
Kernelized Online Imbalanced
Learning

HU, Junjie

A Thesis Submitted in Partial Fulfilment
of the Requirements for the Degree of

Master of Philosophy
in

Computer Science and Engineering

The Chinese University of Hong Kong
June 2015

Abstract of thesis entitled:
Kernelized Online Imbalanced Learning

Submitted by HU, Junjie
for the degree of Master of Philosophy
at The Chinese University of Hong Kong in June 2015

Imbalanced streaming data are prevalent in many real-world
applications because people usually are attracted by rare events.
These data exhibit the characteristics of huge volume, high
velocity, extreme imbalance, and perhaps, nonlinearity and
heterogeneity. Learning binary classification models from im-
balanced data, where the number of samples from one class
is significantly larger than that from the other class, is an
important research topic in machine learning and data mining.
To learn from imbalanced data, online AUC (area under the
ROC curve) maximization is a promising tool. However, it is
not well suited for handling nonlinearity and heterogeneity of
the data.

This thesis is mainly described in two parts. In the first part,
motivated by the effectiveness of kernel methods, we propose
a kernelized online imbalanced learning (KOIL) algorithm to
produce a nonlinear classifier for imbalanced data. We conse-

i

quently formulate the problem by maximizing the AUC score
while minimizing the functional regularizer. We address two
major challenges: 1) How to control the number of support
vectors without sacrificing model performance, and 2) how to
control the fluctuation of the learned decision function to achieve
smooth updating. To this end, we introduce two buffers with
fixed budgets (buffer sizes) for the positive and negative class,
respectively, to store the corresponding learned support vectors.
The buffers allow us to capture the global information of the
decision boundary. To control the update fluctuation, we confine
the weight of a new support vector to be influenced only by its k-
nearest opposite support vectors. More importantly, we design
a sophisticated scheme to compensate for the loss of information
after replacement is conducted when either buffer is full. With
such a compensation scheme, the learned model can be shown
to approach a nonlinear classifier that is learned with infinite
budgets. Theoretical results for two convex surrogates of the
AUC metric, namely the pairwise hinge loss and its smooth
variant, are derived to rigorously justify the model performance.
We further conduct a series of experiments on both synthetic and
real-world benchmark datasets to demonstrate the effectiveness
of the proposed approach.

In the second part, We exploit the online Multiple Kernel
Learning (MKL) framework to automatically determine good
kernels for accurate data similarity representation. That is,
we try to learn multiple kernel classifiers from a pool of pre-

ii

defined kernels and their linear combination coefficients in an
online mode. The empirical evaluation shows that online MKL
is effective for determining the kernel representation.

KOIL with a single kernel in the first part is computationally
efficient in the online learning process, while KOIL with multiple
kernels in the second part can be used to effectively select good
kernels when prior knowledge on the kernel representation is
unknown.

iii

摘要

不平衡流式數據在很多實際應用中很普遍，因為人們經常

對稀有的事件比較感興趣。這些數據呈現出大容量，高速度，

極度不平衡，非線性以及異構性等特點。在機器學習及數據挖

掘領域，根據不平衡數據（一個類別的樣本數量遠大於另一個

類別的樣本數量）學習二值分類器是一個重要的研究問題。為

了學習這些數據，在線最大化 AUC（ROC 曲線下的面積）是
一種有效的工具。然而，這方法卻不適用於處理數據的非線性

及異構性的問題。

這篇論文主要描述了兩部分。第一部分，基於核方法的有效

性，我們提出了基於核函數的在線不平衡學習 (KOIL）算法，
用於學習一個非線性的分類器。我們將問題明確地表達為最大

化 AUC 得分同時最小化決策函數的正則項。我們解決了以下
兩個主要挑戰：1）如何控制支持向量的數量卻不犧牲模型的
效果，以及 2）如何控制學習的決策函數的波動性從而實現平
穩的更新。因此，我們使用了兩個固定大小的緩存區，用於存

儲已經學習到的正負類支持向量。這兩個緩存區使得我們可以

獲得決策函數的全局信息。為了控制更新的波動性，我們限定

了每個新的支持向量的權重只會受到最靠近它的 k 個相反類
別的支持向量的影響。更重要的是，我們設計了一種補償因緩

iv

存區滿了之後更新支持向量帶來的信息損失的有效方法。通過

這種補償方法，學習到的模型能近似于通過使用著無限空間的

緩存區來學習到的非線性分類器。針對兩種替代 AUC 度量的
凸函數，即成偶铰链損失及平滑的成偶铰链損失，理論結果嚴

格證明了模型的性能。我們還進一步在實際數據和模擬數據中

做了一系列實驗，以驗證提出的模型的有效性。

在第二部分，我們利用了在線多核函數學習的框架，用於

自動決定好的核函數，從而獲得準確的數據相似性表達。也即

是，我們通過在線學習模式，嘗試在一些預先定義好的核函數

中學習多個核分類器以及這些分類器權重的線性組合。實驗效

果顯示我們提出的在線多核函數學習方法能夠有效地確定出好

的核表達。

在第一部分的 KOIL 算法在實時在線學習中高效地利用計
算資源，然而當核函數的先驗知識不知道的情況下，第二部分

提出的多核 KOIL 算法能有效地挑選出好的核函數表達。

v

Acknowledgement

I would like to thank my supervisors Prof. Irwin King and
Prof. Michael R. Lyu for their guidance and support of my
graduate study at the Chinese University of Hong Kong. My
motivation to continue my further study comes partially from
my passion for machine learning research, and partially from
the influence my supervisors have had on my development.
Prof. King’s efforts in educational projects, e.g.,Veriguide,
encouraged me to conduct interesting research that can serve our
community. Prof. Lyu’s dedicated attitude towards teaching
deeply impressed me and set the example for me to be a
responsible teacher when I was the tutor of his course. As a
researcher I would like to devote all my passion towards my
research, and as a teaching assistant I would like to altruistically
give to others what my teachers have so generously given me.
The time I spend on my study at CUHK would be one of the
most important periods in my life. I also want to give my
sincerest thanks to my friends Dr. Haiqin Yang and Yuxin Su
for their helps to my research at CUHK. I am also grateful to my
graduation committee members, Prof. Kevin Yip, Prof. Laiwan

vi

Chan and Prof. Qin Lu, for their revision suggestions on my
thesis and their efforts in evaluating my work at CUHK.

Finally, I would like to express my heartfelt thanks to my
family for their supports and love ever since I was born. Without
their support and love, I would not be the person that I am
today. This thesis is dedicated to all of them.

vii

Contents

Abstract i

Acknowledgement vi

1 Introduction 1

2 Preliminaries 8
2.1 Background Study 8
2.2 Notations and Problem Definition 11

3 KOIL with A Single Kernel 14
3.1 Non-smooth Pairwise Hinge Loss 14
3.2 Online AUC Maximization by KOIL 15
3.3 Smooth Pairwise Hinge Loss 23
3.4 Regret Analysis 25
3.5 Experiment . 29

4 KOIL with Multiple Kernel Learning 42
4.1 Notations . 42
4.2 Online Multiple Kernel Selection 43

viii

4.3 Regret Analysis 46
4.4 Experiment . 47

5 Conclusion 49

A Theoretical proof 51

Bibliography 60

ix

List of Figures

1.1 Figure 1.1(a) shows the decision function in a
black solid curve, the new instance in a big •,
the positive samples in small ×’s, the negative
samples in small •’s, the positive support vectors
in big +’s and the negative support vectors in big
◦’s. Figure 1.1(b) zooms into the local region of
a new instance zt and shows how its influence is
being controlled. 3

1.2 Figure 1.2 shows the removed support vector xr

in the dotted arrow, the compensated support
vector xc in the solid arrow, and the angle θ

between them. 7

3.1 Average AUC performance of four datasets ob-
tained by different updating policies of KOIL. . . 37

3.2 Average AUC of KOIL with different buffer sizes. 40
3.3 Average AUC of KOIL with different k. Here k =

[1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100] and the
budget is 100 for each buffer. 41

x

List of Tables

3.1 Summary of all datasets. 32
3.2 Average AUC performance (mean±std) on the

synthetics datasets 34
3.3 Average AUC performance (mean±std) on the

benchmark datasets, •/◦ (-) indicates that both/one
of KOILRS++ and KOILFIFO++ are/is signifi-
cantly better (worse) than the corresponding
method (pairwise t-tests at 95% significance level). 35

4.1 Average AUC performance (mean±std) on the
benchmark datasets. • (-) indicates that the
performance by KOIL with MKL is significantly
better than (comparable to) that by KOIL with
the tuned optimal kernel (pairwise t-tests at 95%
significance level). 48

xi

Chapter 1

Introduction

Summary

In this chapter, we investigate the properties of
imbalanced streaming data, and describe the challenges
and motivations of learning imbalanced streaming
data, and finally highlight the contributions of the
proposed framework Kernelized Online Imbalanced
Learning, which is described in details in Chapter 3 and
Chapter 4.

Imbalanced streaming data are prevalent in various real-
world applications, such as network intrusion detection [44],
purchasing or clicking analysis for customer relationship [12, 18].
These data exhibit the following prominent characteristics:
1) Huge volume: The volume of data increases tremendously,

from Petabyte to Exabyte, or even Zettabyte. For example,
the number of webpages indexed by Google is nearly 1 million

1

CHAPTER 1. INTRODUCTION 2

in 1998, 1 billion in 2000, and more than 1 trillion in 2008 [14].
2) High velocity: They are streaming data, generated in seconds

or microseconds, from various online applications. The data
may change dynamically.

3) Extreme imbalance: The imbalanced ratio can be 100 : 1,
or even 10, 000 : 1 for a standard binary classification task,
where the important class is very rare. For example, people
usually pay more attention on the detection of noisy signals
out of a huge number of normal signals.

