives

Although XML Schema is an “official” development of the W3C, there are some

schema alternatives that provide different approaches in modeling XML data

structure. Some XML-based application platforms are developed on the basis of

particular schema alternatives. XML-Data, XDR (XML-Data Reduced), and Schema

for Object-oriented XML (SOX) are examples of such schema alternatives: XDR is

the basis for the BizTalk Framework, and SOX is used as the basis for

CommerceOne’s e-business initiative.

In our research, we have adopted a tailored schema for our Structured-Element

Object Model. The schema binds the XML data with the SEOM and the Java classes

that implement the Structured-Element. The schema, however, is embedded in the

W3C XML Schema where a primary schema component is added.

2.3 Overview of XPath

The XML Path Language [42] (XPath) is a querying language that is used to address

specific parts of an XML data object as nodes within a tree. In support of this, XPath

can also handle strings, numbers, and Boolean variables. XPath expressions use a

compact non-XML syntax, which allows for easier use within URIs and XML

attributes.

This language handles XML data as paths within an abstract hierarchical tree

structure of nodes, and a current context node. The addressing capability of XPath

14

also implies the ability to match patterns in the XML data, providing a simple

method of querying that data.

XPath can be viewed as a way to navigate around XML documents. It models an

XML document as a tree of nodes. There are different types of nodes, including

element nodes, attribute nodes and text nodes.

The primary syntactic construct in XPath is the expression. An expression is

evaluated to yield an object, which has one of the following four basic types:

 node-set (an unordered collection of nodes without duplicates)

 boolean (true or false)

 number (a floating-point number)

 string (a sequence of UCS characters)

One important kind of expression is a location path. A location path selects a set of

nodes relative to the context node. The result of evaluating an expression that is a

location path is the node-set containing the nodes selected by the location path.

Location paths can recursively contain expressions that are used to filter sets of

nodes.

A location path consists of a sequence of one or more location steps separated by “/”.

The steps are composed from left to right and each step in turn selects a set of nodes

relative to a context node. Each node in that set is used as a context node for the

following step. The sets of nodes identified by that step are unioned together and the

final set at the end of the path will be the resulting nodes selected by this location

path.

A location step has three parts: an axis, a node test, and zero or more predicates. The

XPath axis specifies the direction along which the hierarchy of nodes is being

navigated. The node test specifies the node type and expanded-name of the nodes

selected along the specified axis. The optional predicate allows further filtering of the

node set yielded when the node test has been applied in the specified axis.

15

There are 13 different axes defined in XPath, including child axis, descendant axis,

parent axis, ancestor axis, self axis, attribute axis, and also axes defined for the

siblings, preceding or following nodes, etc.

For each location step, there must be a node test. The node test selects a set of nodes

from the specified axis by using the qualified name of the node. For nodes that do not

have a qualified name, a node type test can be applied. For example, we can use

text() to select all text nodes, or comment() to select all comment nodes. There

is also a node test node() that will select any node of any type whatsoever.

A predicate is another component in the location step. It filters a node-set with

respect to an axis to a new node-set. For each node in the node-set to be filtered, the

predication expression is evaluated with that node as the context node, with the

number of nodes in the node-set as the context size, and with the proximity position

of the node in the node-set with respect to the axis as the context position. The node

will be included in the result node set if and only if the predicate expression

evaluates to a true value. For a predicate expression, it may yield a boolean value or

a number. If the result is a number, the result will be converted to “true” if the

number is equal to the context position; and to “false” otherwise.

In our research project, we enhance the query capability when using with SEOM

Documents by introducing a query function. The query function is embedded into the

predicate term of a location step. This provides a convenient method to select nodes

based on the semantics of the element structure.

2.4 Overview of DOM

An XML document is a hierarchical tree of elements and other entities. Document

Object Model (DOM) [41] is the standard tree object model used in processing XML

documents. The DOM defines an interface for dynamic access and modification of

structured data in XML. The interface is platform-independent and language-neutral

and is not tied with a specific implementation; it is designed to be used with any

16

programming language and any operating system.

When the DOM is used to manipulate an XML text file, the first thing it does is parse

the file, breaking the file out into individual elements, attributes, comments, and so

on. The DOM then creates a representation of the XML file as a node tree in the

memory, and modification can be made to the tree through the DOM interface. By

using the DOM to create and access XML documents, not only the grammar and

well-formedness of XML document will be ensured, but it also abstract the content

away from the grammar and thus simplifies the document manipulation.

Most of the APIs defined by the W3C DOM specification are interfaces rather than

classes. That means that an actual implementation need only expose methods with

the defined names and specified operation, not actually implement classes that

correspond directly to the interfaces. This allows the DOM APIs to be implemented

as a thin veneer on top of legacy applications with their own data structures, or on

top of newer applications with different class hierarchies.

The Node interface is the primary datatype for the entire Document Object Model. It

represents a single node in the document tree. While all objects implementing the

Node interface expose methods for dealing with children, not all objects

implementing the Node interface may have children; some types of nodes may have

child nodes of various types, and others are leaf nodes that cannot have anything

below them in the document structure. Some of the more specialized interfaces are:

 Document

 Element

 Attr

 Text

 CDATASection

The DOM also specifies a NodeList interface to handle ordered lists of Nodes,

such as the children of a Node, or the elements returned by the

Element.getElementsByTagName() method.

17

In our research project, our Structured-Element Object Model implements the DOM

interface, plus an additional interface for SElement type. Details of the modeling will

be covered in Section 4.1.

18

Chapter 3.

Overview of Structured-Element

Object Model (SEOM)

XML is a metadata language, which means "data about data."[38] XML data

modeling is an activity of using XML to model data [18]. The process may involve

finding the most suitable and economical usage of document, elements, attributes and

text sections to represent data in the abstraction level [32], which may result in

higher reusability and save development effort [23].

In Chapter 1, we have described the need for storing and manipulating complex data

objects in XML and the need for extending the DOM interface to address this kind of

application. In our research project, we propose a Structured-Element Object Model

(SEOM), which extends the Document Object Model by introducing a new node type,

the Structured-Element (SElement).

In this chapter, we will present the overview of our model, including the research

object, some general concepts for our model, as well as the approach in

implementing the model. This chapter provides the basis for the modeling,

processing, and implementation of SEOM, which will be covered in subsequent

chapters.

3.1 Introduction

XML is a new standard for representing and exchanging data on the Internet. How to

19

model XML data for web applications is a hot topic that attracts a lot of interests. In

modeling XML data, metadata plays one of the most important roles.

XML assigns semantic and structural meanings to the data on the Internet. This

makes it possible for web applications and database management systems to

manipulate, manage and retrieve the data on the Internet. XML can also be used to

define data transfer format, data manipulation algorithm or represent semi-structured

data [14].

In general, XML represents semi-structured data with no rigid schema; the basis for

processing XML data is to establish a suitable data model for XML data. There has

been a lot of work for modeling XML data into relational and object-relational

models to facilitate better information management [11, 12, 16]. However, for XML

data modeling in application development, an object-oriented data model can reflect

the concepts of components in object-oriented programming languages more

appropriately; this benefits building of reusable software components [4, 17, 30].

When XML is used in application development, data access inside an XML

document is a major consideration. For accessing a record inside a small XML

document, it will be rather easy to read all the records to get the one you want; for a

larger document, it may be more effective by using some filtering techniques like

XPath to reduce the number of records to be processed. However, for an even larger

document, the ordinary filtering features (e.g. string matching in XPath) may not be

efficient enough, and an indexing structure may be employed to increase the search

speed. For an effective indexing, metadata is needed to provide understanding on the

contents in the document [18].

Moreover, in application development, it is often that complex data object that

represents a single business/logical entity is needed. The single-valued Element

object in DOM is not sufficient to carry the complete information. Therefore we need

a new data representation that is flexible in representing complex data as a single

entity.

20

In our research, we propose a data model similar to DOM that has a hierarchical tree

structure of data objects. A new node type, Structured-Element (SElement), is

introduced. The node type is given this name because it is similar to the XML

Element type but embeds an additional data structure inside. The SElement provides

great flexibility in modeling different complex data types. Its internal data structure

resembles an indexing structure for the XML data; or the internal data structure itself

can stores data in a more efficient manner than in the generic tree structure of DOM.

Metadata takes an important part for the system to know what kind of structure

should the XML data to bind with. As SElement is the major invention in our model,

we name our model Structured-Element Object Model (SEOM).

3.2 Objectives

Our research mainly focuses on using XML to support complex data objects such as

“Lists of Lists of Lists”, “Trees of Trees of Trees”, heterogeneous type like “Trees of

Lists of Trees” [25], or other user-defined complex data type that address special

needs in any specific fields.

We defined a data model to represent XML documents; the new data model takes

care of the meanings in element structures. There are a few objectives for our data

model:

 to build reusable software components;

 to define a schema for storing and exchanging XML data containing complex

data objects;

 to facilitate marshaling and unmarshaling between XML data and complex data

objects;

 to manage complex data objects through a neat interface;

 to hide private data members for a complex data object;

 to be flexible in binding with different complex data types;

 to be extensible in introducing new data types; and

21

 to be compatible with current hierarchical object models (DOM).

This thesis presents our object modeling for XML data. We define a set of data types

and their interfaces. We also define the syntax of SEOM schema, which facilitates

declaration of the added SElement type specifically. Then we describe how could

how are these data objects implemented, and how is the XML data parsed into

instance of SElement. Moreover, we also describe two mechanisms for querying

SEOM Document, i.e. query wrapper and extended XPath query function. In the

following section, we will introduce the general concepts in SEOM.

3.3 General Concepts in SEOM

3.3.1. Data Representation

Data representation is twofold in physical representation and in logical representation.

In SEOM, the physical representation means how are data represented in an XML

file, and the logical representation means how are the data interfaced to the

application programmers [27, 29].

In the conventional Document Object Model, these two representations bind together

tightly; there exists a one-to-one mapping for the data types in these two domains.

Major node types in DOM, including Element, Attribute and CharacterData, are the

same as the data types in XML specification. The simplicity of the model promotes

high flexibility in manipulating XML data, however, the lightweight component

approach may not be the most suitable and economical representation of complex

data.

Consider that many complex data structures like relational data and various indexing

trees are frequently used in many programs, storing their contents in XML would

bring a lot of convenience and flexibility. However, application programmers are

mainly interested in high-level information and contents but not details in indexing

or schema modeling. An abstraction for complex data objects would simplify the

program design and shorten the development time. Therefore, we will present a XML

22

data modeling in which the physical data representation and the logical data

representation are more flexibly coupled.

Physical Data Representation

While a generic tree structure is able to capture the “external” appearance if many

different data structures, these structures are indeed different in their meaning and

behaviors. A generic tree cannot capture the internal properties of individual

“sub-types”. For example, the B-tree, quad-tree, R-tree [15], R*-tree, X-Tree and

M-Tree belong to the tree class [11, 19], but each of them defines different ways of

indexing a spatial data set and provides different query operations on the data set. In

some cases, a structure can be “represented” as a tree, but its fundamental

representation is something else. Relational table is a typical case for this kind of

structures; the HTML table element presents a table-like structure to the users,

while it is also a tree-like structure from the viewpoint of Document Object Model;

and in Relational DBMS, a table is indexed as B-Tree to optimize various operations,

which does not looks like a table anymore.

When designing an XML data representation, the most important structure

information is what kind of data structure is allowed. All schema language basically

defines the allowed nesting structures of elements. We adopt the XML Schema to

declare the element structure for an XML document. Besides “what XML trees are

allowed”, another important structure information we raised here is “what is the type

of the tree”. Metadata takes the role of specifying this information. The SElement

declaration is embedded in a schema when an XML element together with its

sub-tree structure should map to a complex data object; the declaration includes how

the different components of XML tree (element, attribute, and text nodes) are

mapped into the data members in the target class.

Moreover, there are two different approaches in physical data representation:

 First is to embed the complete index-tree structure in XML file, such as a

23

complete R-Tree, or a B-Tree. In this way, the object will be instantiate via a

bulk-loading manner.

 Second is to model the data elements only in the XML file, i.e., the data points

in R-Tree, or data tuples in a table (instead of the B-Tree indexing structure for

table). In this way, the object instantiation will involve a building process for the

internal data structure.

Both approaches are valid physical data representations, but they have different

advantages (and disadvantages) and require different implementation classes.