4) Nonlinearity and heterogeneity: In general, only nonlinear
classifiers can produce a more accurate decision boundary for
data with low dimensionality; see Fig. 1.1(a) for an example.
The heterogeneity among different types of data, e.g., medical
data and text data, poses difficulty in designing a general
algorithm and defining data similarity.
Learning binary classification models from imbalanced data

has become an important research topic in both machine
learning and data mining [3, 32, 48, 54]. In the literature,
researchers aim at maximizing the area under the ROC curve
(AUC) because it provides an effective metric to measure the
performance of classifiers for imbalanced data [1, 2, 19, 21, 25].
A detailed introduction of AUC and the comparision between
AUC and other metrics are given in [15]. Although area under
the precision-recall curve is also a good metric in evaluating the
performance of a classifier on imbalanced data in a batch train-
ing procedure, the ROC curve has the advantage of visualing

CHAPTER 1. INTRODUCTION 3

(a) (b)

Figure 1.1: Figure 1.1(a) shows the decision function in a black solid curve,
the new instance in a big •, the positive samples in small ×’s, the negative
samples in small •’s, the positive support vectors in big +’s and the negative
support vectors in big ◦’s. Figure 1.1(b) zooms into the local region of a new
instance zt and shows how its influence is being controlled.

and judging a classifier’s performance irrespective of dynamic
changes of class distributions and different misclassification
costs. This ability is conductive to investigating learning
skewed classes and cost-sensitive learning [15]. Hence, the AUC
can reveal a stabler performance of a classifier in a dynamic
online enviroment than the area under precision-recall curve.
Moreover, the AUC holds a significant statistical property over
other metrics. The AUC of a classifier essentially equals to the
probability that a classifier ranks a randomly selected positive
sample higher than a randomly selected negative sample. In
terms of imbalanced streaming data, researchers have proposed
the tools of online AUC maximization [17, 60]. However, these
algorithms only produce a linear classifier and are not well suited

CHAPTER 1. INTRODUCTION 4

for handling the nonlinearity and heterogeneity of the data.
By contrast, we focus on seeking an online nonlinear classifier

with kernels – a less explored but important research topic in
both theory and applications. This gives rise to two significant
challenges. First, the learned kernel-based estimator becomes
more complex as the number of samples increases [29, 57].
Without a suitable stream oblivious strategy which is designed
to remove out-dated support vectors, in the extreme case,
the number of learned support vectors can tend to infinity.
This is undesirable for large-scale applications. Although
in the literature, refinement techniques, e.g., Projectron [35],
and online learning algorithms with fixed budgets, such as
randomized budget perceptron [4] and Forgetron [10], have been
proposed, it is non-trival to tackle online imbalanced learning
since the stored support vectors of both classes may also be
imbalanced. Second, fluctuation due to outliers is unavoidable
in online learning [6, 27, 38]. Thus, additional effort is required
to achieve smooth updating. Third, the kernel representation is
effective for capturing the nonlinearity and heterogeneity of the
data [29, 52]. However, how to effectively determine kernels for
good performance is still a challenging issue.

To tackle the above challenges, we propose a Kernelized
Online Imbalanced Learning algorithm with fixed budgets, or
KOIL in short, to achieve online nonlinear AUC maximization.
We highlight the contributions of this article in the followings:

1. We seek the fixed-budget kernel representation of KOIL by

CHAPTER 1. INTRODUCTION 5

maximizing the localized AUC metric with the appearance
of new instances. That is, we maintain two buffers with
the same fixed buffer size to store the most informative
data from each class as learned support vectors. This
fixed-budget strategy is important for handling imbalanced
streaming data and sets it apart from Projectron [35], which
may include too many support vectors.

2. We update the weights of the new and old support vectors
in KOIL by confining the influence of a new instance
to its k-nearest opposite support vectors; see Fig. 1.1(b)
for an example. This leads to smooth updating and
makes KOIL different from previously proposed online
AUC maximization algorithms [17, 60], which update the
weight of a new instance based on all the information stored
in the buffers.

3. Other than the standard stream oblivious policies, such
as First-In-First-Out (FIFO) and reservoir sampling (RS),
which replace a support vector when either buffer is full,
we design a sophisticated scheme to compensate for the
loss when a support vector is removed; see Fig. 1.2 for an
illustration of the idea. Different from other online learning
algorithms with fixed budgets [4, 10], which tend to discard
information during training, our proposed compensation
scheme indeed can avoid information loss. The empirical
results show that after compensation, the learned decision
function by KOIL approaches the one learned with infinite

CHAPTER 1. INTRODUCTION 6

budgets.
4. Without the ideal assumption that proper kernels are

given prior to training, we exploit online Multiple Kernel
Learning (MKL) framework to automatically determine
good kernels for accurate data similarity representation.
That is, we try to learn multiple kernel classifiers from a
pool of predefined kernels and their linear combination co-
efficients in an online mode. Different from existing online
MKL algorithms [24], our KOIL focuses on the pairwise
loss function and discounts the weights of multiple kernel
classifiers when there are errors. The empirical evaluation
shows that online MKL is effective for determining the
kernel representation.

In Figure 1.1, we give an illustration of KOIL with k-
nearest neighbor confinement on a synthetic data in 2-D space.
Figure 1.1(a) shows that the decision function learned by our
proposed KOIL with the extended FIFO updating policy can
classify the data well. Figure 1.1(b) zooms into the local
region of a new instance zt of the negative class and shows
how its influence is being controlled. Here, it can only affect
its k-nearest opposite support vectors (big +’s), where k = 5.
Obviously, restricting the influence of the new instance to a
local region is safe since it will not affect those positive support
vectors that are far away from it. Moreover, this restriction
prevents the decision function from deteriorating by outliers
which not only affect support vectors of the opposite class in

CHAPTER 1. INTRODUCTION 7

the whole buffer but also be assigned to a large initial weight.
Figure 1.2 shows the compensation scheme in the Reproducing
Kernel Hilbert Space. By the two assumptions k(x,x) ≤ X2

and k(xr,xc) ≥ ξ22 , we have ∥ϕ(xc)∥H cos θ ≥ ξ22
X , where ϕ(xc) =

k(xc, ·).

Figure 1.2: Figure 1.2 shows the removed support vector xr in the dotted
arrow, the compensated support vector xc in the solid arrow, and the angle
θ between them.

2 End of chapter.

Chapter 2

Preliminaries

Summary

In this chapter, We review some prior work in closely
related areas: machine learning from imbalanced data,
online learning, and multiple kernel learning. Then we
introduce some notations used throughout this thesis,
and define the problem discussed in this thesis.

2.1 Background Study

Learning from Imbalanced Data

Learning from imbalanced data has become an important
task in machine learning and data mining [3, 32, 48]. Some
algorithms have been developed to train classifiers by maximiz-
ing the AUC metric, such as Wilcoxon-Mann-Whitney statistic
optimization [51] and RankOpt [21]. Some investigations extend

8

CHAPTER 2. PRELIMINARIES 9

SVM to optimize the AUC metric [2]. A general framework for
optimizing multivariate nonlinear performance measures, such
as AUC and F1, is proposed in [25]. Cost-sensitive multilayer
Perceptron is also proposed to improve the discrimination ability
of multilayer perceptron (MLP) [3]. One major weakness of
these methods is that they train the model in batch-mode, which
is inefficient when new training samples appear dynamically.

Online Learning

Online learning algorithms are significant as they can adap-
tively update the models based on new training samples. The
oldest and most well-known online learning algorithm is the
Perceptron [37]. Many variants have been proposed in the
literature [5, 16]. Some are inspired by the maximum margin
principle [8, 31, 59]. To learn from imbalanced data, algorithms
for online AUC maximization are proposed in [11, 17, 60].
Several pieces of theoretical work are also published to derive
generalization error bounds of online learning algorithms for
pairwise loss functions [26, 47]. However, these algorithms only
focus on linear classifiers, which are not sufficient to capture the
heterogeneity and nonlinearity embedded in the data [55, 56].
In the literature, kernel-based online learning algorithms, such
as online learning algorithms in a Reproducing Kernel Hilbert
Space [10, 29, 35, 42], online Gaussian Process [9, 20, 28,
41], and kernelized recursive least-square algorithms [13, 45],

CHAPTER 2. PRELIMINARIES 10

have been proposed. However, a key challenging issue in
online learning with kernels is that the computation complexity
scales with the number of training samples. Hence, strategies
such as Forgetron [10], Randomized Replacement [4], and
projection scheme [9, 28, 35, 58] have been proposed. However,
these strategies aim at directly maximizing the accuracy, and
it is known that it is inappropriate to evaluate the model
performance on imbalanced data by the accuracy. For example,
randomly labeling all samples on a imbalanced dataset as
negative results in a high accuracy but a high misclassication
cost of positive samples.

Multiple Kernel Learning

The Multiple kernel Learning (MKL) framework is a well-
known and effective tool for kernel learning. It aims to
seek the combination of multiple kernels by optimizing the
performance of kernel based learning methods (e.g., Support
Vector Machine) [36, 43]. Subsequently, MKL with different
norm regularizers are proposed to attain good model perfor-
mance [30, 50, 56]. Recently, online MKL (OMKL) is proposed
to simultaneously learn multiple kernel classifiers and their
linear combinations from a pool of predefined kernels in an
online mode [22, 24]. Similar ideas are applied to solve the
problems in image search and regression [39, 49]. However,
the existing algorithms do not consider the task of imbalanced

CHAPTER 2. PRELIMINARIES 11

learning.
In summary, the previously proposed algorithms cannot han-

dle nonlinearity and heterogeneity in the imbalanced streaming
data well. This motivates us to seek for a nonlinear classifier for
imbalanced classification in online training mode.

2.2 Notations and Problem Definition

We first introduce the notations that will be used throughout
the thesis. Bold-faced small letters, e.g., x, denote vectors.
Letters in calligraphic font, e.g., X , indicate sets. We use Rd

to denote the d-dimensional Euclidean space and H to denote a
Hilbert space. The inner product of x and y on H is denoted
by ⟨x,y⟩H.

We focus on the imbalanced binary classification problem and
aim to learn a nonlinear decision function f : Rd → R from a
sequence of feature-labeled pair instances {zt = (xt, yt) ∈ Z, t ∈
[T]}, where Z = X × Y , xt ∈ X ⊆ Rd, yt ∈ Y = {−1,+1}, and
[T] = {1, . . . , T}. Without loss of generality, we assume that
the positive class is the minority class while the negative class
is the majority class. We denote by N ỹ

t,k(z) the set of feature-
labeled pair instances that are the k-nearest neighbors of z in
either one of the positive or negative support vector buffer and
have the label of ỹ at the t-th trial. Here, the neighborhood is
defined by the distance or the similarity between two instances,
i.e., the smaller the distance between or the more similar the

CHAPTER 2. PRELIMINARIES 12

instances, the closer the neighbors. Besides, we define the index
sets I+t and I−t to record the indices of positive and negative
support vectors at the t-th trial. Similarly, we define the index
sets I+ and I− to record the indices of positive and negative
samples in the whole data stream. Moreover, for simplicity, we
define two buffers K+

t and K−
t to store the learned information,

weight and support vector, from the two classes at the t-th trial,
respectively:

K+
t .A = {α+

i,t |α+
i,t ̸= 0, i ∈ I+t }, K+

t .B = {zi | yi = +1, i ∈ I+t },

K−
t .A = {α−

i,t |α−
i,t ̸= 0, i ∈ I−t }, K−

t .B = {zi | yi = −1, i ∈ I−t }.