Logical Data Representation

While the XML documents can capture a variety of data relationships, the

development of large, realistic applications is much simpler by using the most

appropriate logical representation. In modeling a large system, only part of the

information is frequently accessed, and it is more efficient to make the most desired

information as explicit as possible in the representation. This concept is consistent

with data encapsulation in an object-oriented programming language.

Currently, there are two major type of logical data representation for XML data:

 one is to focus on reflecting XML data structure in its “natural form”, and

 another type is to reflect business/logical objects;

DOM [41] and JAXB [34] are typical examples of these two types respectively.

These two representation types have their own advantages and disadvantages. The

first approach reflects an XML document as a single entity; it provides a generic

view to any hierarchical structured document; it is supported by a number of

XML-related technologies such as XPath, XSLT, etc. The second approach, on the

other hand, reflects each logical entity as a single object; it facilitates better data

encapsulation; closely models the object-oriented programming paradigm, and

protects against illegal data access in team development.

In our model, we combine the benefits of these two representation types. As a whole,

24

the SEOM resembles the DOM with an additional SElement type and additional

functionalities. In addition, SElement is designed to encapsulate logical entities as

the data binding technology does. The SElement maps an XML subtree into a single

node object, encapsulates the element structure as its internal data and presents a

query interface to the programmers. Figure 3.1 shows the structure of an SElement. It

is connected to a parent node and a number of child nodes just as an Element would.

The only difference is that it exposes a query function that allows programmatic

accesses to the internal data structure.

SElement
SElement

root

SElement
leaf

SElement
leaf

SElement
leaf

SElement
leaf

Internal Data
Structure for data

storage or
for indexing

E
xp

o
se

d
Q

u
er

y

F
u
n
ct

io
ns

Figure 3.1 Structure of an SElement

3.3.2. Data Binding

In SEOM, we separate the parsed document object from the physical XML file

layout; the parsed document object does not reflect the primary XML structure in an

one-to-one manner. Schema is used to bind the primary XML constructs to the

SElement implementation classes. Figure 3.2 shows the relationship between the data

(primary XML constructs), schema, implementation classes, and the SElement object.

To make the model generically applicable, we do not define any special tags in the

25

XML document; instead, we define the bindings in the SEOM Schema. The SEOM

Schema has a set of basic constructs; the constructs are generally used for data

binding, and they are not tied to any particular model.

Parsing Process

Primary XML
Constructs

SEOM Schema

SEOM
Implementation

Classes

SElement

Provide Metadata

Data

Object
Class

Figure 3.2 Relationship of Data, Schema, Class, and Object Instant

In our research, we combine the techniques in data binding with the tree-like data

structure of tree-based parser. Since Java is one of the most popular programming

languages for developing Web applications, we use Java objects to represent our

proposed objects for XML data [24]. Developers can build applications with Java

classes that reflect the logical entities, and to interface those Java classes to the

generic DOM structure through the SElement node object. The Java classes are also

interface automatically to any XML that conforms to a schema definition.

Consequently, a Java class will be loaded with XML data automatically and

instantiated as one of the nodes in a larger DOM structure. Details of parsing and

data binding will be covered in Section 5.3.

3.3.3. Data Access

Data access is the essential part for a data model. The accessing methods defined will

26

affect the usability of the model.

In accessing an XML document inside a database management system, the query

language of that database model is often used. For non-database system, XPath is a

technique adopted by the W3C Consortium and it is widely used in Internet

applications and client-side scripts to address parts of XML documents.

In this thesis, we define two data accessing methods. First is the wrapper method.

This method is particularly designed for using in a programming framework; it uses

XML messages to wrap a query or a result set. It allows users to retrieve a query

wrapper, fill in the required parameters, and then submit the query by using the filled

wrapper.

Another data access method that can be used in SEOM is the XPath. We extend

XPath with an additional query function that can be embedded as a term in the XPath

predicate. This function performs queries similar to the query wrapper, except that a

wrapper can take complex type parameter and generate complex type result, which is

not possible for the XPath type query.

More details of querying will be cover in section 5.4.

27

Chapter 4.

SEOM Document Modeling

4.1 Data Modeling

A data model describes the structure, function, and constraints of the data, which

focusing on the abstract properties of the data and ignoring the concrete limitations

imposed by a computer system. This will be useful to provide a clean concise

overview when overwhelmed by the details and implementation.

XML and HTML are similar in a sense that they are formed by inserting a set of tags

into a body of text. While HTML tags are pre-defined and allow common browsers

to interpret them for drawing the layout of the document. XML tags, on the other

hand, are defined by users and are not concerned with display at all. There is no

existing software that will automatically understand the tags, unless it is specifically

written to interpret the specified structure.

Despite that the semantics of XML document could not be automatically understood,

they could still share a common data model with the help of specifications and

metadata. The XML specification provides the data types and constraints that would

be necessary for a data model. As a markup language, XML itself do not include any

explicit operations other that the ones for creating elements in the data type, though

the associating standards like DOM and XPath suggest additional operations like the

manipulating and querying operations.

There are a number of data models that are relevant to XML, include entity-relational,

28

semantic, graph data model [14] and etc. In the following subsections, we will first

introduce a simple XML data models, and followed by the data model defined in the

Structured-Element Object Model.

4.1.1. Simple XML Data Model

This section introduces a simple data model for XML. The model illustrates the

fundamentals of a XML data model, like creating documents, elements, attributes,

and character data regions. The simplicity will help you to have a brief idea of XML

data modeling before we introduce our data modeling in SEOM.

Type

The data types of the data model are:

Data Type Definition

Document A named entity with one (root) Element

Element An entity with a type name, a collection of attributes, and an
ordered collection shared by character data and elements.

Attribute A name-value pair. Both the name and the value are strings.

Character Data A string value.

Table 4.1 Types in simple XML data model

The union of element, and character data type are called Node, which forms the

nodes in an element tree.

For collection types, we have AttributeSet for a collection of attributes; and

NodeList to denote an ordered collection of nodes.

Operations

In the simple XML data model, operations defined includes add, delete, and retrieve

29

data, while querying is not included. The convention of describing an operation will

be:

<result type> <operation name> (<type1> <parameter name1>, …)

The convention is similar to that of describing methods in the Java programming

language. Following are the definition of operations for different data types.

Document Document newDocument(String name)

Create a new document with unique <name>

 Element createDocumentElement(Document document,
String tag)

Create the (root) document element for <document> with tag
name <tag>, return the new element

 Element getDocumentElement(Document document)

Get (root) document element for <document>

 String getName(Document document)

Get the name of <document>

Table 4.2 Operations for Document in simple XML data model

Element String getTag(Element element)

Get the tag (element type) name for <element>

 Attribute createAttribute(Element element, String name,
String value)

Add an attribute to an <element> with <name> and <value>,
return the new attribute

 CharData createCharData(Element element, String data)

Add a character data region to the end of an <element>
consisting of a string <data>, return the new CharData

 CharData createCharData(Element element, String data,
Integer index)

30

Add a character data region to <element> consisting of a string
<data> at index location <index>, return the new CharData

 Element createElement(Element element, String tag)

Add a subelement to the end of an <element> with element type
name <tag>, return the new subelement

 Element createElement(Element element, String tag, Integer
index)

Add a subelement to the end of an <element> with element type
name <tag> at index location <index>, return the new
subelement

 Attribute getAttribute(Element element, String name)

Get the attribute of <element> with name <name>

 Node getChild(Element element, Integer index)

Get the child of <element> at <index>

 Boolean removeAttribute(Element element, String name)

Remove the attribute of <element> with name <name>, return
true if the attribute existed

 Boolean removeChild(Element element, Integer index)

Remove the child of <element> at <index>, return true if the
child existed

 AttributeSet getAttributes(Element element)

Get all the attributes of <element> to an attribute set collection

 NodeList getChildren(Element element)

Get all the children of <element> to an node list collection

Table 4.3 Operations for Element in simple XML data model

Attribute String getName(Attribute attribute)

Get the name of <attribute>

 String getValue(Attribute attribute)

Get the value of <attribute>

31

 String setValue(Attribute attribute, String value)

Set the value of <attribute> to <value>

Table 4.4 Operations for Attribute

Character

data

String getData(CharData chardata)

Get the data string of <chardata>

 String setData(CharData chardata, String data)

Set the data value of <chardata> to be <data>

Table 4.5 Operations for Character Data in simple XML data model

Node String getType(Node node)

Get the type of <node> as a string, either ‘Element’ or
‘CharData’

Table 4.6 Operation for Node in simple XML data model

NodeList Integer getLength(NodeList nodeList)

Return number of nodes in <nodeList>

 Node item(NodeList nodeList, Integer index)

Retrieve from <nodeList> the node at location <index>

Table 4.7 Operations for NodeList in simple XML data model

AttributeSet Integer getLength(AttributeSet attributeSet)

Return number of attributes in <attributeSet>

 Attribute item(AttributeSet attributeSet, Integer index)

Retrieve from <attributeSet> the attribute at location

32

<index>

Table 4.8 Operations for AttributeSet in simple XML data model

The simple XML data model provides the basic operations of manipulating XML

documents, which will be the framework of more complicated data models.

Constraints

The constraints for the simple data model are:

 Document names are unique

 The document element has no parent, and all other elements have an element

node as a parent which will form a tree structure.

 No attribute name may appear more than once in an element.

4.1.2. SEOM Data Model

Based on the W3C DOM and XML Specification, we develop the

Structured-Element Object Model with enhanced querying for complex data

structures and better usability in manipulating the structure.

It is often that programmers bind XML documents to DOM and manipulate the

document through the tree-like data structure in DOM, in which the XML elements,

attributes, and text sections in the XML document are mapped into DOM objects in

the tree. A DOM tree is a collection of nodes where each node has at most one parent

node and may have any number of ordered child nodes. The Nodes are objects

defined in the W3C DOM Specification, which includes Attribute,

CharacterData, Comment, Document, Element, and Node. Besides the

linkage to parent nodes and child nodes, the objects often embedded simple

name-value pair of string type.

33

In SEOM, there is an added data type named Structured-Element (abbreviated as

SElement). The SElement contains an internal data structure, which allows queries

made to the SElement and generates result as NodeList.

Types

The types are based upon those of the previous section. The W3C XML Specification

and the W3C DOM Specification are also considered, however, some elements such

as the Comment type and the Processing Instruction type are insignificant

in our modeling and thus they are not included here.

Data Type Definition

Document A Document represents the XML Document and contains
one Element which is called RootNode..

Element Except the tags declared as SElement in the Schema, most
tagged nodes of the XML document will become Element
nodes.

Each Element node has a name same as the tag, one
parent node of Element or SElement type except the
RootNode, and optionally a collection of Attribute
nodes, and an ordered collection of
Element/SElement/CharData nodes as children.

SElement Tagged nodes of XML document which have binding
declaration in the Schema will be created as SElements.

Each SElement node has a name same as the tag of the
root-tag of the XML segment and a type name declared in
the corresponding class declaration in the Schema. It has
one parent node of Element or SElement type, and a set
of Attribute nodes with declaration in Schema, and an
ordered collection of Element/SElement/CharData
nodes as children.

The binding-class of SElement will defines an internal
data structure for SElement, with corresponding query
operations that maps to a sub-set of its child nodes. The list
of implemented query operations is available from the
SElement.

CharData The string between the tags becomes CharData node.
Only the full-length strings are considered to form the

34

nodes, sub-strings of a longer (parent) string will not form
CharData node.

The XML Specification also defines a CDATA section that
is a type of CharData node where the text strings are
quoted.

Node A Node refers to an Element, a SElement, or a
CharData node. It is the superclass of these data types and
provides access to the element tree through parent/child and
sibling relationships.

NodeList A NodeList consists of an ordered collection of Nodes.
Each Node in the list is associated with an integer index.

Attribute The name-value pairs in the tags form Attribute nodes.
One name-value pair will form one Attribute node. The
values are simple strings, and multi-valued attribute are
stored as a white-space delimited string.

AttributeSet It represents a set of Attributes under an
Element/SElement.

Table 4.9 Types in SEOM

In addition to the simple XML data model, we make the Node data type explicit as

in the DOM Specification to make it a super-class for the Element nodes and

CharData nodes. The Node object allows tree transverse with simple

programming interface. The collection data types, NodeList and AttributeSet,

are also made explicit and they provides convenient operations when a group of

objects are involved.

The most significant change of the model is the addition of the new data type,

SElement, which combines data structure and processing logic and put them into a

single object. It provides concise interface to the programmers when dealing with

such kind of data structures and take off the unnecessary burdens.

Operations

Suggested from the W3C DOM Specification, the constituents of a document are

35

associated with the document instead of an element. Thus the creation of various

node-types are operations of Document; and the operation for appending them to

the tree is operation of the Node type; and Attribute type is created from the

Document and appended by operation of Element type.

All Node
Types

String asXML(Node node)

To generate the text with XML markups corresponding to the
document under <node>

 String asText(Node node)

To generate the text without markups corresponding to the document
under <node>

Table 4.10 Generic Operations in SEOM

Document Document newDocument(String name)

Create a new document with unique <name>

 String getName(Document document)

Get the name of <document>

 Void setDocumentElement(Document document, Element
element)

Set the (root) document element for <document> be to
<element>

 Element getDocumentElement(Document document)

Get (root) document element for <document>

 Element createElement(Document document, String tag)

Create an Element in <document> with element type name
<tag>, return the new element

 SElement createSElement(Document document, String tag,
Type schema)

Create an SElement in <document> with element type name
<tag>, and associate with the type as defined in <schema>.
<schema> is a DOM document with predefined format to give
information on the internal data structure of the SElement

36

 CharData createCharData(Document document, String
value)

Create a CharData node in <document> consisting of a string
<data>, return the new CharData

 Attribute createAttribute(Document document, String
name, String value)

Create an attribute in <document> with <name> and <value>,
return the new attribute

 NodeList getElementsByTagname(Document document,
String tag)

Retrieve all elements in <document> with element type name
<tag>

 Element query(Document document, Element querywrapper)

Submit a query wrapped in <querywrapper> to <docment>,
results are wrapped in Element

 Document transform(Document document, Document
stylesheet)

The operation takes an XSLT stylesheet <stylesheet> as
argument, apply the transformation on <document> as specified
in W3C XSLT Specification, and return the transformed Document as
result

Table 4.11 Operations for Document in SEOM

Element String getTagName(Element element)

Get the tag name of <element>

 Attribute setAttribute(Element element, Attribute
attribute)

Add the node <attribute> to <element>

 Attribute getAttribute(Element element, String name)

Get the attribute of <element> with name <name>

 Boolean removeAttribute(Element element, String name)

Remove the attribute of <element> with name <name>, return
true if the attribute existed

37

 AttributeSet getAttributes(Element element)

Get all the attributes of <element>

 Node appendChild (Element element, Node node)

Append <node> as child of <element>, return the subelement

 Node appendChild(Element element, Node node, Integer
index)

Append <node> as child of <element> at index location
<index>, return the subelement

 NodeList getChildren(Element element)

Get the children of <element> in order

 Boolean removeChild(Element element, Node child)

Remove the node <child> from <element>, return true if the
child existed

 NodeList path(Element element, String xpath), or
Boolean path(Element element, String xpath), or
Number path(Element element, String xpath)

Takes a string <xpath> as parameter and act on <element>
according to the XPath Specification, return the result as
NodeList, Boolean or Number depending on the function used
in <xpath>

 NodeList getElementsByTagname(Element element, String
tag)

Retrieve all elements in <element> with element type name
<tag>

Table 4.12 Operations for Element in SEOM

The SElement is a major creation with respect to the current modeling in DOM.

Details of this data type will be covered in later section.

SElement String getTagName(SElement selement)

Get the tag name of <selement>

 String getTypeName(SElement selement)

38

Get the type name of <selement>

 Document getSchema(SElement selement)

Get the schema document of <selement>

 Attribute setAttribute(SElement selement, Attribute
attribute)

Add the node <attribute> to <selement>

 Attribute getAttribute(SElement selement, String name)

Get the attribute of <selement> with name <name>

 Boolean removeAttribute(SElement selement, String name)

Remove the attribute of <selement> with name <name>, return
true if the attribute existed and is an optional attribute

 AttributeSet getAttributes(SElement selement)

Get all the attributes of <selement>

 Node appendChild (SElement selement, Node node)

Append <node> as child of <selement>

 Element addSChild(SElement selement, Element
datawrapper)

Add a record into <selement>, where <datawrapper> is an
Element of specific format to encapsulate the data as well as needed
information

 Boolean removeChild(SElement selement, Node child)

Remove the node <child> from <selement>, return true if the
child existed and can be removed freely

 NodeList getChildren(SElement selement)

Get the children of <selement> in order

 NodeList queryMethods(SElement selement)

Returns the queryMethods available in <selement>, wrapped in
form of Elements

 NodeList query(SElement selement, Element
querywrapper)

Submit a query wrapped in <querywrapper> to <selement>,
results are wrapped in Elements and the collection is resulted as

39

NodeList

 NodeList path(SElement selement, String xpath), or
Boolean path(SElement selement, String xpath), or
Number path(SElement selement, String xpath)

Takes a string <xpath> as parameter and act on <selement>
according to the XPath Specification, return the result as
NodeList, Boolean or Number depending on the function used
in <xpath>

 NodeList getElementsByTagname(Element selement, String
tag)

Retrieve all elements in <selement> with element type name
<tag>

Table 4.13 Operations for SElement in SEOM

Attribute String getName(Attribute attribute)

Get the name of <attribute>

 String getValue(Attribute attribute)

Get the value of <attribute>

 String setValue(Attribute attribute, String value)

Set the value of <attribute> to <value>

Table 4.14 Operations for Attribute in SEOM

CharData String getData(CharData charData)

Get the data string of <charData>

 String setData(CharData charData, String data)

Set the data value of <charData> to be <data>

Table 4.15 Operations for CharData in SEOM

As in the W3C DOM Specification, the Node type here is more important then in the

40

simple XML data model. The Node structure forms the main body of document tree.

The operations in the Node type allow a tree of nodes to be created.

Node String getType(Node node)

Get the type of <node> as a string, possible values are "SElement",
“Element”, or “CharData”

 Document getOwnerDocument(Node node)

Return the document to which <node> belongs

 Element getParentNode(Node node)

Get the parent element of <node>

 Node get PreviousSibling(Node node)

Get the previous sibling of <node>

 Node getNextSibling(Node node)

Get the next sibling of <node>

Table 4.16 Operations for Node in SEOM

NodeList Integer getLength(NodeList nodeList)

Return number of nodes in <nodeList>

 Node item(NodeList nodeList, Integer index)

Retrieve from <nodeList> the node at location <index>

Table 4.17 Operations for NodeList in SEOM

AttributeSet Integer getLength(AttributeSet attributeSet)

Return number of attributes in <attributeSet>

 Attribute item(AttributeSet attributeSet, Integer index)

Retrieve from <attributeSet> the attribute at location
<index>

Table 4.18 Operations for AttributeSet in SEOM

41

Constraints

The constraints in this data model will assure consistency of data as well as the

manipulation. Several constraints are also adopted from the W3C XML Specification

and the W3C DOM Specification. The constraints are:

 Each document have a unique name.

 All elements other than the root element have exactly one element node as a

parent. The root element has no parent.

 No attribute name may appear more than once in an element.

 The integer index is a set of consecutive integers beginning from 0.

 Number of previous sibling may be 0 or 1.

 Number of next sibling may be 0 or 1.

4.2 Schema Modeling

A valuable XML concept is the ability to define your own XML vocabulary. An

XML vocabulary is an industry-specific XML information model or document type

that you define for XML data sharing. Applications use a constrained document type

as the basis in processing.

XML Schema provides metadata for describing grammar of an XML document by

defining the elements used in the document. However, the syntactic structure, by

itself, can only facilitate document validating purpose and nothing more. The

programmers still need to know what to do with each schema-defined structure and

write codes to process them.

In simplest word, "metadata" means "data about data". It should not be restricted to

grammar checking. Metadata for data-structure modeling is one of the valuable

functions that can be associated with XML Schema to provide a basis for querying

42

XML documents. In the absence of a schema we could discover the general structure

of a class of XML documents by examining a number of such documents. On the

other hand, with an XML schema we can assure the permitted structure of the

document elements and therefore can design queries specific to those structures.

The issue for data-structure modeling brings significant benefits in building XML

applications too. Current technologies interface XML documents at the level of XML

structure and we navigate the documents by interfaces such as DOM and XPath

which refer to the "explicit structure" of the XML documents. Developers or users

are expected to re-discover the meaning of the XML structures, which is a waste of

programming efforts. We need to develop tools so that the developer can work at a

higher-level of abstraction to free them from programming routines to transform

XML structures to other "useful" data structures before the data can be queried.

4.2.1. SEOM Schema

The W3C XML Schema is one of the most widely adopted schema technology

among various XML parties. We would take it as the ground and embed our

SEOM-extended schema with different namespace in a valid XML Schema

document.

Our extended schema has the namespace URI of

http://www.cse.cuhk.edu.hk/~ckma1/SEOM. We will use the namespace

prefix of seom to refer to that URI and it will be used throughout this document.

seom:selement

The SElement is the only new data type derived from the DOM data model.

Therefore, the SEOM Schema extends the XML Schema only in defining XML

structures that relates to SElement, which includes the attributes defined under a

SElement.

As SElement is extending the Element data type, it will be useful to begin with the

43

Element declaration in XML Schema. The simplest element type declaration is when

an element contains only a primitive data type. For example:

<xsd:element name="myElement" type="xsd:string"/>

is the element type declaration for a element with type name myElement and

contains one xsd:string as its child.

For a more complex element structure, the structure is declared between a pair of

<xsd:complexType></xsd:complexType> tags, where multiple of

elements and attributes can be declared, and various constraints can be applied on the

child nodes.

Now we will see the declaration of a SElement. Since SElement type will not

contain simpleType as in Element, it is not necessary to distinguish

simpleType and complexType. The root of a SElement declaration is:

<seom:selement name="mySElement" class="model"/>

The example defines a SElement with type name mySElement, which will bind

to the class model, the name mySElement is used as the tag in the XML document

and also used as a reference point in other part of the Schema. In next chapter we

will discuss issues in data binding and how is the class model related to the Schema

and XML document.

seom:rootNode / seom:internalNode / seom:leafNode

Within the SElement declaration, there will be three kinds of sections, named

rootNode, internalNode, and leafNode, which correspond to the group of

XML nodes that will be mapped into the same SElement object. The rootNode

section can only exists once and does not have any attributes, the remaining two

kinds of sections can exist in multiple, each of them have an attribute id for being

44

referenced in other parts in the current SElement declaration and an name attribute

which mapped to the tag name of XML elements just like that of the ordinary

element data type. The following example declares a SElement bind to the class

model, which mapped to a sub-tree in the XML document with <head> as the root

of the sub-tree, <node> as the body of the sub-tree, and <leaf> as the leaf nodes

of the sub-tree. Child nodes under <leaf> are also child nodes for the SElement

instance.

<seom:element name="head" class="model">

 <seom:rootNode>

 ...

 </seom:rootNode>

 <seom:internalNode id="node1" name="node">

 ...

 </seom:internalNode>

 <seom:leafNode id="leaf1" name="leaf">

 ...

 </seom:leafNode>

</seom:element>

In each of these sections, there will be declaration of attributes, parameters, and the

element structure under the node.

seom:attribute

The "SEOM parameter" is not a type actually, but is a variation of attribute. This is

because the content of each declared instance of element may be bind to the target

model and processed using a different set of parameters. The schema should allow

the schema author to specify the parameters in schema or to provide a linkage from

schema to the XML document instance where the parameters will be given.

45

The declaration of attribute/parameter share the same tag <seom:attribute>.

Both of them will have an attribute para where the value is model-specific and

mapped to internal variables by the model class. Besides the para attribute, there

will be a value attribute for parameters types, or a name attribute for attributes. For

example:

<seom:attribute para="ID" value="1"/>

represents a parameter ID for the model and will pass "1" as the parameter value

when the SElement is built; while

<seom:attribute para="ID" name="id"/>

will map the parameter ID to attribute id in the XML document under the

corresponding object.