Here, αi,t denotes the weight of the support vector that first
occurred in the i-th trial and updated at the t-th trial. To
the purpose of rebalancing the number of positive and negative
support vectors, we fix the budgets (the buffer sizes) to be the
same, i.e., |I+t | = |I−t | = N for all t.

At the t-th trial, our proposed algorithm KOIL computes a
decision function ft of the form

ft(x) =
∑

i∈I+t
α+
i,tk(xi,x) +

∑
j∈I−t

α−
j,tk(xj,x), (2.1)

where k : X × X → R is a predefined kernel [29]. The
corresponding weights and support vectors are stored in K+

t and
K−

t , respectively.
The prediction of a new sample x can be made by sgn(ft(x)),

where sgn()̇ is a function that outputs the sign of a real number.
More generally, ft(x) is an element of a Reproducing Kernel

CHAPTER 2. PRELIMINARIES 13

Hilbert Space and can be expressed as ft(x) = ⟨ft(·), k(x, ·)⟩H
to capture the nonlinearity and heterogeneity of the data [40].
In the following, we will motivate and describe our strategy of
updating ft.

2 End of chapter.

Chapter 3

KOIL with A Single Kernel

Summary

In this chapter, we describe the detailed design of
Kernelized Online Imbalanced Learning algorithm with
fixed budgets which achieves AUC maximization.

3.1 Non-smooth Pairwise Hinge Loss

Given the positive dataset D+ = {zi|yi = +1, i ∈ I+} and the
negative dataset D− = {zj|yj = −1, j ∈ I−}, the AUC metric
for a kernel representation function f is calculated by

AUC(f) =

∑
i∈I+

∑
j∈I− I[f(xi)− f(xj) > 0]

|I+||I−|
(3.1)

= 1−
∑

i∈I+
∑

j∈I− I[f(xi)− f(xj) ≤ 0]

|I+||I−|
,

where I[π] is the indicator function that equals 1 when π is true
and 0 otherwise. Hence, maximizing AUC(f) is equivalent to

14

CHAPTER 3. KOIL WITH A SINGLE KERNEL 15

minimizing
∑

i∈I+
∑

j∈I− I[f(xi) − f(xj) ≤ 0]. Since directly
maximizing AUC score results in an NP-hard combinatorial
optimization problem [7], the indicator function is usually
replaced by a convex surrogate, such as the following pairwise
hinge loss function [17, 60]:

ℓh(f, z, z′) =
|y − y′|

2

[
1− 1

2
(y − y′)(f(x)− f(x′))

]
+

, (3.2)

where [v]+ = max{0, v}.
This suggests that we can find the decision function in

Eq. (2.1) for AUC maximization by minimizing

L(f) = 1

2
∥f∥2H + C

∑
i∈I+

∑
j∈I−

ℓh(f, zi, zj), (3.3)

where 1
2∥f∥

2
H is the regularization term controlling the functional

complexity and C > 0 is a penalty parameter balancing the
functional complexity and training errors.

3.2 Online AUC Maximization by KOIL

Following the derivation in [23], we aim to update the kernel
decision function based on the arrival of a new instance zt by
minimizing the following localized instantaneous regularized risk
of AUC associated with zt:

L̂t(f) := L̂(f, zt) =
1

2
∥f∥2H + C

∑
zi∈N

−yt
k (zt)

ℓh(f, zt, zi). (3.4)

where k is a predefined constant and is usually set to a small
value, e.g., around 10% of the budget. The points zi are stored

CHAPTER 3. KOIL WITH A SINGLE KERNEL 16

in either buffer, i.e., K+.B or K−.B. They are the k-nearest
opposite support vectors in the buffer to the new instance zt,
i.e., the k-nearest support vectors with the opposite label of zt.

There are some remarks about the above formulation:
• Different from NORMA [29], whose risk only measures the

predictive error of the new instance, the risk defined in
Eq. (3.4) involves pairwise losses between zt and its k-nearest
opposite support vectors in the buffer. This can resolve the
scalability issue of online kernelized learning [53].

• This setting brings the following advantages: 1) maintaining
two buffers with relatively large budgets can keep track of
the global information of the decision boundary; 2) only
considering the k-nearest opposite support vectors of the new
instance allows us to utilize the local information around
the new instance and avoid the fluctuation of the decision
function.
We show the KOIL framework in Algorithm 1, which consists

of two key components: UpdateKernel of Algorithm 2 and
UpdateBuffer of Algorithm 3.

Update Kernels

We apply the stochastic gradient descent method to update
the decision function at the t-th trial as follows:

ft+1 := ft − η∂f L̂t(f)|f=ft, (3.5)

CHAPTER 3. KOIL WITH A SINGLE KERNEL 17

Algorithm 1 Kernelized Online Imbalanced Learning (KOIL) with Fixed
Budgets

1: Input:
• the penalty parameter C and the learning rate η

• the maximum positive budget N+ and negative budget N−

• the number of nearest neighbors k

2: Initialize K+.A = K−.A = ∅, K+.B = K−.B = ∅, Np = Nn = 0

3: for t = 1 to T do
4: Receive a training sample zt = (xt, yt)

5: if yt == +1 then
6: Np = Np + 1

7: [K−,K+, α] = UpdateKernel(zt,K−,K+, C, η, k)

8: K+ = UpdateBuffer(α, zt,K+, k,N+, Np)

9: else
10: Nn = Nn + 1

11: [K+,K−, α] = UpdateKernel(zt,K+,K−, C, η, k)

12: K− = UpdateBuffer(α, zt,K−, k,N−, Nn)

13: end if
14: end for

where ∂f is shorthand for ∂/∂f (the gradient with respect to f),
and η > 0 is the learning rate which can either be a constant or
have a value that decreases with the number of trials.

To compute the gradient of L̂t(f) with respect to f , we first
calculate the gradient of ℓh with respect to f , i.e., ∂fℓh(f, zt, zi),
by

∂fℓh(·) =

{
0, ℓh(f, zt, zi) ≤ 0,

−φ(zt, zi), ℓh(f, zt, zi) > 0,
(3.6)

where φ(zt, zi) = yt(k(xt, ·)− k(xi, ·)).

CHAPTER 3. KOIL WITH A SINGLE KERNEL 18

Algorithm 2 UpdateKernel
1: Input:

• the newly received sample with label zt,
• K and K′ for support vectors with the opposite and the same label

to zt respectively,
• the penalty parameter C, the learning rate η, and the number of

the nearest neighbors k.
2: Output: the updated K, K′ and the weight αt for zt

3: Initialize: Vt = ∅, compute ft by Eq. (2.1)
4: for i ∈ I−yt

t do
5: if 1 > yt(ft(xt)− ft(xi)) then
6: Vt = Vt ∪ {i}
7: end if
8: end for
9: if |Vt| > k then

10: Sim(i) = k(xt,xi), ∀ i ∈ Vt

11: [Sim′, idx] = Sort(Sim, ‘descend’)
12: idxk = idx(1 : k)

13: Vt = Vt(idxk)

14: end if
15: Update αi,t by Eq. (3.10)
16: return K,K′, αt,t

Using Eq. (3.4) and Eq. (3.6), we obtain

∂f L̂t(ft) = ft − C
∑

zi∈N
−yt
k (zt)

I[ℓh(f, zt, zi) > 0]φ(zt, zi). (3.7)

Practically, we initialize the first decision function to zero, i.e.,
f1 = 0, and express the decision function at the t-th trial as
a kernel expansion defined in Eq.(2.1). We then update the

CHAPTER 3. KOIL WITH A SINGLE KERNEL 19

(t+ 1)-th trial in incremental mode:

ft+1(x) = ft(x) + αt,tk(xt,x). (3.8)

For simplicity, we define Vt to be the set of indices satisfying the
indicator function in Eq. (3.7) (the valid set) and V̄t to be its
complementary set, i.e.

Vt := {i ∈ I−yt
t | zi ∈ N−yt

k (zt) ∧ ℓh(f, zt, zi) > 0},

Vt := I−yt
t \ Vt. (3.9)

Then, the corresponding updating rule for the kernel weights at
the t-th trial is given by

αi,t =


ηCyt|Vt|, i = t,

(1− η)αi,t−1 − ηCyt, ∀i ∈ Vt,

(1− η)αi,t−1, ∀i ∈ Iytt ∪ Vt.

(3.10)

The updating rule in Eq. (3.10) divides the data into three cases
and several remarks are in order.
• For a new instance, we only count at most k of its opposite

pairwise losses. This is key to preventing the fluctuation of
the decision function.

• For the k-nearest opposite support vectors to the new
instance zt, i.e., the support vectors in N−yt

k (zt), the absolute
values of the weights are added by |ηCyt|; see the second case
in Eq. (3.10). This will keep a balanced updating, which is
in favor of imbalanced data.

• When the new instance does not incur errors or the labels
of previously learned support vectors are the same as that

CHAPTER 3. KOIL WITH A SINGLE KERNEL 20

of the new instance, the updating rule is the same as
NORMA [29], i.e., just decaying the weight by a constant
factor, 1− η.

Algorithm 3 UpdateBuffer–RS++
1: Input:

• the received sample zt and its weight αt

• the buffer K to be updated
• the buffer size N

• the number of instances received until trial t, Nt

2: Output: the updated buffer K
3: if |K.B| < N then
4: K.A = K.A ∪ {αt}, K.B = K.B ∪ {zt}
5: else
6: Sample Z from a Bernoulli distribution with Pr(Z = 1) = N/Nt

7: if Z = 1 then
8: Uniformly select an instance zr

9: Update K.A: K.A = K.A \ {αr,t} ∪ {αt,t}
10: Update K.B: K.B = K.B \ {zr} ∪ zt

11: else
12: zr = zt, αr,t = αt,t

13: end if
14: Find zc = arg max

zi∈K.B
{k(xr,xi)}

15: Set αc,t = αc,t + αr,t and update αc,t in K.A
16: end if
17: return K

Update Buffers

The setting of fixed budgets raises the problem of updating
the buffer when it is full. A key challenge is to maintain

CHAPTER 3. KOIL WITH A SINGLE KERNEL 21

the buffers with the most informative support vectors so as to
achieve stability of the model performance during the train-
ing. Traditionally, First-In-First-Out (FIFO) and Reservoir
Sampling (RS) are two typical stream oblivious policies [46] to
update the buffers and have demonstrated their effectiveness
in online linear AUC maximization [60]. However, they will
degrade the performance of the kernel-based online learning
algorithms as they will discard support vectors [52].

To alleviate information loss, we design a sophisticated
compensation scheme. Let the removed support vector be zr =
(xr, yr). We find the most similar support vector zc = (xc, yc)

with yc = yr in Kyr
t and update its corresponding weight. By

considering the updating rule in Eq. (3.8), we obtain the new
decision function as follows:

f̂t+1(x) = ft+1(x)− αr,tk(xr,x).