For the declaration of attribute type, the <xsd:simpleType> can be used within

<seom:attribute> to add restrictions to permitted values of attributes.

seom:value

The <seom:value> section declares the valid element structure under a node,

which is essentially the same as the <xsd:complexType> tag. When referencing

to <seom:rootNode>, <seom:internalNode> or <seom:leafNode>,

cardinality can be defined by minOccurs and maxOccurs attribute with integer

values > 0 or with the keyword "unbounded" (for maxOccurs). Moreover, data

types in XML Schema can be included as child nodes and statements like

<xsd:restriction> or <xsd:sequence> can be applied, but a few

constraints are added:

 <seom:value> for <seom:rootNode> type should at least references to

one <seom:internalNode> or <seom:leafNode> type.

46

 <seom:value> for <seom:internalNode> type should at least

references to wither one <seom:internalNode> type or one

<seom:leafNode> type.

 Any <seom:internalNode> should references to <seom:leafNode>

type directly or indirectly (through multiple-levels of other

<seom:internalNode>).

 <seom:leafNode> could not reference to <seom:internalNode> or

<seom:leafNode>.

These constraints are added to ensure the tree structure of XML document is not

being violated.

4.2.2. Creating a Schema

To put the things together, we will create a schema and accompany with explanation

in a step-by-step manner for easier understanding.

The basic skeleton for an XML Schema is the <xsd:schema> element, with its

associated namespace declaration; the additional namespace seom is for the

extended schema.

<?xml version='1.0'?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:seom="http://www.cse.cuhk.edu.hk/~ckma1/SEOM">

</xsd:schema>

The schema document itself is a well-formed XML document. First, we add an

ordinary doc element which contains a mySElement SElement using a reference

pointer.

<?xml version='1.0'?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

47

 xmlns:seom="http://www.cse.cuhk.edu.hk/~ckma1/SEOM">

 <xsd:element name••••••••••••••••="doc">•••••••

 <seom:selement ref="mySElement"/>••••••••••••••••••••••••••••••••

 </xsd:element>••••••••••••••

</xsd:schema>

Following shows the skeleton of mySElement with SEmodel type where the

details of its sections hidden:

<seom:selement name="mySElement" class=”SEmodel”>

 <seom:rootNode/>

 <seom:internalNode id="node1" name="node"/>

 <seom:leafNode id="leaf1" name="leaf"/>

</seom:selement>

In the <seom:rootNode> element, we define a parameter BRANCH_FACTOR

with value equals to "4", and declare that there will be at most 4

<seom:internalNode> under a rootNode:

<seom:rootNode>

 <seom:attribute para="BRANCH_FACTOR" value="4"/>

 <seom:value>

 <seom:internalNode ref="node1" maxOccurs="4"/>

 </seom:value>

</seom:rootNode>

Then we define the <seom:internalNode> element, which associate the

model-specific parameters ID, X1, X2, Y1, and Y2 to XML document attributes id,

x1, x2, y1, and y2 correspondingly. The <xsd:choice> element specify that

either <seom:internalNode> will occur or <seom:leafNode> will occur.

48

<seom:internalNode id="node1" name="node">

 <seom:attribute para="ID" name="id"/>

 <seom:attribute para="X1" name="x1"/>

 <seom:attribute para="X2" name="x2"/>

 <seom:attribute para="Y1" name="y1"/>

 <seom:attribute para="Y2" name="y2"/>

 <seom:value>

 <xsd:choice>

 <seom:internalNode ref="node1" maxOccurs="4"/>

 <seom:leafNode ref="leaf1" maxOccurs="4"/>

 </xsd:choice>

 </seom:value>

</seom:internalNode>

Finally, we define the <seom:leafNode> element which stores a single string as

the information:

<seom:leafNode id="leaf1" name="leaf">

 <seom:attribute para="X" name="x"/>

 <seom:attribute para="Y" name="y"/>

 <seom:value>

 <xsd:string/>

 </seom:value>

</seom:leafNode>

Following is the complete Schema document:

<?xml version='1.0'?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:seom="http://www.cse.cuhk.edu.hk/~ckma1/SEOM">

 <xsd:element name="doc">

 <seom:selement ref="mySElement"/>

49

 </xsd:element>

 <seom:selement name="mySElement" class=”SEmodel”>

 <seom:rootNode>

 <seom:attribute para="BRANCH_FACTOR" value="4"/>

 <seom:value>

 <seom:internalNode ref="node1" maxOccurs="4"/>

 </seom:value>

 </seom:rootNode>

 <seom:internalNode id="node1" name="node">

 <seom:attribute para="ID" name="id"/>

 <seom:attribute para="X1" name="x1"/>

 <seom:attribute para="X2" name="x2"/>

 <seom:attribute para="Y1" name="y1"/>

 <seom:attribute para="Y2" name="y2"/>

 <seom:value>

 <xsd:choice>

 <seom:internalNode

 ref="node1" maxOccurs="4"/>

 <seom:leafNode ref="leaf1" maxOccurs="4"/>

 </xsd:choice>

 </seom:value>

 </seom:internalNode>

 <seom:leafNode id="leaf1" name="leaf">

 <seom:attribute para="X" name="x"/>

 <seom:attribute para="Y" name="y"/>

 <seom:value>

 <xsd:string/>

 </seom:value>

 </seom:leafNode>

50

 </seom:selement>

</xsd:schema>

Figure 4.1 An Example of SEOM Schema

51

Chapter 5.

SEOM Document Processing

5.1 SEOM Document Processing

XML language, by itself, is just a language to define markups in a document and do

nothing else. To manipulate the data in a useful manner, we write programs to

process the documents. This involves binding the XML data into data types in a

programming language. As object-oriented programming languages are good at

defining new data types, it will be easier to defined data types to match the XML

data model, and thus they are suitable for implementing the XML applications. Java,

for its good support in XML, is chosen in our research project for implementing the

SEOM Document and Element types.

In Chapter 4, we have cover the data model and schema definition for SEOM data

types. In this chapter, we will describe the processes associated with SEOM data

types. Firstly, we will give details of the classes that made up the SEOM Document

and Element types. Then we will describe the process of parsing XML document into

SEMO Document, and finally, we will also cover the querying of SEMO Document.

5.2 The Classes

For an SEOM Document instance, it consists of five types of classes:

 Classes from the DOM API;

 SEOM Document class;

52

 Abstract SElement class;

 Generic SElement class; and

 Implement SElement classes for various structures.

5.2.1. SEOM Document Class

An SEOM Document corresponds to an XML document. It resembles the DOM

Document with additional interfaces for the added features in SEOM. Similar to a

DOM document, the SEOM document is an in-memory representation of XML

documents. Both of they are based on a tree-like structure to model the XML

document structure, and they contains the same set of nodes, except that an SEOM

document has added methods to reflect the SEOM-defined data type, SElement.

Added or changed methods include the constructor method and the query methods.

And example of SEOM Document is shown in Figure 5.1, which shows that the

document tree node consists of both Element and SElement types.

SEOM Document

RootNode

Element 1 SElement 2

SElement 4 Element 5SElement 3

Figure 5.1 An Example of SEOM Document

Constructor Method

Similar to the DOM Document, the SEOM Document has one child node called the

root node, which provides a starting point for accessing the data in the document. An

SEOM Document is converted from a DOM Document instance. Its constructor

53

method takes a DOM Document (called the data element) and an XML Schema

(called the schema element) as parameters. The constructor method will first parse

the schema element to find the namespace associated with SEOM, and then retrieve

the associated schema declarations.

The constructor method will get all the Elements with the type name same as the

value of name attribute in the Schema. Then the Elements will be validated against

the Schema, and the process will stop if the element structure does not follow the

Schema.

For the matching Elements, they will be transformed to SElements – the generic

SElement constructor will be invoked with the Elements, one in a time, and the

corresponding schema element as parameters. The generic SElement constructor will

return a SElement instance, or throw out exceptions on failures.

When an SElement instance is returned, it will replace the original Element in the

original position, whereas the original Element will be detached and threw away.

Query Method

The SEOM Document implements three query operations:

 The DOM() operation will retrieve all direct children of a target node, which

offers a basic navigation controls to all Element/SElement nodes in the

Document.

 The Data() operation will retrieve the sub-tree of a target node in XML form,

and is particularly useful for retrieving the character data under an

Element/SElement node since that would not be accessible through other query

methods.

 The query() operation is a generic interface that accepts user query. The

query may be resolved to the previous two query operations, or pass to the

query() operation or queryMethod() operation in a target SElement.

The query() operation (refer to Table 4.11) is the only query interface accessible

54

through the API. The method takes a DOM Element as parameter, called query

wrapper, which wraps the query details. The wrapper have a root element

<query></query> with an attribute path which points to the target node using

XPath. The path is represented in the unique XPath expression from the document

root which will return a node set of one node. The unique XPath expression uses the

XPath index operator to restrict the path if multiple elements with the same name

occur on the path.

Another attribute for the wrapper’s root element is queryMethod, which

corresponds to the method to be invoked on the target Element. When this attribute is

absent or is empty-valued, such as:

<query path="/root/myRtree"/>

the queryMethod() method on the target will be invoked, which will retrieve a

list of available query methods from the target. On the other hand, when the attribute

queryMethod is non-empty, the query() method on the target will be invoked

instead, and the wrapper will be passed into the method call as parameter. A list of

Element will be returned. Each Element wraps a result of the query.

However, there are a few exception cases needed special handling. First is when the

queryMethod attribute points to one of the two special function that implemented

on the Document level; and second is when the path points to an Element node but

not an SElement node.

For the first case, i.e. the value for queryMethod is “DOM” or “Data”, the

Document’s query operation, DOM() and Data(), will be invoked and the target

node will not be queried. These methods are same for both Element and SElement

objects.

For the second case, as there is no query operations defined for an Element object,

unless the queryMethod points to “DOM” or “Data” (which will be intercepted

55

and handled by the Document), an error message will be generated and returned.

5.2.2. Abstract SElement Class

Although the SElement data type is defined as a single data type in section 4.1.2, it is

modeled by a number of classes in Java implementation which includes the abstract

class for SElement, the default/generic class for the type, as well as the classes that

actually implement various internal data structures.

InheritsAbstract SElement Class
Implementation

SElement Class (Type 1)

Implementation
SElement Class (Type 2)

Generic SElement Class

Generic SElement instance

Instantiate

Implementation
SElement instance

(Type 1)

Constructor()

Instantiate

Constructor()

Return

New SElement

Figure 5.2 Creation of SElement and Relation Between Different SElement Classes

The Abstract SElement class is the abstract superclass for all SElement data types

and can not be used to instantiate any SElement object. It extends the DOM Element

class to inherit the methods of DOM Element. It also defines abstract methods that

all subtypes of SElement have to implement. The abstract methods include

constructor method, query() method, and queryMethod() method. Operations

for SElement are specified in Table 4.13.

The relation between Abstract SElement class, Generic SElement class,

Implementation SElement classes and their corresponding instance is shown in

Figure 5.2.

56

5.2.3. Generic SElement Class

The Generic SElement class inherits the abstract class and implements the class

constructor, the query() method and the queryMethod() method. It is the only

SElement class accessible to programmers. It is used to instantiate the SElement

objects in a SEOM Document instance.

The Generic SElement class is a wrapper class for implementation SElement classes

that actually implement the internal data structure to hold the data. While the

query() method and the queryMethod() method actually links the call to the

member SElement object directly and do nothing else, however, the constructor

method of Generic SElement class is responsible in identifying the actually class

needed by the structure type specified and load the corresponding class dynamically.

Its constructor method takes a data element and a schema element as the parameters.

The schema element corresponds to the SElement declaration in a SEOM Schema. It

specifies the structure type of the SElement and the parameters needed for the

specific SElement type. The data element is the XML Element that matches the

name attribute in the SElement schema declaration, which will then be wrapped into

an SElement instance. The constructor method will try to fetch the Java class that

implements the structure type, and, on success, initiate the Implementation SElement

with the same parameters that the constructor method had received. The object

returned from the constructor method of the Implementation SElement class will be

wrapped as a member object of the Generic SElement object, and the Generic

SElement object will be returned to the caller.

With the Generic SElement class, XML application programmers can create

SElement instance by simply invoke the constructor element with data element and

the schema element without worrying about the structure type of data. This simplifies

the task for creating SElements.

57

5.2.4. Implementation SElement Classes

The Implementation SElement classes are the group of classes. An Implementation

SElement embeds a data structure to hold the data, and implements query operations

for that particular data structure. The structure for an Implementation SElement is

shown in Figure 5.3. These classes implements interface of the Abstract SElement

class. The three main operations for the SElement types are:

 constructor method;

 queryMethod() method; and

 query() method.

We have implemented an Implementation SElement classes, the RTree, in our

web-based XML query system, and more structure types can be added progressively.

Details of these two classes will be covered in Chapter 6.

Implementation SElement

Parent Node

Child Node Child Node Child Node Child Node

NodeList

Internal Data StructureQuery Operations

Figure 5.3 Structure of an Implementation SElement

58

Constructor method

The Implementation SElement objects are always created and wrapped inside

Generic SElement objects. The constructor method takes a data element and a

schema element as parameters.

Each class contains an internal data structure (e.g. an Rtree). The internal data

structure will be initialized with the parameters specified in the schema element, or

with the attribute values in the data element which links to the parameter by the

schema. Section 4.2.1 describes the difference between a parameter type and an

attribute type in the schema.

queryMethod()

The queryMethod() method publishes the implemented query operations for a

SElement. The method does not take any parameters. It returns a NodeList of

Elements, and each Element wraps details for one query operation. These

Elements are named query wrappers, and will be re-used in submitting queries to the

target SElement. Details of query wrappers will be covered in Section 5.4.1.

query()

The query() method accept queries from the user. Since the set of possible query

operations for different structure types will be different and can not be known in

advance, the query() method is a general query method which takes a query

wrapper and the particular query operation to be invoke is specified in the query

wrapper.

The query operation being called will get the required parameters from the wrapper.

Then the query operation will be performed using the internal data structure. Three

types of results can be generated from a query operation:

 Simple values (string, number, etc.);

 Composite values (an XML Element); and

59

 Child nodes of current SElement node.

In all cases, the results will be wrapped in a result wrapper, which will be covered in

Section 5.4.1.

The first type of result is often generated when querying a property for the data

structure as a whole, e.g. to query the number of nodes in a tree.

The second type of result is generated in more complex queries. For example, when a

retrieving a tuple from a (relational) table alongside with a projection operation to

select some of the wanted columns, a “new” structure will be generated as the result.

The third type of result means that the internal data structure eventually points to the

child nodes of the current SElement, and a query may follow the data structure to get

the child nodes as results. As multiple of child nodes could be returned in a query, the

set of child nodes will be returned in a NodeList. Since the NodeList is only usable

within the running application, additional function is implemented to convert the

“pointers” of data Nodes into XPath representation.

Beside the listed three types of results, however, there is another additional result

type of mixed “structured values” and “child nodes”. This is because a structured

value may point to some childe nodes in some part of it, while the remaining part of

structure is newly created and contains simple values. Nevertheless, there is no

special at all, except that all references to child nodes are encoded as XPath values in

<node></node> XML Element.

5.3 XML Parsing and Data Binding

Parsing is the process of converting the unstructured sequence of characters

representing an XML document into the structured components of XML syntax:

declarations, comments, elements, attributes, processing instructions, and characters.

There are two basic models for actually processing the data in the XML source:

60

 An event-based parser generates a sequence of syntactic events, such as the

“start of a <document> element”, and feed the event into a consumer process.

The set of “call-back methods” are defined under the Simple API for XML

(SAX).

 A tree-based parser reads the nested element structure of the XML source and

builds a tree-like data structure. The tree-like data structure can then be

manipulated through the API associated with the tree data type. The structure

components and the associated operations are defined under the W3C Document

Object Model (DOM).

On the other hand, there is a rise on the use of data binding technology instead of

ordinary XML parsers. Data binding technology automate the mapping between

XML documents and Java objects by compiling an XML schema into one or more

Java classes to handle the details for XML parsing and formatting. Sun

Microsystem’s Java Architecture for XML Binding [34] (JAXB) is a data binding

API and it does receive a lot of attention in the Java-XML developers’ community.

In our research, we enhance the W3C Document Object Model by combining its

tree-like data structure with features in data binding technology. This enhancement

maintains a good balance between the flexibility of DOM and the usability of data

binding technology.

Similar to the data binding technology, our modeling also uses the XML Schema as

hints to bind XML data into Java classes. However, instead of generating Java

classes by compiling the schema, our Java classes use pre-defined models and

pre-built Java classes, which offers much more complicated manipulations with

supports in the internal data structure.

5.3.1. Parsing Process

The parsing process of SEOM Document involves both XML document and the

Schema document. To begin with, both documents are parsed into DOM Document

objects by DOM parser. The resulting Document objects are called data element and

61

schema element respectively.

The SEOM Document constructor takes the data element and schema element as

parameters. The data element will be assigned as the root node of the Document; the

schema element will also be processed to retrieve the SElement declarations. For

each SElement declaration, the name attribute represents the type name of XML

Elements to be converted: a node of the schema element, which represents the

current SElement declaration, and a node of data element, which matches the name

specified in the declaration, will be passed to the constructor method of Generic

SElement as a new data element and a new schema element respectively. Figure 5.4

illustrate the parsing process of SEOM Document.

SEOM Document Generic SElement
Implementation

SElement

(3) Create new
SElement

(4) Create new
SElement

(5) Wrapped in(6) Replace
original
Element

Data Element

XML Source

(1a) DOM Parser

(2a) Wrapped in

Schema Element

SEOM Schema

(1b) DOM Parser

(2b) Wrapped in

Figure 5.4 Parsing Process of SEOM Document

As mentioned in section 5.2.3, a Generic SElement wraps an Implementation

SElement that actually implements the data structure. The class constructor of

Generic SElement will fetch the needed Java class of the Implementation SElement

according to the class attribute of the schema element, and instantiate the

Implementation SElement object with the data element and schema element.

62

The constructor method of Implementation SElement takes a data element and a

schema element as parameters. In the Implementation SElement constructor method,

the data element will be validated against the schema element. Then the internal data

structure will be initialized with the parameters specified in the schema element or in

the data element, and the data values in the data element will also be copied to the

internal data structure. However, only Elements declared as RootNode type and

InternalNode type will be read and converted to the internal data structure;

LeafNode type Element and its subtree will be attached to the SElement as its

direct children and they will be reference by the internal data structure using their

index number.

The returned Implementation SElement instance will then be wrapped as a member

of the caller, i.e. the Generic SElement object. Moreover, the Generic SElement

object will replace the original Element in its position, whereas the original Element

will be detached and threw away. The SEOM Document is constructed by repeating

the operations of replacing XML Element with SElement for all Elements that

matches the declaration in the Schema.

5.4 Querying

There are two different approaches in querying an SEOM Document. The query

wrapper approach is based on interactive exchanging of messages between the client

user and an SEOM Document instance, while the SEOM-Extended XPath is

developed based on the query wrapper by encoding the information as a string that

can be embedded in the XPath.

5.4.1. Query Wrapper and Result Wrapper

A query wrapper is basically an XML Element that encapsulates the information of

the query. A wrapper is represented by the XML Element <query></query>, and

there are two required parameters, path and queryMethod. Therefore the

skeleton of a query wrapper looks like:

63

<query path=”” queryMethod=””>

</query>

For the attribute path, it specifies the target of performing the query by XPath

representation. The path is represented in the unique XPath expression from the

document root which will return a node set of one node. The unique XPath

expression uses the XPath index operator to restrict the path if multiple elements

with the same name occur on the path.

For the attribute queryMethod, it is a keyword that represents the query method to

be invoked. Different SElements may implements different query methods, and thus

have different keywords. To retrieve a list of query methods available for current

SElement, a query wrapper with null or empty queryMethod value can be

submitted.

Get Query Methods

Since there could be more than one query method implemented in an SElement, and

different SElements implement a different sets of query methods, it will be necessary

to retrieve the list of query methods available on a particular SElement object before

the user submitting a query.

To get the list of query methods, a query wrapper with null or empty value in

queryMethod attribute is used. For example:

<query path=”/root/myRtree”>

</query>

or

<query path=”/root/myRtree” queryMethod=””>

</query>

64

could be used to retrieve the list of query methods available.

Consider that the returned result will usually used in submitting another query to the

current SElement, it will be useful to make the result in the form of query wrapper

such that the users can submit the subsequent queries more easily. Assuming that the

SElement “/root/myRtree” has three query methods: exact, range, and knn, a

request on the list of query methods on the SElement may results in a NodeList of

three XML Elements:

<query path=”/root/myRtree” queryMethod=”exact”></query>

<query path=”/root/myRtree” queryMethod=”range”></query>

<query path=”/root/myRtree” queryMethod=”knn”></query>

However, besides the query method name itself, a query also takes a number of

parameters. Therefore, the results must also include the parameters needed for a

specific query method. As a result, we will put the parameters need for a query

method as a child Element of the query wrapper of that query method, and a outer

wrapper Element <queries></queries> will be added as the root, thus the

previous list of query methods becomes:

<queries>

 <query path=”/root/myRtree” queryMethod=”exact”>

 <x/>

 <y/>

 </query>

 <query path=”/root/myRtree” queryMethod=”range”>

 <x1/>

 <x2/>

 <y1/>

 <y2/>

 </query>

 <query path=”/root/myRtree” queryMethod=”knn”>

65

 <point/>

 <k/>

 </query>

</queries>

When the client receive the list, the XML source may be converted to a DOM

structure, then the user can easily select a <query></query> subtree, fill the

parameters, and submit another query to the SElement. In order to avoid being too

complicated in usage, the parameter Elements accept any valid XML structure as

values and will be validated at the server side, and the usage of each parameters have

to be documented elsewhere.

Submit Query

After getting the NodeList holding the list of query wrappers, a particular query

method can be selected by identifying its queryMethod attribute. For example, the

first method of the previous example is selected, i.e.

<query path=”/root/myRtree” queryMethod=”exact”>

 <x/>

 <y/>

</query>

With a query wrapper, values of parameters can be inserted into the corresponding

child Elements. For simplicity, the valid range/type of values for a parameter is

manually documented elsewhere. Following is the query wrapper for the query

method “exact” with x equals to 3 and y equals to 4:

<query path=”/root/myRtree” queryMethod=”exact”>

 <x>3</x>

 <y>4</y>

</query>

66

Query Results

With a query wrapper, users can submit queries to the SElement by filling the

parameters in the wrapper Element (e.g. <x></x> and <y></y> in the example)

and then invoking the query() method on the SElement with that query wrapper.

The SElement will execute the query with the parameters, and three are three types

of possible return values:

 Simple values (string, number, etc.);

 Composite values (an XML Element); and

 Child nodes of current SElement node.

In all cases, the results will be wrapped in a result wrapper.

For a result wrapper, it is basically an XML Element <results></results>. It

wraps the results of query as well as the corresponding query wrapper such that a

remote client can always identify the query-result pairs. Individual results are

wrapped in XML Elements <result></result>. For the embedded query

wrapper, its path attribute and queryMethod attribute is moved to the result

wrapper’s root. Following is the skeleton of a result wrapper for the query in

previous section:

<results path=”/root/myRtree” queryMethod=”exact”>

 <query>

 <x>3</x>

 <y>4</y>

 </query>

 <result>...</result>

 <result>...</result>

 ...

</results>

For the result values, they will be put in the <result></result> Element. Storing the

67

first and the second result types are similar in a sense that they are ordinary XML

data and can be naturally embedded in another XML Element. However, for the third

type, an XPath representation is needed because the Child node itself cannot be

embedded for two reasons:

 There is one and only one parent Node for any Element, therefore the Child

node cannot have the original SElement and the <result></result>

Element as parents at the same time.

 Duplication of a node on the tree may results in unpredictably large subtree, and

thus a very long XML document.

This XPath representation use the unique XPath expression, moreover, it must

address the need for the result type of mixed “structured values” and “child nodes”. A

solution to this is to use an additional Element <node/> with attribute path and no

child Element. SEOM namespace is added to avoid name collision with Elements in

the result data. Consequently, we add the namespace definition to the result wrapper

and to the SEOM-specific Elements in the wrapper. For example, the previous

example results in two child Nodes will looks like:

<seom:results path=”/root/myRtree” queryMethod=”exact”

 xmlns:seom="http://www.cse.cuhk.edu.hk/~ckma1/SEOM">

 <seom:query>

 <seom:x>3</seom:x>

 <seom:y>4</seom:y>

 </seom:query>

 <seom:result>

 <seom:node path=”/root/myRtree/data[1]”/>

 </seom:result>

 <seom:result>

 <seom:node path=”/root/myRtree/data[3]”/>

 </seom:result>

68

</results>

For queries returns other result types, the <seom:node/> Element will be replaced

by the results. The <seom:node/> Element is also used to represent a node on the

Document composite value types.