We determine the updated weight ∆αc,t of the compensated
support vector zc by keeping track of all information with a
change in the value of the decision function. That is,

ft+1(x) = f̂t+1(x) + ∆αc,t · k(xc,x)

= ft+1(x)− αr,tk(xr,x) + ∆αc,t · k(xc,x). (3.11)

Hence, we set ∆αc,t = αr,t
k(xr,x)
k(xc,x) ≈ αr,t due to the similarity

of the removed support vector xr and the compensated support
vector xc. We then obtain the updating rule for ft+1 with its

CHAPTER 3. KOIL WITH A SINGLE KERNEL 22

compensation, f++
t+1 :

f++
t+1 = (1− η)f++

t + η∂f L̂t(f)|f=f++
t

+ αr,t (k(xc, ·)− k(xr, ·)) , (3.12)

where f++
t is the previously compensated decision function.

When either buffer is not full, f++
t = ft and the update is

done by Eq. (3.5). Ideally, if k(xc,x) equals k(xr,x), f++
t

incorporates all the support vectors and corresponds to the one
learned with infinite budgets.

Algorithm 3 shows the procedure of the extended Reservoir
Sampling (RS++) when the compensation scheme is incorpo-
rated.
• In line 3 to line 4, if the buffer is not full, i.e., |K.B| < N ,

the new instance becomes a support vector and is directly
added into the buffer K.

• In line 6 to line 10, if the buffer is full, reservoir sampling
is performed. That is, with probability N

Nt
, we update the

buffer by randomly replacing one support vector zr in K.B
with zt.

• In line 12, if replacement is not conducted, the removed
support vector zr is set to the new instance zt.

• In line 14 to line 15, this is the extension of RS. We find
the most similar support vector zc to the removed support
vector zr, update its weight and put its weight back to the
buffer K.A.

Similarly, we can define the extended FIFO strategy, namely

CHAPTER 3. KOIL WITH A SINGLE KERNEL 23

FIFO++. For FIFO++, lines 6 to 13 in Algorithm 3 are
replaced by removing the first support vector in the buffer and
adding the new instance as a new support vector to the end of
the buffer.

3.3 Smooth Pairwise Hinge Loss

In [17], the proposed algorithm which uses a smooth pairwise
loss function has been proved to achieve a faster convergence rate
O(1/T). Hence, to exploit the smoothness of the loss function,
we consider the square of the pairwise hinge loss function, which
is given by

ℓsh(f, z, z′) =
(
|y − y′|

2

[
1− 1

2
(y − y′)(f(x)− f(x′))

]
+

)2

.

(3.13)
We substitute Eq. (3.13) into Eq. (3.4) and compute the

decision function by minimizing the following smooth localized
instantaneous regularized risk of AUC associated with zt:

L̃t(f) := L̃t(f) =
1

2
∥f∥2H + C

∑
zi

ℓsh(f, zt, zi). (3.14)

Using the standard stochastic gradient descent method to
update the decision function, we have f̃1 = 0 and the updating
rule is given by

f̃t+1 := f̃t − η∂f L̃t(f)|f=f̃t
, (3.15)

CHAPTER 3. KOIL WITH A SINGLE KERNEL 24

where η > 0 is the learning rate and the partial derivative is

∂L̃t(f̃t) = f̃t − 2C
∑

zi

I[ℓh(·) > 0] · ℓh(·) · φ(zt, zi). (3.16)

Here, ℓh(·) means ℓh(f̃ , zt, zi), which is defined by Eq. (3.2).
Similarly, we define the valid set Vt and its complementary

set Vt at the t-th trial as follows:

Vt := {i ∈ I−yt
t |zi ∈ N−yt

t,k (zt) ∧ ℓh(f̃ , zt, zi) > 0}, (3.17)

Vt := I−yt
t \ Vt.

Then, the corresponding updating rule for the kernel weights
at the t-th trial is derived as follows:

αi,t=


2ηCyt

∑
i∈Vt

ℓh(f̃t, zt, zi), i = t,

(1− η)αi,t−1 − 2ηCytℓh(f̃t, zt, zi), ∀i ∈ Vt,

(1− η)αi,t−1, ∀i ∈ Iytt ∪ Vt.

(3.18)
Similarly, we express the updating rule for f̃t+1 with compen-

sation, i.e., f̃++
t+1 , as

f̃++
t+1 = (1− η)f̃++

t + η∂f L̃t(f)|f=f̃++
t

(3.19)

+ αr,t (k(xc, ·)− k(xr, ·)) ,

where f̃++
t is the previous decision function. When either buffer

is not full, f̃++
t corresponds to the original decision function

without compensation, i.e., f̃t updated by Eq. (3.15).

CHAPTER 3. KOIL WITH A SINGLE KERNEL 25

3.4 Regret Analysis

Regret analysis [33] is widely used in analyzing learning
performance of online learning algorithms. In this section, we
derive regret bounds for the non-smooth pairwise hinge loss and
the smooth pairwise hinge loss.

Regret for the Non-smooth Pairwise Hinge Loss

Recall that the regret at time T is defined as the difference
between the objective value up to the T -th trial and the smallest
objective value from hindsight, i.e.,

RT =
T∑
t=1

L̂t(ft)− L̂t(f
∗), (3.20)

where f ∗ is the optimal decision function solved by Eq. (3.3)
with the pairwise hinge loss function defined by Eq. (3.2) from
hindsight, and ft corresponds to the updating in Eq. (3.5).

In the following, unless otherwise specified, zi means zi ∈
N−yt

t,k (zt). That is, zi is one of the k-nearest opposite support
vectors to zt. Let 0 < ξ1 ≤ X be such that k(xt,xi) ≥ ξ21 ,
∀ zi = (xi, yi) ∈ N−yt

t (zt). To simplify the notation, we define
the following constant as the bound on the distance between the
points in the neighbor set:

∥φ(zt, zi)∥H ≤ cp :=
√

2X2 − 2ξ21 . (3.21)

We first present the bound on the norm of the decision
function and the bound of the pairwise hinge loss function.

CHAPTER 3. KOIL WITH A SINGLE KERNEL 26

Lemma 1 Suppose that for all x ∈ Rd, k(x,x) ≤ X2, where
X > 0. Let 0 < ξ1 ≤ X be such that k(xt,xi) ≥ ξ21,
∀ zi = (xi, yi) ∈ N−yt

t (zt). With f1 = 0 and the updating rule in
Eq. (3.5), we have

∥ft+1∥H ≤ Ckcp. (3.22)

Lemma 2 With the same assumption as Lemma 1 and the
pairwise hinge loss function ℓh : H × Z × Z → [0, U] defined
in Eq. (3.2), we have

U = 1 + Ckc2p. (3.23)

The proofs of the above two Lemmas are provided in Ap-
pendix A.

Now we derive the regret bound of the decision function
updated by Eq. (3.5):

Theorem 1 Suppose that for all x ∈ Rd, k(x,x) ≤ X2, where
X > 0. Let 0 < ξ1 ≤ X be such that k(xt,xi) ≥ ξ21, ∀ zi =

(xi, yi) ∈ N−yt
t (zt). Given k > 0, C > 0, η > 0, and a bounded

pairwise hinge loss function ℓh : H×Z×Z → [0, U], with f1 = 0

and ft updated by Eq. (3.5), we have

RT ≤ ∥f ∗∥2H
2η

+ ηCk
T∑
t=1

(
(U − 1) +

1

2
(k + 1)Cc2p

)
. (3.24)

Moreover, suppose that ∀i ∈ I+t ∪ I−t , |αi,t| ∈ [0, γη], and
k(xr,xc) ≥ ξ22 with 0 < ξ2 ≤ X for any replaced support vector
xr and compensated support vector xc in any trial. With f++

1 = 0

CHAPTER 3. KOIL WITH A SINGLE KERNEL 27

and f++
t updated by Eq. (3.12), we have

R++
T ≤ RT + T

(
2γCkcpcd + γ2c2d

)
. (3.25)

Details of the proof are given in Appendix A. Several remarks
include:
• By setting η to O(1/

√
T), we can see that RT ∼ O(

√
T),

which is equivalent to the O(1/
√
T) average regret for KOIL.

The bounds we derived are the same as standard online
learning algorithms. It should be noted that our derived
regret bounds are also different from the mistake bounds
derived in [4, 10, 35], which aim at maximizing classification
accuracy.

• The regret bound R++
T is larger than RT with an undesired

term related to T . However, we argue that it is meaningful as
γ can be restricted to be proportional to O(1/

√
T), which

yields a regret bound of O(
√
T). It would be interesting

to see if a better bound is possible, and we leave this as a
future work. Moreover, when ξ22 = X2, i.e., the compensated
support vector is the same as the replaced support vector, we
can obtain R++

T = RT . This result implies that the decision
function learned by the replacement with compensation
updating strategy can approach the decision function learned
with infinite budgets. The experimental results also verify
this observation.

• The derived regret bounds are proportional to k, not N (the
budget), which also implies that k = 1 will yield the smallest

CHAPTER 3. KOIL WITH A SINGLE KERNEL 28

theoretical regret bound. The result is different from the
regret bound derived in online AUC maximization [60].
After tracing the model, we know it is because we explore a
localized AUC metric defined in Eq. (3.4). Our empirical
evaluation shows that the actual best k is not 1, but
set around 10% of the budget; see detailed results in
the experimental section. We conjecture a more accurate
surrogate of the AUC metric can overcome this issue and
leave this as a future work.

• By exploiting the convexity of the localized instantaneous
regularized risk of AUC defined in Eq. (3.4) and confining the
range of |αt| from 0 to γη, we can derive the corresponding
regret bound for the decision updated by Eq. (3.12) as in [23].
However, the derived regret bound is proportional to T ,
which is a little loss. We leave the work of exploring more
advanced techniques to derive a tighter bound in the future.

Regret for the Smooth Pairwise Hinge Loss

As before, we define the regret for the smooth pairwise hinge
loss by

R̃T =
T∑
t=1

L̃t(f̃t)− L̃t(f̃
∗), R̃++

T =
T∑
t=1

L̃t(f̃
++
t)− L̃t(f̃

∗), (3.26)

where f̃ ∗ is the optimal decision function solved by Eq. (3.3) with
the smooth pairwise hinge loss function defined by Eq. (3.13)
from hindsight, and f̃t corresponds to the updating rule in

CHAPTER 3. KOIL WITH A SINGLE KERNEL 29

Eq. (3.15).