5.4.2. Embedding in XPath

The primary purpose of XPath is to address parts of an XML document. It uses a

compact, non-XML syntax to facilitate use of XPath within URIs and XML attribute

values. XPath operates on the abstract, logical structure of an XML document, rather

than its surface syntax, and XPath gets its name from its use of a path notation as in

URLs for navigating through the hierarchical structure of an XML document.

XPath also provides functions for manipulation of strings, numbers and Booleans.

These functions provide us with more sophisticated, subtler ways of making

selections within the source tree. The use of XPath functions takes us beyond being

able to simply select nodes by names. Moreover, it is likely that the implementation

of XPath function can be optimized and is more efficient that the location path.

Query Function

To make XPath works on the SEOM Documents, we extend the XPath functions to

allow it making queries to the SElements. We will introduce a new XPath function

query() to facilitate the need for making queries in SEOM Documents.

To submit a query, we have to specify a few parameters:

 a target SElement node,

 a method name, and

 a set of parameters specified in name-value pairs.

Therefore, a query() will has the form:

69

query("/document/SElement", "exact", "x=3", "y=4")

where the first parameter is an unique XPath expression pointing to an SElement

node; the second parameter is the method name, which is the same as the value of

attribute queryMethod in an query wrapper; the third parameter and all the

following parameters are strings that representing the name-value parameters pairs

for the exact query method and the name and value are separated by a "=" sign.

However, as stated in the XPath specification, an XPath expression can only results

in one of the following four basic types:

 node-set (an unordered collection of nodes without duplicates)

 boolean (true or false)

 number (a floating-point number)

 string (a sequence of UCS characters)

Since composite result is not possible to be represented, query functions which yields

composite result is disabled.

Selecting Nodes with Predicate

In the XPath convention, selecting a subset of nodes from a node-set is often done by

filtering the node-set with a predicate.

In an XPath expression, the location path consists of a sequence of one or more

location steps separated by “/” and it selects a set of nodes relative to the context

node. A location step consists of an axis, a node test, and zero or more predicates.

The node-set selected by the location step is the node-set that results from generating

an initial node-set from the axis and node-test, and then filtering that node-set by

each of the predicates in turn.

Since the axis and node-test is defined on the tree structure itself, it will be more

appropriate to add query functions by extending the predicate.

70

A predicate is specified in a pair of square brackets. It filters a node-set with respect

to an axis to produce a new node-set. For each node in the node-set to be filtered, the

predicate expression is evaluated with that node as the context node. The result of

expression will be converted to a boolean. If the result is a number, the result will be

converted to true if the number is equal to the context position and will be converted

to false otherwise; if the result is not a number, then the result will be converted as if

by a call to the boolean function. Thus a location path para[3] is equivalent to

para[position()=3].

In order to integrate the SElement query in the XPath expression, the query methods

for SElements have to be embedded as function calls in a predicate expression with

the left nodes of the SElement as the context node. Since the context node is given,

the target SElement is known (which is the parent axis of the context node) and

would not be necessary to include as a parameter in the query function. The

following example represents a query on the SElement myRtree which have left

nodes with node type data:

/myRtree/data[query("exact", "x=3", "y=4")]

This XPath will retrieve a set of Element with name data and they are the child

nodes for the SElement myRtree. Now, the first parameter is the method name, and

other parameters are the strings that represents the name-value parameters pairs for

the exact query method.

As the predicate filter the nodes use a boolean value, the function call should results

in a boolean value too. To achieve this, the context position is implicitly passed into

the function. The function call then evaluates the query as a set of indexing numbers

corresponding to the set of resulting nodes (as in the query wrapper approach). The

context position is compared with the set, returns true if it is existed in the set, and

false if it is not.

71

Chapter 6.

An Web-based SEOM Document

Query System

6.1 Web-based SEOM Document Query System

In our work, we aimed at building a XML query system that based on the native

XML approach. The SEOM Document Query System is a variation of ordinary XML

query system in which the XML documents are transformed into the SEOM data

model for querying. The SEOM extension in XML Schema will include metadata to

specify XML elements in SEOM, which will be mapped to Java classes and being

instantiated in the server space

Instead of mining the implicit structure information from documents [14], our

approach in explicitly declaring the structural metadata allows classes for different

structured-elements to be implemented, which may provide a different set of query

operations. The structured data will be constructed as SElement, such that queries

can be made to the internal data structure.

6.2 Client-Server Architecture

Our Web-based SEOM Document Query System adopts the client-server model.

Sever and clients are separate nodes in a network, and the simplified interaction

processes between them are as follows:

72

 Client sends a request for information or action to the server;

 Server receives the request and generates respond;

 Client receives the respond and display the information to the user.

For the communication between server and client, the HyperText Transfer Protocol

(HTTP) is used. And the information being exchanged is encoded as XML messages.

Figure 6.1 shows the architecture of the Web-based SEOM Document Query System.

The leaf hand side shows the server components, and the left is the client side.

Simply speaking, the server is a Java application that contains the SEOM Document

instances and provides allow the clients access the Documents via the Internet. The

client is a web browser that allow the users input queries and view the results.

73

S
E

lem
en

t C
lasses w

ith
 S

p
ecific D

ata S
tructure

X
M

L
 D

o
cu

m
en

t

X
M

L
 S

ch
em

a

Interm
ediate

D
O

M
 D

ata

S
tru

ctu
re

S
E

O
M

D
ocum

en
t

A
b
stract

S
E

lem
ent

R
T

ree
R

elation
al

G
eneric

S
E

lem
en

t

Network Interface

E
n
cap

sulation

Extend

E
xtend

U
se in

P
arse

C
onv

ert to

C
o
m

pile

E
xten

ded

S
ch

em
a

D
efin

in
g S

chem
a/

D
eclaring

 S
tru

ctu
re

E
lem

en
t

D
eclaration

F
etch

an
d

E
m

b
ed

Q
uery

in
g

X
M

L
 D

ata th
rou

gh

H
T

T
P

In
ternet E

x
plo

rer

H
T

M
L

D
O

M
 D

ata

O
b
ject

X
S

L

O
b
ject

D
O

M

R
ead

er

X
S

L

T
ransfo

rm
ation

R
eq

uest

E
ncod

in
g

D
O

M

R
equ

est

O
b
ject

S
erialize

S
erv

er S
id

e
C

lient S
ide

Figure 6.1 The Architecture of the Web-based SEOM Document Query System

74

6.3 The Server

The server program is a Java application developed on the J2SE platform. It handles

the processing logics for the query system. Its major functions include data storage,

and handling client requests. We will reveal the server processes in the following

sub-sections.

6.3.1. Data Loading

The purpose of a query system is to query for information from a data repository.

Our system is targeted in querying XML documents using the SEOM model. The

documents are associated with SEOM Schema to define the data structure model of

the elements.

On starting up the system, the server will load a set of XML documents from the

document directory. A configuration file maintains the list of documents to be loaded

and associate the documents with "document names", which may or may not be the

same as the document's filename. The documents are parsed into DOM data

structures, which will be converted into SEOM Document. The parsing process of

SEOM Document is described in section 5.3. After loading the list of XML

documents into SEOM Document objects, the system is ready for being queried.

6.3.2. Implemented SElement – R-Tree

In our system, an SElement which can represent an R-Tree [15] is implemented.

The R-tree is one of the most cited spatial data structures for indexing spatial data

type. It is a modification of B-tree. It is a balanced tree that splits the space into

rectangles which can overlap. Each node except the root contains from m to M

children, where 2 ≤ m ≤ M/2. The root contains at least 2 children unless it is a leaf.

Figure 6.2 shows an example of r-tree of order 3.

75

1

2

A

B3

5
6

7
4

C

A B C

3 51 2 4 6 7

Figure 6.2 R-Tree

The node represents the minimum bounding rectangle containing all the objects of its

subtree. Each of children of the node is split recursively. Pointers to the data objects

are stored in the leaf nodes. As the bounding rectangle can be overlapped, it could be

necessary to search more than one branch of the tree. Thus it is important to separate

the rectangles as much as possible. The problem is handled by using some kind of

heuristics during the insertion of data objects such as inserting the data into a leaf

node which will cause minimum changes in the tree.

Query Operations

There are three main types of query operation on a R-tree:

• Exact Search

• Region Search

• K-Nearest Neighbors Search

For exact search, a coordinate tuple is given as parameter. All minimum bounding

rectangles that cover the point is searched to see if a data point exist at the given

coordinate. Assuming the element “/rtree” is an Rtree SElement, the query

wrapper for exact search has the form:

<query path=”/rtree” queryMethod=”exact”>

76

 <x/>

 <y/>

</query>

For region search, a rectangle is given as parameter by specifying the coordinates of

its bounding faces. Minimum bounding rectangles that have overlapping area with

the given rectangle is searched. Any data points existed in the given rectangle is

returned. The query wrapper for region search has the form:

<query path=”/rtree” queryMethod=”region”>

 <x1/>

 <x2/>

 <y1/>

 <y2/>

</query>

where x1 < x2, y1 <y2 and they defines the box for the searching region.

For k-nearest neighbors search (knn-search), one of the data point is given as

parameter, and a number k is specified too. The k nearest neighbors is found by using

a branch-and-bound R-tree traversal algorithm:

• The nearest neighbor distances are initialized to ∞.

• A depth first traversal is begun at the root.

(i) at leaf level:

1. compute the distance between data is computed

2. if the distance is smaller then previous found distances, then update

the distances to the new one

(ii) at non-leaf level:

77

1. generate the branch list

2. sorted the branch list based on the minimum distance to the input

point

3. branches with distance larger than all the nearest neighbor distances

will be dropped

4. iterate the remaining branches recursively, and go to (i) or (ii)

accordingly.

The query wrapper for knn-search is:

<query path=”/rtree” queryMethod=”knn”>

 <point/>

 <k/>

</query>

where <point></point> will take the XPath for the given point, and the value

for k is specified in <k></k>.

Schema

An example of schema for R-tree is given in below, explanations are given in

comments (i.e. text between “<!--“ and “-->”)among the codes.

<seom:selement name=”myRtree” class=”Rtree”>

<!—the Rtree is binded to tag-name “myRtree” in XML document-->

 <se:rootNode>

 <se:attribute para=”BRANCH_FACTOR” value=”3”/>

 <se:attribute para=”LEAF_NUMBER” value=”3”/>

 <!— BRANCH_FACTOR and LEAF_NUMBER are internal variables

 of the Rtree class which represents the maximum number

 of branch and leaf in a node. They are assigned the

78

 value of 3 here -->

 <se:value>

 <se:internalNode ref=”rtreeInternal” maxOccurs=”3”/>

 </se:value>

 </se:rootNode>

 <se:internalNode id=”rtreeInternal” name=”node”>

 <se:attribute para=”NORTH” name=”N”/>

 <se:attribute para=”SOUTH” name=”S”/>

 <se:attribute para=”EAST” name=”E”/>

 <se:attribute para=”WEST” name=”W”/>

 <!--NORTH, SOUTH, EAST, WEST are internal variables of

 the Rtree class which represents the minimum bounding

 box. They are bind to attributes N, S, E, and W in the

 XML document -->

 <se:value>

 <xsd:choice>

 <se:internalNode

 ref=”rtreeInternal” maxOccurs=”3”/>

 <se:leafNode ref=”rtreeLeaf” maxOccurs=”3”/>

 <!—The children of an internal is either internal

 node or leaf node -->

 </xsd:choice>

 </se:value>

 </se:internalNode>

 <se:leafNode id=”rtreeLeaf” name=”data”>

 <se:attribute para=”X” name=”x”/>

 <se:attribuet para=”Y” name=”y”/>

 <!—X and Y are the coordinates of an data object, and

 they are bind to attributes x and y respectively -->

 <se:value>

 <xsd:any/>

79

 <!—The child of a leaf node can be any valid XML type

 as defined by <xsd:any/> -->

 </se:value>

 </se:leafNode>

</seom:selement>

Example SElement

Assuming the schema defined in previous section, we will give a piece of XML data

corresponding to the definition as an example.

<myRtree>

 <node N="7" S="3" E="6" W="1">

 <node N="7" S="5" E="2" W="1">

 <data x="1" y="5">Tokyo</data>

 <data x="2" y="7">Beijing</data>

 </node>

 <node N="4" S="3" E="6" W="4">

 <data x="4" y="3">Hong Kong</data>

 <data x="6" y="4">Bangkok</data>

 </node>

 </node>

 <node N="6" S="4" E="16" W="8">

 <node N="6" S="5" E="16" W="9">

 <data x="9" y="5">Paris</data>

 <data x="16" y="6">London</data>

 </node>

 <node N="5" S="4" E="11" W="8">

 <data x="11" y="5">New York</data>

 <data x="8" y="4">San Fancisco</data>

 </node>

 </node>

80

</myRTree>

6.3.3. Network Interface

The network interface of the server is responsible to accept requests from the Internet,

decode the message, pass the query to target document, then collect the results and

reply to the client.

In the modular system design, the SEOM Document object is separated from the

accessing interface. Whereas a GUI can be implemented directly over the SEOM

Document to form a local query system, we implement the network interface such

that the content of SEOM Documents could be accessed over the Internet. The

implemented network interface is using the HTTP protocol with POST method.

During initialization, the network interface binds itself to a custom network port and

listens to the port continuously. Whenever a request is received, a new thread will be

created to handle the request. A Java InputStreamReader will be used to get the

contents of the request. The HTTP header is not used, and the message body will be

passed to a DOM builder to form a wrapper object. The wrapper object is the same as

those describe in the previous section, except that a Document name will be added at

the beginning of the path attribute to identify the instance of SEOM Document to

be invoke. For example:

<query path="myDocument1/root/myRtree"/>

refers to the Element of XPath /root/myRtree in the document named

myDocument1. The document name in the “path” attribute will be removed when

network interface calls the target document's query method, i.e. when the wrapper

becomes:

<query path="/root/myRtree"/>

81

The result returned by SEOM Document is a NodeList of Elements/SElements. The

Network Interface will serialize the NodeList into XML-formatted text stream before

sending back to the request client. There are two types of request, one is the query for

available methods, another is to query for nodes using a given method. For the first

one, the results returned by SEOM Document are a list of query method wrappers.

An outer wrapper will be needed to make a well-form XML document, therefore we

will encapsulate the list with a pair of <reply></reply> tags as in the following:

<reply>

 <query path="/root/myRtree"

 queryMethod="nearestNeighbour">

 <x/>

 <y/>

 </query>

 <query path="/root/myRtree" queryMethod="DOM"/>

 <query path="/root/myRtree" queryMethod="Data"/>

</reply>

For the later one, the results returned by SEOM Document are a NodeList of children

of the target Element/SElement. The pointers to the children Nodes have to be

represented in XPath such that the client can use the XPaths to reference to the

Nodes. The XPaths are put in the path attribute of <node/> Elements. For

example, in a query to /root/myRtree which results in the child Elements of

idnex 1, 3, 4, and 7, the reply will be:

<reply>

 <node path=”/root/myRtree/data[1]”/>

 <node path=”/root/myRtree/data[3]”/>

 <node path=”/root/myRtree/data[4]”/>

 <node path=”/root/myRtree/data[7]”/>

</reply>

82

After sending out the reply, the processing thread will end and the network

connection to the client will be closed. New connections will be established in

subsequent requests.

6.4 Client Side

For our web-based query system, a web browser functions as the client platform and

allows easy access to the server’s information through the Internet. The client’s

major function is to interact with the user, such that the user can submit queries to the

server and view the results. These functions are integrated in a HTML page by using

scripting language and other XML technologies.

6.4.1. The Interface

We choose the Microsoft Internet Explorer 6.0 as the client platform. It has good

support for XML. It has “XML data islands” to store XML content inside a HTML

document, and “XML ActiveX objects” to manipulate XML data programmatically.

These XML supporting feature makes it an ideal platform for the web-client platform

of an XML-based systems.

A single HTML page is used to construct the interface of our web-client (Figure 6.3).

It embeds the program codes to control the message flow and the XSL stylesheet to

control the presentation of XML data.

On the user interface, user can specify the target server, the SEOM Document to be

queried, and the target node (Figure 6.4).

There are also two panels, the Navigation Panel (Figure 6.5) and the Information

Panel (Figure 6.6). When a node is visited, its available query methods will be

retrieved and being displayed at the Navigation Panel. User can then select on of the

query methods from the list. A dialog box will pop up to prompt for required

parameters. Then the request will be sent to the server. The server will process and

reply the request. When the reply contains a set of nodes, the nodes will be displayed

83

at the Navigation Panel for the user to select; or when the reply contains other results

or information, it will be displayed at the Information Panel.

Figure 6.3 User Interface of the Web-Client

Figure 6.4 Server Address, Document Name, and Context Node

84

Figure 6.5 The Navigation Panel and the Parameter Dialog

Figure 6.6 The Information Panel

85

6.4.2. Programmatic Controls

Java Scripting technology is used in the HTML page to control the interaction

between user and the server. Figure 6.7 shows the program flow of the client:

Initialize variable and objects

Wait for user input

Select a Node
Select a Query

Method

Retrieve and display

available query methods
Prompt for parameters

Display result
node-set

Display results and
other information

Start

Result is not
node list

Result is a node
list

Figure 6.7 Program Flow of Client

When the client starts, the internal variables and ActiveX object will be initialized,

and the interface will be draw. User may specify a server and a document to be

queried, then the root of the document will be retrieved. User may then interact with

the system by submitting a query or selecting a node (node selection is possible only

after a query operation). The client will submit queries to the server, and update the

available query methods, the node list, or the results in the Information Panel

according to the server's replies.

86

XML Islands

With Internet Explorer 5.0 and higher, XML data can be embedded within HTML

pages in Data Islands using the <xml> tag.

We have use the XML Islands to store the XSL stylesheets. By using the

transformNode() method of XMLDOM ActiveX object, these stylesheets

transform the XML data received from the server to a format that can be rendered by

the browser. Figure 6.8 shows a simplified XSL stylesheet in XML Island which is

responsible for displaying the parameter dialog box.

<xml id="dialogXSL">

 <xsl:stylesheet xmlns:xsl="http://www.w3.org/TR/WD-xsl">

 <xsl:template match = '/'>

 Parameters:

 <xsl:for-each select="*">

 <xsl:node-name/>:

 <xsl:element name="input">

 <xsl:attribute name="type">text</xsl:attribute>

 <xsl:attribute name="onchange">

 changePara("<xsl:node-name/>", this.value)

 </xsl:attribute>

 </xsl:element>

 </xsl:for-each>

 go!

 </xsl:template>

 </xsl:stylesheet>

</xml>

Figure 6.8 XSL Stylesheet in XML Island

87

XML ActiveX Objects

The XMLDOM ActiveX Object and the XMLHTTP ActiveX Object is used at the

client side to manipulate the XML data.

The XMLDOM ActiveX Object resembles the DOM interface. It exposes methods

for loading and saving XML, accessing the document tree, creating new nodes, etc.

The XMLHTTP ActiveX Object, on the other hand, is responsible for accessing

XML data from a Web server. It facilitates parsing the data into XMLDOM object,

and post XML data directly to a Hypertext Transfer Protocol (HTTP) server.

When submitting a request, a message is first constructed by using the XMLDOM

object. The XMLDOM object will then be serialized using the XMLDOM.xml

property and sent out using the POST method provided by the XMLHTTP Object.

After sending out the request, the browser will wait for the respond from the server.

The respond is retrieve using the XMLHTTP.reponseText property. The

XMLDOM's loadXML() method will then convert the respond message into a

DOM structure.

These two XML-relate ActiveX Objects abstract the manipulation of XML data,

which makes the web browser capable to act as the client platform for handling

complicated XML data.

88

Chapter 7.

Evaluation

In this chapter, we will evaluate our research project in several perspectives. Since

XPath is the official and the most popular accessing method for XML document, we

will first present the experiments of querying spatial data in a XML document using

XPath versus using an RTree model under SEOM. Then we will compare our model

with several existing XML accessing methods features-by-features. Moreover, we

will evaluate the advantages and disadvantages in applying our model, and raise

some possible enhancements to strengthen its applicability.

7.1 Experiment with Synthetic Data

In order to demonstrate how a suitable data modeling speeds up query responds, we

carried out experiments to compare making spatial queries by SEOM and by XPath.

The data sets are objects in a two-dimension space. For each set of data, it will be

prepared in two forms, one is optimized for XPath query, and another is optimized

for R-Tree query under SEOM. For the later one, a packed R-Tree is built from the

static data set which reduces the overlapping between the MBRs of the R-Tree.

To measure the performances, we test the document construction time and the

random seeking time for both models:

 Document construction time - measure the time taken to construct the

representation of a document.

 Random seeking time - measure the time of random seeking.

89

The test framework uses the approach of running the document construction test

some number of times (10 for the results shown) on a document, tracking the best

and average times for that test. When the document construction test is completed,

we move on to the random seeking time test on the same document. After both tests

have been completed on one document, the process repeats with the next document.

There are 10 documents of each model with increasing document sizes, starting from

100 data objects, and doubling the data size in each next document, up to 51200.

Figure 7.1 shows that the Document Construction Time of both XPath and SEOM

are growing roughly linear to the growth of data size, while the SEOM impose a

larger overhead. This is concise to our expectation, since both XPath and SEOM are

based on a DOM structure.

Document Construction Time

0

10

20

30

40

50

60

70

80

0 10000 20000 30000 40000 50000 60000

Data Size

T
im

e
(s

)

Xpath

SEOM(Rtree)

Figure 7.1 Document Construction Time

90

Random Seeking Time

0

20

40

60

80

100

120

0 10000 20000 30000 40000 50000 60000

Data Size

T
im

e
(s

)

Xpath

SEOM(Rtree)

Figure 7.2 Random Seeking Time

Figure 7.2 shows the relationship between the Random Seeking Time of XPath and

SEOM using the Rtree model. The graph shows that the XPath seeking time

increases linearly with data size, while the SEOM achieves a much better

performance than linear growth. The result is expected since SEOM uses an indexed

structure (i.e. RTree) instead of sequentially searching the records as in XPath.

The experiments show that SEOM out-performs conventional accessing methods for

XML files. However, each Data Model aims at processing a specific type of data and

is not applicable to generic XML data, and the XML data have to be pre-processed

into the way as specified by the corresponding Schema, which could be a time

consuming process too.

7.2 Qualitative Comparison

Besides the improved searching performance, SEOM also provides additional

features that were not provided in current XML accessing techniques. Table 7.1

summarizes some features in SEOM and two other popular XML query languages:

91

 SEOM XPath XQuery

Schema awareness Yes No Yes

Functions support Yes Limited Yes

XML-based syntax Yes Yes No

Indexing Structure Yes No No

Accelerated Query
Processing

Yes No Partial

Expressive Power Medium Weak Strong

Jointly Uses with
non-XML data
sources

Yes No No

Applicability Specific uses Generic uses Generic uses

Data Model Tailored complex
nodes (SElement)

Nodes & Branches
only

Nodes & Branches
only

Table 7.1 Comparison of XML accessing methods

7.3 Advantages

Our Structured-Element Object Model for XML data described in this thesis has

certain strengths and weaknesses. We will discuss its pros and cons in this and the

coming section.

Generally speaking, our model enjoys the following advantages:

 It separates logical data representation from the physical data representation.

The modeling of multiple XML elements as a single logical unit hides

unnecessary details that programmers would not be interested in. This object

encapsulation approach coincides with the object-oriented programming

paradigm, and favors modular development and reuse of software components.

 It defines a set of schema constructs for mapping multiple XML elements into a

single SElement object. Besides providing metadata in parsing process, the

schema allows different applications to process the same piece of XML data in

92

the same way and facilitate information exchange.

 It separates data representation from objects implementation; the object can be

optimized the process a specific type of data. Moreover, data can be validate,

and the internal dependence can be checked when an SElement object

instantiates.

 It is based on the DOM model and still shares the DOM interface. Many

technologies that are applicable to DOM can be used in SEOM also. XPath and

XSLT are examples of these technologies.

 The schema is loosely tied to the SElement. This allows greater flexibility in the

SElement implementation, and thus results in better extensibility.

These advantages are very important in XML application development. Our model

combines the features from Document Object Model as well as data binding

technologies, which must be a powerful tool for the programmers to development

better XML applications.

7.4 Disadvantages

Though our model has many advantages for representing complex data objects in

XML, it also has some drawbacks, however. Here listed below are the disadvantages

of our model.