Theorem 2 Suppose that for all x ∈ Rd, k(x,x) ≤ X2, where
X > 0. Let 0 < ξ1 ≤ X be such that k(xt,xi) ≥ ξ21, ∀ zi =

(xi, yi) ∈ N−yt
t (zt). Given k > 0, C > 0, and

∑T
t=1 L̃t(f̃

∗) ≤
TL∗, with f̃1 = 0 and f̃t updated by Eq. (3.15), we have

R̃T ≤ 2τ∥f̃ ∗∥2H + ∥f̃ ∗
H∥

√
2τTL∗, (3.27)

where τ = (1+ζ), ζ = 2Ck2c2p, and η is set to 1/
(
τ+
√

τ2+τTL∗/∥f̃∥H
)
.

Moreover, suppose that ∀i ∈ I+t ∪ I−t , αi,t ∈ [0, γη], and
k(xr,xc) ≥ ξ22 with 0 < ξ2 ≤ 0 for any removed support vector xr

and compensated support vector xc in any trial. With f̃++
1 = 0

and f̃++
t updated by Eq. (3.19), we have

R̃++
T ≤ R̃T + T

(
γCk

(η
ν
+ 2Ũ

)
cpcd +

γ2η

ν
c2d

)
, (3.28)

where ν := η − 2kCηc2p.

The proof of Theorem 2 is provided in Appendix A. The result
shows that if the data is separable, i.e., L∗ = 0, KOIL with the
smooth pairwise loss function can attain O(1/T) average regret
bound. For general case, the bound is O(1/

√
T). We also leave

the regret bound of the decision function updated by Eq. (3.15)
as future work.

3.5 Experiment

In this section, we conduct extensive experiments on both
synthetic and benchmark datasets to evaluate the performance

CHAPTER 3. KOIL WITH A SINGLE KERNEL 30

of our proposed KOIL 1 algorithm with fixed budgets.

Compared Algorithms

We compare our proposed KOIL with the state-of-the-art
online learning algorithms. Since we only focus on online
imbalanced learning, for fair comparison, we do not compare
with existing batch-trained imbalanced learning algorithms.
Specifically, we compare online linear algorithms and kernel-
based online learning algorithms with a finite or infinite buffer
size.
• “Perceptron”: the classical perceptron algorithm [37];
• “OAMseq”: an online linear AUC maximization algorithm [60];
• “OPAUC”: One-pass AUC maximization [17];
• “NORMA”: online learning with kernels [29];
• “RBP”: Randomized budget perceptron [4];
• “Forgetron”: a kernel-based perceptron on a fixed bud-

get [10];
• “Projectron/Projectron++”: a bounded kernel-based per-

ceptron [35];
• “KOILRS++/KOILFIFO++: our proposed kernelized online

imbalanced learning algorithm with the pairwise hinge loss
function and fixed budgets updated by RS++ and FIFO++,
respectively.

• “KOIL2
RS++/KOIL2

FIFO++”: our proposed kernelized online
1Demo codes in both C++ and Matlab can be downloaded at https://www.dropbox.

com/sh/nuepinmqzepx54r/AAAKuL4NSZe0IRpGuNIsuxQxa?dl=0.

CHAPTER 3. KOIL WITH A SINGLE KERNEL 31

imbalanced learning algorithm with the smooth pairwise
hinge loss function and fixed budgets updated by RS++ and
FIFO++, respectively.

Experimental Setup

To make fair comparisons, all algorithms adopt the same
setup. We set the learning rate to a small constant η = 0.01

and apply a 5-fold cross validation to find the penalty cost
C ∈ 2[−10:10] in the validation set. For kernel-based methods, we
use the Gaussian kernel and tune its parameter σ ∈ 2[−10:10] by
a 5-fold cross validation in the validation set. For NORMA, we
apply a 5-fold cross validation to select λ and ν ∈ 2[−10:10]. For
Projectron, we apply a similar 5-fold cross validation to select
the parameter of projection difference η ∈ 2[−10:10].

Experiments on Synthetic Datasets

To illustrate KOIL and show the power of the kernel method,
we generate a synthetic dataset in 2D space; see an example
in Fig 1.1(a). The positive samples are generated from the
Gaussian distribution with the mean at (12 ,

1
2) and the standard

deviation being 0.1 in two dimensions. The negative samples
are generated from a mixture of four Gaussian with the same
standard deviation as the positive samples and means at (16 ,

1
2),

(12 ,
1
6), (

1
2 ,

5
6), (

5
6 ,

1
2), respectively. The Bayes error of this dataset

is about 4.5%.

CHAPTER 3. KOIL WITH A SINGLE KERNEL 32

Table 3.1: Summary of all datasets.

Dataset Samples Dimensions T−/T+

Syn1 1,000 2 4
Syn2 1,100 2 10
Syn3 5,100 2 50
Syn4 10,100 2 100
sonar 208 60 1.144
australian 690 14 1.248
heart 270 13 1.250
ionosphere 351 34 1.786
diabetes 768 8 1.866
glass 214 9 2.057
german 1,000 24 2.333
svmguide2 391 20 2.342
segment 2,310 19 6.000
satimage 4,435 36 9.687
vowel 528 10 10.000
letter 15,000 16 26.881
poker 25,010 10 47.752
shuttle 43,500 9 328.546

Following the above setup, we generate different synthetic
datasets with different imbalanced ratios to explore the perfor-
mance of KOIL in different scenarios. The datasets consist of
• Syn1: a set of data with imbalanced ratio 1:4 consisting of

200 positive samples and 800 negative samples;
• Syn2: a set of data with imbalanced ratio 1:10 consisting of

100 positive samples and 1,000 negative samples;
• Syn3: a set of data with imbalanced ratio 1:50 consisting of

100 positive samples and 5,000 negative samples;

CHAPTER 3. KOIL WITH A SINGLE KERNEL 33

• Syn4: a set of data with imbalanced ratio 1:100 consisting
of 100 positive samples and 10,000 negative samples.

The detailed statistics of the synthetic datasets can be found
in Table 3.1. Experimental results on all the synthetic datasets
are reported in Table 3.2. Obviously, these four datasets are
linearly non-separable in the original space. Kernel-based online
learning algorithms significantly outperform the online linear
algorithms. For example, in the Syn1 dataset, Perceptron and
the OAMseq with buffer size being 100 for each class only attain
AUC scores of 0.495 ± 0.031 and 0.467 ± 0.027, respectively.
These are even poorer than random guesses. For NORMA with
an infinite buffer size, it achieves an AUC score of 0.940±0.013.
Our proposed KOILRS++ and KOILFIFO++ with a buffer size of
only 50 for each class and k = 5 can improve the AUC scores
to 0.961 ± 0.016 and 0.960 ± 0.014, respectively. Our KOIL
with the smooth pairwise loss function can attain comparable
or even better performance than that with the non-smooth loss
function.

Experiments on Benchmark Real-world Datasets

We conduct experiments on 14 benchmark datasets obtained
from the UCI and LIBSVM websites. These benchmark
datasets exhibit different degrees of class skew, where the
imbalanced ratio ranges from 1.144 to 328.546. To evaluate
the effectiveness of nonlinear classification models, we select

CHAPTER 3. KOIL WITH A SINGLE KERNEL 34

Table 3.2: Average AUC performance (mean±std) on the synthetics datasets,
•/◦ (-) indicates that both/one of KOILRS++ and KOILFIFO++ are/is
significantly better (worse) than the corresponding method (pairwise t-tests
at 95% significance level).

DataKOILRS++KOILFIFO++KOIL2
RS++KOIL2

FIFO++
Syn1 .961±.016 .960±.014 .967±.011 .968±.011
Syn2 .959±.022 .958±.018 .961±.017 .962±.018
Syn3 .939±.029 .941±.025 .943±.022 .942±.023
Syn4 .965±.014 .966±.013 .968±.013 .966±.015

win/tie/loss 0/4/0 0/4/0

Data Perceptron OAMseq OPAUC NORMA RBP Forgetron ProjectronProjectron++
Syn1 .495±.031•.501±.021•.503±.032•.940±.013•.948±.021•.878±.147•.954±.019 .953±.017
Syn2 .484±.037•.502±.032•.508±.032•.937±.041•.887±.062•.954±.023 .941±.032• .944±.023•
Syn3 .495±.025•.499±.022•.492±.020•.769±.087•.872±.081•.807±.130•.901±.064• .922±.039•
Syn4 .510±.023•.495±.026•.499±.022•.834±.205•.892±.069•.844±.097•.962±.015 .948±.024•
win/tie/loss 4/0/0 4/0/0 4/0/0 4/0/0 4/0/0 3/1/0 2/2/0 3/1/0

data with comparatively low dimensionalities with respect to
the number of data. Data on these benchmark datasets are
collected from a wide range of application domains, and some
datasets, e.g.,shuttle, poker and letter, have sufficiently large
volumes of data to evaluate the scalability of online learning
algorithms. The detailed statistics of the datasets is summarized
in Table 3.1.

For each dataset, we conduct 5-fold cross validation on
all the algorithms, where four folds of the data are used for
training while the rest for testing. The 5-fold cross validation
is independently repeated four times. We set the buffer size to
100 for each class for all related algorithms, including OAMseq,
RBP, and Forgetron. We then average the AUC performance of
20 runs and report the results in Table 3.3.

CHAPTER 3. KOIL WITH A SINGLE KERNEL 35

Table 3.3: Average AUC performance (mean±std) on the benchmark
datasets, •/◦ (-) indicates that both/one of KOILRS++ and KOILFIFO++

are/is significantly better (worse) than the corresponding method (pairwise
t-tests at 95% significance level).

Data KOILRS++ KOILFIFO++ KOIL2
RS++ KOIL2

FIFO++
sonar .955±.028 .955±.028 .957±.031 .957±.031
australian .923±.023 .922±.026 .919±.024 .920±.026
heart .908±.040 .910±.040 .911±.038 .908±.037
ionosphere .985±.015 .985±.015 .959±.026• .952±.031•
diabetes .826±.036 .830±.030 .817±.037◦ .825±.028
glass .887±.053 .884±.054 .885±.048 .885±.048
german .769±.032 .778±.031 .774±.030 .769±.037◦
svmguide2 .897±.040 .885±.043 .891±.042 .882±.040◦
segment .983±.008 .985±.012 .970±.012• .959±.015•
satimage .924±.012 .923±.015 .922±.012 .922±.013
vowel 1.000±.000 1.000±.001 .998±.007• .993±.014•
letter .933±.021 .942±.017 .926±.022• .932±.017◦
poker .681±.031 .693±.032 .654±.023• .676±.031•
shuttle .950±.040 .956±.021 .946±.039 .953±.020

win/tie/loss 6/8/0 7/7/0

Data Perceptron OAMseq OPAUC NORMA RBP Forgetron Projectron Projectron++
sonar .803±.083• .843±.056• .844±.077• .925±.044• .913±.032• .896±.054• .896±.049• .896±.049•
australian .869±.035• .925±.024 .923±.025 .919±.023 .911±.017• .912±.026• .923±.024 .923±.024
heart .876±.066• .912±.040 .901±.043◦ .890±.051• .865±.043• .900±.053◦ .902±.038 .905±.042
ionosphere .851±.056• .905±.041• .888±.046• .961±.016• .960±.030• .945±.031• .964±.025• .963±.027•
diabetes .726±.059• .827±.033 .805±.035• .792±.032• .828±.034 .820±.027◦ .832±.033 .833±.033
glass .810±.065• .827±.064• .800±.074• .811±.077• .811±.071• .813±.075• .811±.070• .781±.076•
german .748±.033• .777±.027 .787±.026 - .766±.032◦ .699±.038• .712±.054• .769±.028◦ .770±.024
svmguide2 .860±.037• .886±.045◦ .859±.050• .865±.046• .890±.038 .864±.045• .886±.044◦ .886±.045◦
segment .875±.020• .919±.020• .882±.019• .910±.042• .969±.017• .943±.038• .979±.013• .978±.016•
satimage .700±.015• .755±.018• .724±.016• .914±.025• .899±.018• .892±.032• .910±.015• .904±.011•
vowel .848±.070• .905±.024• .885±.034• .996±.005• .968±.017• .987±.027• .982±.013• .994±.019•
letter .767±.029• .827±.021• .823±.018• .910±.027• .928±.011◦ .815±.102• .926±.016• .926±.015•
poker .514±.030• .503±.024• .509±.031• .577±.040• .501±.031• .572±.029• .675±.027• .675±.027•
shuttle .520±.134• .999±.000 - .754±.043• .725±.053• .844±.041• .839±.060• .873±.063• .795±.063•
win/tie/loss 14/0/0 9/4/1 12/1/1 13/1/0 12/2/0 14/0/0 11/3/0 10/4/0

CHAPTER 3. KOIL WITH A SINGLE KERNEL 36

Several observations of the results in Table 3.3 can be drawn
as described in the followings:
• Our KOIL with RS++ and FIFO++ updating policies per-

form better than online linear AUC maximization algorithms
in most datasets. By examining the results of OAMseq on the
datasets of australian, heart, diabetes, german, and shuttle
and those of OPAUC on australian and german, we speculate
that for these datasets, a linear classifier is enough to achieve
good performance, while a nonlinear classifier can be affected
by outliers.

• Our proposed KOIL with the pairwise hinge loss function
significantly outperforms all competing kernel-based algo-
rithms in nearly all datasets. The results demonstrate the
effectiveness of KOIL in imbalanced learning.

• Comparing the non-smooth KOIL with its smooth version,
we observe that KOIL with the non-smooth loss function
beats its smooth version in five datasets while being compa-
rable in the rest nine datasets.

• In most datasets, kernel-based algorithms show better AUC
performance than the linear algorithms in most of datasets.
This again demonstrates the power of kernel methods in
classifying real-world datasets.

• We observe that the performance of OAMseq on satimage
dataset is not as good as that in [60] and [52]. We check that
this is mainly due to the different partition of the training
and test data.

CHAPTER 3. KOIL WITH A SINGLE KERNEL 37

(a) diabetes (b) svmguide2

(c) german (d) segment

Figure 3.1: Average AUC performance of four datasets obtained by different
updating policies of KOIL.

Evaluation on Updating Policies

We test the improvement of our updating policies, RS++ and
FIFO++, with the original updating policies, RS and FIFO.
We show in Figure 3.1 the average AUC performance of 20 runs
on four typical datasets. The results of KOILinf, i.e., learning
with infinite budgets, are provided for reference. We have the
following observations:
• KOILRS++ and KOILFIFO++ attain nearly the same perfor-

CHAPTER 3. KOIL WITH A SINGLE KERNEL 38

mance as KOILinf. The results confirm that the extended
policies indeed compensate for the information that is lost
when a support vector is replaced.

• Our KOIL with extended updating policies significant out-
performs our KOIL with corresponding original stream
oblivious policy when either buffer is full. Without com-
pensation, the performance fluctuates and is easily affected
by noisy samples. With compensation, KOIL can maintain
the performance smoothly.

Sensitivity Evaluation of KOIL

We first test the performance of KOIL with different buffer
sizes. From Figure 3.2, we observe that the performance
increases gradually with the increase in the buffer size and it
is saturated when the size is relatively large. This is similar to
the observations in [52, 60].

Next, we test the performance of KOIL with different k,
which determines the number of localized support vectors. From
Figure 3.3, we have the following observations:
• When k is extremely small, say k = 1, KOIL only considers

the pairwise loss incurred by the nearest opposite support
vector of the new instance and cannot fully utilize the
localized information. The updating weight is similar to
NORMA, which adds a constant weight, |ηCyt|, to the
misclassified new instance.

CHAPTER 3. KOIL WITH A SINGLE KERNEL 39

• KOIL usually attains the best performance when k equals
10% of the buffer size. The performance decreases when
k increases. The results consistently show that by only
utilizing the local information of the new instance, one can
indeed prevent the effect of outliers.

• For some datasets, such as svmguide2 and german, the
performance is not so sensitive to k. The reason may be
that the learned support vectors in these datasets are well-
separated when the buffers are full. Hence, new instances
have little influence on the computation of the decision
function.

2 End of chapter.

CHAPTER 3. KOIL WITH A SINGLE KERNEL 40

(a) (b)

(c) (d)

Figure 3.2: Average AUC of KOIL with different buffer sizes.

CHAPTER 3. KOIL WITH A SINGLE KERNEL 41

(a) (b)

(c) (d)

Figure 3.3: Average AUC of KOIL with different k. Here k =

[1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100] and the budget is 100 for each
buffer.

Chapter 4

KOIL with Multiple Kernel
Learning

Summary

In this chapter, we exploit the multiple kernel learning
framework to attain an accurate data representation for
good performance.

4.1 Notations

Given a set of kernel functions K = {kl : X × X →
R, l = 1, . . . ,m}, we aim to learn a linear combination of these
kernel functions for the decision function. First, we denote
wt = [wt

1, . . . , w
t
m] as the unnormalized weight for m kernel

classifiers and qt = [qt1, . . . , q
t
m] as the normalized weight for

m kernel classifiers learned up to the t-th trial, i.e., qt = wt/W t

42

CHAPTER 4. KOIL WITH MULTIPLE KERNEL LEARNING 43

where W t = |wt|, and
∑m

l=1 q
t
l = 1. Hence, the decision function

can be defined as

Ft(x) =
m∑
l=1

qtl · sign(fl,t(x)), (4.1)

where fl,t(x) is an element of the Reproducing Kernel Hilbert
Space Hkl endowed with the inner product kl. The l-th kernel
classifier at the t-th trial is defined to have the same form as in
Eq. (2.1):

fl,t(x) =
∑

i∈I+t
α+
l,i,tkl(xi,x) +

∑
j∈I−t

α−
l,j,tkl(xj,x).

Similarly, we define two buffers K+
l,t and K−

l,t to store the
corresponding information (i.e., weights and support vectors)
for the l-th kernel classifier at the t-th trial.

4.2 Online Multiple Kernel Selection

We adopt the similar workflow of online multiple kernel
learning in [24] to automatically select good kernels. However,
different from [24], our KOIL with Multiple Kernel Learning
(MKL) focuses more on the pairwise loss function and selects
good kernels from the predifined kernels with higher probability
in the next trial of the online process. More specifically, we
associate each kernel function kl with a corresponding value wt

l in
the weight vector wt at the t-th trial. The probability that the l-
th kernel function kl is selected in the next trial is propotional to
wt

l . Besides, a poor kernel yielding a large value of the pairwise

CHAPTER 4. KOIL WITH MULTIPLE KERNEL LEARNING 44

loss at t-th trial will obtain a deduction on its corresponding
value in wt. Hence, after iteratively learning from streaming
data in an online mode, wt will eventually converge. That is,
our KOIL with MKL can eventually select good kernels from the
predefined kernels by using the weighted sum of multiple kernel
decision functions in Eq. (4.1).

Algorithm 4 shows the procedure of KOIL with multiple
kernels.
• In line 6, we select the classifier based on the Bernoulli

distribution which is proportional to the weight of the
classifier. Since it is divided by the maximum weight of
all classifiers, at least one classifier will be selected at each
trial.

• In line 7 to line 15, it updates the predictor of the sampled
classifier. It is noted that in order to avoid excessive
update fluctuation, we define the loss function Ľt as in
Eq. (3.4) and Eq. (3.14), but without the regularization
term. This necessitates a change in the update of α in the
function UpdateKernel. Specifically, in UpdateKernel2, for
the pairwise hinge loss function, α is updated by

αi,t =


ηCyt|Vt|, i = t,

αi,t−1 − ηCyt, ∀i ∈ Vt,

αi,t−1, ∀i ∈ Iytt ∪ Vt.

(4.2)

For the smooth pairwise hinge loss function, α is updated

CHAPTER 4. KOIL WITH MULTIPLE KERNEL LEARNING 45

Algorithm 4 KOIL with MKL
1: Input:

• the penalty parameter C, the learning rate η and λ.
• the maximum positive budget N+ and negative budget N−

• the number of nearest neighbors k

2: Initialize w1 = 1, K+
l .A = K−

l .A = ∅, K+
l .B = K−

l .B = ∅, Np,l = Nn,l =

0, ∀l ∈ [1,m].
3: for t = 1 to T do
4: Receive a training sample zt = (xt, yt)

5: for l = 1 to m do
6: if BernSample(wt

l/[maxj wt
j]) == 1 then

7: if yt == +1 then
8: Np,l = Np,l + 1

9: [K−
l ,K

+
l , αl] = UpdateKernel2(zt,K−

l ,K
+
l , C, η, k)

10: K+
l = UpdateBuffer(αl, zt,K+

l , k,N
+, Np,l)

11: else
12: Nn,l = Nn,l + 1

13: [K+
l ,K

−
l , αl] = UpdateKernel2(zt,K+

l ,K
−
l , C, η, k)

14: K−
l = UpdateBuffer(αl, zt,K−

l , k,N
−, Nn,l)

15: end if
16: wt+1

it
= wt

it exp(−ηĽt(fit , yt))

17: end if
18: end for
19: qt+1 = wt+1/|wt+1|
20: end for

by

αi,t=


2ηCyt

∑
i∈Vt

ℓh(f̃t, zt, zi), i = t,

αi,t−1 − 2ηCytℓh(f̃t, zt, zi), ∀i ∈ Vt,

αi,t−1, ∀i ∈ Iytt ∪ Vt.

(4.3)

• In line 16, the weight of the sampled kernel is updated by the

CHAPTER 4. KOIL WITH MULTIPLE KERNEL LEARNING 46

exponential weighted average algorithm, where the weight is
discounted by a large factor when the loss is large.

It is noted that in order to avoid fluctuation, we do not add the
smoothing term to update the probability of selecting classifiers
as those in [22, 24, 39, 49, 57].

4.3 Regret Analysis

Similar to Eq. (3.20) and Eq. (3.26), we can define the
corresponding regret for Ft(x) and obtain the expected regret
bound associated with Algorithm 4.

Theorem 3 Assuming the loss function is non-negative, Ľt(fi,t)

is bounded by L for all kernel predictors over all trials (i.e.,
maxT

t=1 Ľt(fi,t) ≤ L), and ∥∂f Ľt(fi,t)∥ ≤ G, we have

E

[
T∑
t=1

m∑
i=1

qtiĽt(fi,t)

]
≤ min

1≤i≤m
min
f∈Hki

T∑
t=1

Ľt(f)) +
∥f∥Hki

2λ

+
T

2
(ηL2 + λG2), (4.4)

where qti = wt
i/[
∑m

i=1w
t
i].

Note that by assuming the optimal kernel predictor is bounded
and setting η, λ ∝ 1/

√
T , we can obtain a regret bound of

O(
√
T) by following the proof in [57]. Differently, we can utilize

the AM-GM inequality to remove the constant term lnm/η

in [57]. Due to the space limitation, we omit the proof here.
The proof of Theorem 3 is provided in Appendix A.

CHAPTER 4. KOIL WITH MULTIPLE KERNEL LEARNING 47

4.4 Experiment

We evaluate the performance of KOIL with MKL following
the setting in [24]. That is, we use 16 kernel functions in our
experiment, including 3 polynomial kernels (i.e., k(xi,xj) =

(xT
i xj)

p of degree parameter p = 1, 2, and 3), and 13 Gaussian
kernels (i.e., k(xi,xj) =exp(−∥xi − xj∥2/2σ2) of kernel width
parameter σ in 2[−6:1:6]). The learning rates, η and λ, are set
to 0.01. A 5-fold cross validation is applied to find the best
penalty cost C from 2[−10:1:10]. Table 4.1 summarizes the results
and reveals the following observations:
• KOIL with MKL attain better or comparable performance

to KOIL using the optimal kernel selected by a 5-fold cross
validation. Especially, KOIL with the smooth loss function
can gain better performance on at least 7 datasets among all
14 datasets. For KOIL with the non-smooth loss function,
the performance of KOIL with MKL is comparable in most
datasets. We conjecture this may be due to the non-
smoothness of the loss function.

• For some datasets, such as sonar and ionosphere, KOIL with
MKL cannot beat KOIL with the tuned optimal kernel. We
conjecture this may be due to the limitation of training
data in these datasets. Training with multi-epoches as that
in [57] may be a possible solution to improve the model
performance.

CHAPTER 4. KOIL WITH MULTIPLE KERNEL LEARNING 48

Table 4.1: Average AUC performance (mean±std) on the benchmark
datasets. • (-) indicates that the performance by KOIL with MKL is
significantly better than (comparable to) that by KOIL with the tuned
optimal kernel (pairwise t-tests at 95% significance level).

Data KOILMKL
RS++ KOILMKL

FIFO++ KOILMKL 2
RS++ KOILMKL 2

FIFO++

sonar 0.893±0.053 0.899±0.047 0.946±0.040 - 0.949±0.031 -
australian 0.922±0.027 - 0.919±0.028 - 0.918±0.026 - 0.911±0.024
heart 0.906±0.044 - 0.907±0.042 - 0.906±0.040 - 0.904±0.038 -
ionosphere 0.953±0.062 0.957±0.073 0.972±0.039 - 0.972±0.042•
diabetes 0.826±0.035 - 0.831±0.032 - 0.827±0.036•0.822±0.033 -
glass 0.890±0.056 - 0.891±0.051 - 0.890±0.053 - 0.893±0.052 -
german 0.771±0.042 - 0.769±0.033 - 0.774±0.033 - 0.768±0.039 -
svmguide2 0.906±0.040• 0.896±0.049• 0.905±0.041• 0.903±0.043•
segment 0.993±0.004• 0.994±0.004• 0.991±0.005• 0.990±0.009•
satimage 0.937±0.015• 0.939±0.015• 0.938±0.012• 0.937±0.014•
vowel 0.999±0.002 0.999±0.002 - 0.999±0.002 - 0.998±0.003 -
letter 0.954±0.013• 0.959±0.014• 0.962±0.011• 0.968±0.008•
poker 0.690±0.035• 0.707±0.027• 0.709±0.023• 0.705±0.020•
shuttle 0.948±0.028 - 0.926±0.032 0.888±0.029 0.886±0.032
win/tie/loss 5/6/3 5/3/4 6/7/1 6/6/2

2 End of chapter.

Chapter 5

Conclusion

Summary

This chapter concludes the contributions of this thesis.

We proposed a kernel-based online learning algorithm to
tackle the imbalanced binary classification problem. We main-
tained two buffers with fixed budgets to control the number
of support vectors, which keep track of the global information
of the decision boundary. We updated the weight of a new
support vector by confining its influence on only its k-nearest
opposite support vectors. More importantly, we designed a
sophisticated compensation scheme to avoid information loss
by transferring the weight of the removed support vector to
its most similar one when either buffer is full. We showed
that this compensation can make our learned decision function
approach the one learned with infinite budgets. Furthermore,
we exploit multiple kernel learning framework to determine the

49

CHAPTER 5. CONCLUSION 50

kernel for KOIL. Finally, we conducted extensive experiments
to demonstrate the effectiveness of our proposed approach.

2 End of chapter.

Appendix A

Theoretical proof

Summary

Here we give the detailed proofs of the theorem in this
thesis.

Proof of Lemma 1

Proof: First, since zi is one of the k-nearest opposite support
vectors of zt, the assumption k(zt, zi) ≥ ξ21 with ξ21 > 0 is
justified. We then have

∥φ(zt, zi)∥H =
√

k(xt,xt)− 2k(xt,xi) + k(xi,xi) ≤ cp, (A.1)

where cp is defined in Eq. (3.21).
Now we derive the bound on the norm of the decision

51

APPENDIX A. THEORETICAL PROOF 52

function:

∥ft+1∥H
≤(1− η)∥ft∥H + ηC

∑
zi

I[ℓh(f, zt, zi) > 0] · ∥φ(zt, zi)∥H

≤(1− η)∥ft∥H + ηCkcp. (A.2)

In the above, the first inequality is by substituting Eq. (3.7)
into Eq. (3.5) to calculate ft+1 and the triangle inequality. The
second inequality is due to Eq. (A.1) and the fact that the
number of elements in N−yt

t,k (zt) is at most k.
By expanding ∥ft∥H iteratively, we have

∥ft+1∥H ≤ (1− η)t∥f1∥H +
1− (1− η)t

η
ηCkcp ≤ Ckcp.

The second inequality holds when η < 1, 1 − (1 − η)t ≤ 1 for
t ∈ [T] and f1 = 0. □

Proof of Lemma 2

Proof: Based on the pairwise hinge loss defined in Eq. (3.2),
we have

ℓh(ft, zt, zi) ≤ 1 + |ft(xt)− ft(xi)|

= 1 + |⟨ft, k(xt, ·)− k(xi, ·)⟩H|

≤ 1 + ∥ft∥H · ∥k(xt, ·)− k(xi, ·)∥H
≤ 1 + Ckc2p (:= U).

APPENDIX A. THEORETICAL PROOF 53

In the above, the first inequality is due to the triangle inequality
and 1

2 |yt − yi| ≤ 1. The second inequality is due to the Cauchy-
Schwarz inequality. The third inequality is due to the bound on
the decision function in Lemma 1 and Eq. (A.1). □

Proof of Theorem 1

Proof: Let f ∗ be the optimal solution from hindsight. We
define the distance between ft and f ∗ at the t-th trial as
∥ft − f ∗∥H. Then we have

∥ft+1 − f ∗∥2H − ∥ft − f ∗∥2H
=∥ft − η∂L̂t(ft)− f ∗∥2H − ∥ft − f ∗∥2H
=η2∥∂L̂t(ft)∥2H − 2η⟨∂L̂t(ft), ft − f ∗⟩H.

By summing over t = 1, . . . , T , we have

∥fT+1 − f ∗∥2H − ∥f1 − f ∗∥2H

=− 2η
T∑
t=1

⟨∂L̂t(ft), ft − f ∗⟩H + η2
T∑
t=1

∥∂L̂t(ft)∥2H.

Due to the convexity of L̂t(ft), we have

RT ≤
T∑
t=1

⟨∂L̂t(ft), ft − f ∗⟩H

≤ ∥f1 − f ∗∥2H
2η

− ∥fT+1 − f ∗∥2H
2η

+
η

2

T∑
t=1

∥∂L̂t(ft)∥2H.

APPENDIX A. THEORETICAL PROOF 54

Since f1 = 0 and ∥fT+1 − f ∗∥2H ≥ 0, we have

RT ≤ ∥f ∗∥2H
2η

+
η

2

T∑
t=1

∥∂L̂t(ft)∥2H.

We now bound ∥∂L̂t(ft)∥2H:

∥∂L̂t(ft)∥2H

=

∥∥∥∥∥ft − C
∑

zi

I[ℓh(f, zt, zi) > 0] · φ(zt, zi)
∥∥∥∥∥
2

H

=∥ft∥2H +

∥∥∥∥∥C∑
zi

I[ℓh(f, zt, zi) > 0] · φ(zt, zi)
∥∥∥∥∥
2

H

− 2C
∑

zi

I[ℓh(f, zt, zi) > 0]⟨ft, φ(zt, zi)⟩H. (A.3)

From Lemma 1, we know that the first term above is bounded
by

∥ft∥2H ≤ C2k2c2p. (A.4)

Now, by Eq. (3.21), we have∥∥∥∥∥C∑
zi

I[ℓh(f, zt, zi) > 0] · φ(zt, zi)
∥∥∥∥∥
2

H

≤ C2
∑

zi

I[ℓh(f, zt, zi) > 0] · ∥φ(zt, zi)∥2H

≤ C2kc2p. (A.5)

The above inequalities hold due to the triangle inequality, the
bound in Eq. (A.1), and the number of elements in N−yt

t,k (zt)
bounded by k.

APPENDIX A. THEORETICAL PROOF 55

Next, we bound the third term of Eq.(A.3). First, using the
facts that the decision function is an element of a Reproducing
Kernel Hilbert Space (RKHS) and the pairwise loss function
ℓh : H×Z ×Z → [0, U] is bounded, we have

⟨ft, φ(zt, zi)⟩H =
1

2
(yt − yi) (ft(xt)− ft(xi)) ≥ (1− U). (A.6)

Hence, we have

− 2C
∑

zi

I[ℓh(f, zt, zi) > 0]⟨ft, φ(zt, zi)⟩H

≤ 2C
∑

zi

I[ℓh(f, zt, zi) > 0](U − 1)

≤ 2Ck(U − 1). (A.7)

In the above, the first inequality follows from Eq. (A.6). The
second inequality holds since the number of elements in N−yt

t,k (zt)
is at most k.

By combining Eq. (A.4), Eq. (A.5), and Eq. (A.7), we have
a bound for Eq. (A.3). That is,

∥∂L̂t(ft)∥2H ≤ C2k(k + 1)c2p + 2Ck(U − 1).

We then obtain the bound on RT in Eq. (3.24) by summing
∂L̂t(ft) over all t ∈ [T].

□

Proof of Theorem 2

Proof: The proof is similar to that of Theorem 1. The main
difference is to exploit the smoothness of the loss function.

APPENDIX A. THEORETICAL PROOF 56

First, by the convexity of the objective function in Eq. (3.14),
we have

L̃t(f̃t)− L̃t(f̃
∗) ≤ ⟨∂L̃t(f̃t), f̃t − f̃ ∗⟩. (A.8)

We can derive the second derivative of Eq. (3.14) with respect
to f as follows:

∂2L̃t

∂f̃ 2
= I + 2C

∑
zi,zj

Izi
Izj

φ(zt, zi)φ(zt, zj)⊤, (A.9)

where Izi
is defined by I[ℓh(f̃ , zt, zi) > 0] for simplicity. Hence,

we have

∥∂L̃t(f̃t)− ∂L̃t(f̃
∗)∥H ≤ (1 + ζ)∥f̃t − f̃ ∗∥H, (A.10)

where ζ = 2Ck2c2p is obtained by the summation in Eq. (A.9)
and the following fact

⟨φ(zt, zi), φ(zt, zj)⟩H ≤ ∥φ(zt, zi)∥H · ∥φ(zt, zj)∥H ≤ c2p.

The optimality of f̃ ∗ implies that ∂L̃t(f̃
∗) = 0 for convex and

smooth L̃. Based on [34, Theorem 2.1.5], we have

∥∂L̃t(f̃t)∥2H=∥∂L̃t(f̃t)−∂L̃t(f̃
∗)∥2H≤2(1+ζ)L̃t(f̃t), (A.11)

where the inequality holds by L̃t(f̃
∗) ≥ 0 and ∂L̃t(f̃

∗) = 0.
Moreover, we have

∥f̃t+1 − f̃ ∗∥2H − ∥f̃t − f̃ ∗∥2H
=η2∥∂L̃t(f̃t)∥2H − 2η⟨∂L̃t(f̃t), f̃t − f̃ ∗⟩H. (A.12)

By combining Eq. (A.8), Eq. (A.12), and Eq. (A.11), we obtain

(1− (1 + ζ)η)L̃t(f̃t)− L̃t(f̃
∗) ≤ ∥f̃t − f̃ ∗∥2H − ∥f̃t+1 − f̃ ∗∥2H

2η
.

APPENDIX A. THEORETICAL PROOF 57

Summing over t = 1, . . . , T and rearranging, we obtain
T∑
t=1

(1− (1 + ζ)η)L̃t(f̃t)−
T∑
t=1

L̃t(f̃
∗)

≤ 1

2η

(
∥f̃1 − f̃ ∗∥2H − ∥f̃T+1 − f̃ ∗∥2H

)
≤ 1

2η
∥f̃ ∗∥2H.

In the above, the second inequality is due to f̃1 = 0 and ∥f̃T+1−
f̃ ∗∥2H ≥ 0.

Hence, we further get
T∑
t=1

L̃t(f̃t)−
T∑
t=1

L̃t(f̃
∗)

≤ 1

1− (1 + ζ)η

(
1

2η
∥f̃ ∗∥2H + ((1 + ζ)η)

T∑
t=1

L̃t(f̃
∗)

)

≤ 1

1− (1 + ζ)η

(
1

2η
∥f̃ ∗∥2H + ((1 + ζ)η)TL∗)

)
. (A.13)

The minimum of the last inequality is obtained by putting

η =
1

1 + ζ +
√

(1 + ζ)2 + 2(1 + ζ)TL∗/∥f ∗∥2H
. (A.14)

Putting η in Eq. (A.14) into Eq. (A.13) and using the following
power inequality,

√
(1 + ζ)2 + 2(1 + ζ)TL∗/∥f ∗∥2H ≤ (1 + ζ) +√

2(1 + ζ)TL∗/∥f ∗∥2H, we obtain the regret bound in Eq. (3.27).
□

Proof of Theorem 3

Proof: Let denote mt
i as an indicator valuable for the selec-

tion of the i-th kernel classifier at the t-th trial, i.e., mt
i =

APPENDIX A. THEORETICAL PROOF 58

BernSample(wt
i/[maxj wt

j]). In Algorithm 4, we have the update
rule for the weight wT+1 as follows

wT+1
i = wT

i exp(−ηmT
i ĽT (fi,T)) = w1

i exp(−η
T∑
t=1

mt
iĽt(fi,t))

= exp(−η

T∑
t=1

mt
iĽt(fi,t)). (A.15)

We first derive the lower bound for
∑T

t=1 ln W t+1

W t .
T∑
t=1

ln W t+1

W t
= ln W T+1

W 1
= ln

∑m
i=1w

T+1
i

m

≥ ln
(

m∏
i=1

wT+1
i

) 1
m

= − η

m

m∑
i=1

T∑
t=1

mt
iĽt(fi,t)

(A.16)

Then we derive the upper bound for
∑T

t=1 ln W t+1

W t by using the
inequality e−x ≤ 1− x+ 1

2x
2, ∀x ≥ 0 and ln(1 + x) ≤ x,

ln W t+1

W t
= ln

m∑
i=1

wt
iexp(−η

T∑
t=1

mt
iĽt(fi,t))

≤ ln
m∑
i=1

qti

(
1− ηmt

iĽt(fi,t) +
1

2
η2(mt

iĽt(fi,t))
2

)
≤ −η

m∑
i=1

qtim
t
iĽt(fi,t) +

1

2
η2

m∑
i=1

qti(m
t
iĽt(fi,t))

2 (A.17)

By taking the summation on both sides we have
T∑
t=1

ln W t+1

W t
≤ −η

T∑
t=1

m∑
i=1

qtim
t
iĽt(fi,t) +

1

2
η2

T∑
t=1

m∑
i=1

qti(m
t
iĽt(fi,t))

2

(A.18)

APPENDIX A. THEORETICAL PROOF 59

Combing Eq. (A.16) and (A.18), we have
T∑
t=1

m∑
i=1

qtim
t
iĽt(fi,t) ≤

1

m

m∑
i=1

T∑
t=1

mt
iĽt(fi,t) +

1

2
η

T∑
t=1

m∑
i=1

qti(m
t
iL)

2,

(A.19)

where we use upper bound |Ľt(fi,t)| ≤ L to bound the second
order term Ľ2

t (fi,t). Since
∑m

i=1 q
t
i = 1, E[mt

i] ≤ 1 and
E[(mt

i)
2] ≤ 1, we bound the first order term Ľt(fi,t) in Eq. (A.19)

by Ľt(f),∀f ∈ Hki, i ∈ [1 : m] as follows.

mt
i(Ľt(fi,t)− Ľt(f))

≤
⟨
f t
i − f,mt

i∂f Ľt(fi,t)
⟩

≤ 1

2λ

(
∥f t

i − f∥2 − ∥f t+1
i − f∥2 + (mt

i∂f Ľt(fi,t)λ)
2
)

≤ 1

2λ

(
∥f t

i − f∥2 − ∥f t+1
i − f∥2 + (mt

iGλ)2
)

(A.20)

Then we take the expectation of Eq. (A.20), we have

E

[
1

m

m∑
i=1

T∑
t=1

mt
iĽt(fi,t)

]
≤ min

1≤i≤m
min
f∈Hki

T∑
t=1

Ľt(f)) +
∥f∥Hki

2λ
+

TλG

2

(A.21)

Then we take the expectation of the second term in the right
hand side of Eq. (A.19), we have

E

[
1

2
η

T∑
t=1

m∑
i=1

qti(m
t
iL)

2

]
≤ ηTL2

2
(A.22)

Combine Eq. (A.21) and (A.22), we complete the proof. □

2 End of chapter.

Bibliography

[1] A. P. Bradley. The use of the area under the ROC curve
in the evaluation of machine learning algorithms. Pattern
Recognition, 30(7):1145–1159, 1997.

[2] U. Brefeld and T. Scheffer. AUC maximizing support vector
learning. In Proceedings of the ICML 2005 workshop on
ROC Analysis in Machine Learning, 2005.

[3] C. L. Castro and A. de Pádua Braga. Novel cost-sensitive
approach to improve the multilayer perceptron performance
on imbalanced data. IEEE Trans. Neural Netw. Learning
Syst., 24(6):888–899, 2013.

[4] G. Cavallanti, N. Cesa-Bianchi, and C. Gentile. Tracking
the best hyperplane with a simple budget perceptron.
Machine Learning, 69(2-3):143–167, 2007.

[5] N. Cesa-Bianchi, A. Conconi, and C. Gentile. A second-
order perceptron algorithm. SIAM J. Comput., 34(3):640–
668, 2005.

60

BIBLIOGRAPHY 61

[6] N. Cesa-Bianchi and G. Lugosi. Prediction, Learning, and
Games. Cambridge University Press, New York, NY, USA,
2006.

[7] C. Cortes and M. Mohri. AUC optimization vs. error rate
minimization. In NIPS. MIT Press, 2003.

[8] K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz, and
Y. Singer. Online passive-aggressive algorithms. Journal of
Machine Learning Research, 7:551–585, 2006.

[9] L. Csató and M. Opper. Sparse on-line gaussian processes.
Neural Computation, 14(3):641–668, 2002.

[10] O. Dekel, S. Shalev-Shwartz, and Y. Singer. The Forgetron:
A kernel-based perceptron on a budget. SIAM Journal on
Computing, 37(5):1342–1372, 2008.

[11] Y. Ding, P. Zhao, S. C. H. Hoi, and