 The overhead in parsing XML file into SEOM Document is longer than parsing

the file into DOM Document. This is because the SElement has to check the

validity of the XML data, and it has to build and indexing structure instead of

simply encapsulates the data value in an Element.

 Our model relies on using a schema, which may brings sort of inconvenience.

Moreover, our schema is not an official one like the W3C DOM, fortunately, the

use of XML namespace makes it possible to have both type of schema exists

together, and this is our approach.

Actually, these disadvantages are the tradeoffs of some good features. Though

building of index structures add extra workload to the system, they provide great

93

improvement in efficiency in use. Also, the use of schema can easily to be employed

in other XML applications, hence increasing the extensibility and flexibility of the

model.

7.5 Means of Enhancement

Despite that our model enhances the DOM to make it more usable with complex data

object, there are rooms for improvement. Some of the possible enhancements are

listed below:

 Currently the model is addressing data access only. It is possible to include

other manipulation methods in the SElement model. Operations for inserting

child nodes, removing child nodes, may involve changes in the internal data

structure; the SElement model will have to define the constraints for these

operations.

 Currently the schema only defines a hierarchical relationship for the nodes. It is

possible to include referencing mechanisms (e.g. XPointers) to form a graph

relation. Graph representation is more general and expressive that the tree

representation.

94

Chapter 8.

Conclusion

In this thesis, we have presented the Structured-Element Object Model for XML data.

The model combines features from the Document Object Model and the data binding

technologies. It adopts the tree structure of DOM; meanwhile, it introduces the

additional SElement type, which represents logical entities as the objects used in data

binding technologies. The SElement resembles the interface of a DOM Element, and

it implements additional interface to allow queries being made to its internal data

members. The SEOM Document brings great flexibility in representing complex data

objects under a hierarchical organization.

In order to bind the physical XML data representation to the Java classes that

implement SElement type, we define a schema for declaring SElement objects. The

schema not only specifies the element structure of an XML element that corresponds

to the root node of an SElement object, it also specifies how the XML elements (of

different tag names) will be mapped to the target object’s data member. In fact, the

schema is not only used in parsing XML files. It provides a framework that people

can interchange their information on structures. By compromising on a standard

modeling and an interface specification, different application can process an XML

document in exactly the same way, especially for application at two ends of a

client-server system.

After presenting the classes that made up SElement type and the parsing process

from XML file to SEOM document, we introduce a mechanism to support querying

95

SElements. The mechanism is based on exchanging of XML wrapper messages. We

wrap the queries with required parameters in XML messages. The result

values/structures/nodes are also wrapped in XML messages. This wrapper method is

particularly suitable for interactive knowledge discovering in XML repository.

We also extend the XPath to support filtering of nodes using SElement. We introduce

a query function for SElement nodes, which can be embedded into the predicate term

of the XPath location step. The query function takes parameters and returns the

resulting nodes as if a query is made to the SElement. The extended XPath is very

useful and handy when the document structure is known.

Finally, we implement a web-based XML query system; the system uses SEOM at

server side. We have implemented an R-Tree SElement and used it in an SEOM

Document. The web browser client allows users to examine the SEOM document;

we can choose different query methods at SElement nodes, submit queries, and select

a node to navigate from the result set. This XML query system demonstrates the

usability of our work.

To conclude, our contributions are:

 An object model combining the feature of DOM and data binding technology;

 A schema for mapping physical XML data into Java classes that implement

logical entities;

 A mechanism to support querying SElements by exchanging XML wrapper

messages;

 An extension of the XPath to support filtering nodes using the query function in

SElement;

 A web-based XML query system using SEOM has been implemented to

demonstrate our work.

Our modeling is generic and can be used for a wide range of complex data objects. It

provides a concise and neat interface for accessing complex data objects and

maintains the generic tree structure of XML document. With consideration to the

96

parsing overhead, our mechanism is still very suitable to be applied to various XML

applications, which will be the next generation data management technology.

97

Bibliography

1. Fabio Arciniegas A., XML developer’s guide, McGraw-Hill, ISBN 0072126469,

New York, 2001.

2. Kal Ahmed et al., Professional XML meta data, Wrox Press, ISBN 1861004516,

Birmingham, UK, 2001.

3. Mohammad Akif et al., Java XML programmer’s reference, Wrox Press, ISBN

1861005202, Birmingham, UK, 2001.

4. Suad Alagic, Institutions: Integrating Objects, XML and Databases, Information

& Software Technology, Volume 44, Number 4, March 2002, pp. 207-216.

5. Toshiyuki Amagasa, Masatoshi Yoshikawa, and Shunsuke Uemura, A Data

Model for Temporal XML Documents. Proceedings of 11th International

Workshop on Database and Expert Systems Applications (DEXA'00), 6-8

September 2000, Greenwich, London, UK, pp. 334-344.

6. Richard Anderson et al., Professional XML, Wrox Press, ISBN 1861003110,

Birmingham, UK, 2000.

7. Dirk Bartels, A Comparison between Relational and Object Oriented Database

systems for Object Oriented Application Development, FastObject White Paper,

available at

http://www.fastobjects.de/pdf/FO_WHIT_OOvsREL_30MAY01_EN.pdf

8. Elisa Bertino and Elena Ferrari, XML and Data Integration, IEEE Computer

Society, November/December 2001 (Vol.5, No.6), pp.75-76.

98

9. Kurt Cagle et al., Professional XML schemas, Wrox Press, ISBN 1861003110,

Birmingham, UK, 2001.

10. Tuong Dao, An Indexing Model for Structured Documents to Support Queries

on Content, Structure, and Attributes, Proceedings of the IEEE Forum on

Reasearch and Technology Advances in Digital Libraries (IEEE ADL '98), April

22-24, 1998, Santa Barbara, California, USA, 1998, pp. 88-97.

11. Daniela Florescu, Alon Levy, and Alberto Mendelzon. Database techniques for

the World-Wide Web: A survey. SIGMOD Record, 27(3): pp. 59-74, 1998.

12. Joseph Fong, Francis Pang, and Chris Bloor, Converting Relational Database

into XML Document, Proceedings of 12th International Workshop on Database

and Expert Systems Applications (DEXA 2001), 3-7 September 2001, Munich,

pp. 61-65.

13. R. Goldman, J. McHugh, J. Widom, From Semistructured Data to XML:

Migrating the Lore Data Model and Query Language, Proceedings of the 2nd

International Workshop on the Web and Databases (WebDB’99), Philadelphia,

Pennsylvania, June, 1999.

14. Mark Graves, Designing XML Databases, Prentice Hall, ISBN 0130889016, NJ.

15. A. Guttman, R-trees: A Dynamic Index Structure for Spatial Searching,

SIGMOD'84, Proceedings of Annual Meeting, Boston, Massachusetts, June

18-21, 1984. ACM Press 1984, pp. 47-57.

16. David C. Hay, A Comparison of Data Modeling Techniques, The Database

Newsletter, Volume 23, Number 3, May/June, 1995 (Updated 1999).

17. Jingyu Hou, Yanchun Zhang and Yahiko Kambayashi, Object-Oriented

Representation for XML Data, Proceedings of the Third International

Symposium on Cooperative Database Systems and Applications (CODAS 2001),

Beijing, China, April 23-24, 2001, pp. 43-52.

99

18. Zaijun Hu, Gerhard Vollmar: Towards XML Metamodel Patterns for XML Data

Modeling. Proceedings of 12th International Workshop on Database and Expert

Systems Applications (DEXA 2001), 3-7 September 2001, Munich, Germany.

IEEE Computer Society 2001, pp. 71-74.

19. Petr Kuba, Data Structures for Spatial Data Mining. FI MU Report Series,

Faculty of Informatics, Masaryk University, September 2001.

20. H. Lin, T. Risch, T. Katchaounov, Object-Oriented Mediator Queries to XML

Data, Proceedings of the 1st International Conference on Web Information

Systems Engeering (WISE’00), Vol.2, Hong Kong, China, 19-21 June, 2000, pp.

38-45.

21. The Lore Project. http://www-db.stanford.edu/lore.

22. F. Manola, Towards a Web Object Model, OBJS Technical Report, Object

Services and Consulting, Inc. (OBJS), February 1998,

http://www.objs.com/OSA/wom.html.

23. Hafedh Mili, Francois Pachet, Ilham Benyahia, Fred Eddy. Metamodeling in

OO. Workshop on Metamodeling in OO (OOPSLA’95), Workshop Summary, pp.

105-110.

24. J. P. Morganthal, Enterprise application integration with XML and Java,

Prentice Hall PTR, ISBN 0130851353, Upper Saddle River, NJ, 2001.

25. Mark Nadelson and Marina Evenstein, Undaunted Testing - Develop a testing

architecture that boldly attacks complex nested code, Java Pro,

http://www.fawcette.com/javapro/2002_08/magazine/features/mnadelson/,

2002.

26. Y. Papakonstantinou, H. Garcia-Molina, and J. Widom, Object Exchange Across

Heterogenous Information sources, Proceedings of the Eleventh International

100

Conference on Data Engineering (ICDE 1995), Taipei, Taiwan, March 1995, pp.

251-260.

27. Ketan C. Patel. Storing XML Content. XML magazine.

http://www.fawcette.com/xmlmag/2001_12/magazine/columns/collaboration/kp

atel/.

28. Giuseppe Psaila, ERX: A Conceptual Model for XML Documents, Proceedings

of the 2000 ACM Symposium on Applied Computing (SAC), Italy, March 19-21,

2000, Volume 2, pp. 898-903.

29. Auguste Rabarijaona, Rose Dieng, Olivier Corby, and Rajae Ouaddari, Building

and Searching an XML-Based Corporate Memory, IEEE Intelligent Systems,

Volume 15, Number 1, January/February 2000, pp. 56-63.

30. Andreas Renner, XML Data and Object Databases: A Perfect Couple?

Proceedings of the 17th International Conference on Data Engineering (ICDE

2001), April 2-6, 2001, Heidelberg, Germany, pp. 143-148.

31. Chantal Reynaud, Jean-Pierre Sirot, and Dan Vodislav, Semantic Integration of

XML Heterogeneous Data Sources, Proceedings of International Database

Engineering and Applications Symposium (IDEAS 2001), Grenoble, France,

July 16 - 18, 2001, pp. 199-208.

32. D. Riehle and T. Gross. Role model based framework design and integration.

Proceedings of the 1998 ACM SIGPLAN Conference on Object-Oriented

Programming Systems, Languages & Applications (OOPSLA '98), Vancouver,

Canada, October 18-22, 1998. pp. 117-133.

33. Leonard J. Seligman and Arnon Rosenthal. XML's Impact on Databases and

Data Sharing. IEEE Computer, Vol.34, No.6, pp.59-67, 2001.

34. Sun Microsystem, http://java.sun.com/xml/jaxb/index.html. Java Architecture

for XML Binding (JAXB).

101

35. Sun Microsystem, http://java.sun.com/xml/jaxp/index.html. Java API for XML

Processing (JAXP).

36. B. Surjanto, N. Ritter, and H. Loeser, XML Content Management Based on

Object-Relational Database Technology, Proceedings of the First International

Conference on Web Information Systems Engineering, Volume 1, 2000, pp

70-90.

37. Szentivanyi G., The Role of XML in Generic And Distributed Multimedia

Management, Proceedings of IEEE 8th International Workshops on Enabling

Technologies: Infrastructure for Collaborative Enterprises (WET ICE ’99),

1999, pp 317-318.

38. Dan Wahlin. Back to Basics: The XML Fundamentals.

http://www.fawcette.com/xmlmag/2001_11/online/online_eprod/XML/

39. Andrew Watt, XPath essentials, John Wiley & Sons, Inc., ISBN 0471205486,

New York, 2002.

40. Jennifer Widom, Data Management for XML Research Directions, IEEE Data

Engineering Bulletin, Special Issue on XML, 22(3): pp. 44-52, September 1999.

41. World Wide Web Consortium, http://www.w3.org/DOM/. Document Object

Model (DOM).

42. World Wide Web Consortium, http://www.w3.org/TR/xpath. The

Recommendation for XPath.

43. World Wide Web Consortium, http://www.w3.org/XML/. Extensible Markup

Language (XML).

44. World Wide Web Consortium, http://www.w3.org/XML/Schema/. XML Schema.

45. Xyleme project. http://www.xyleme.com.

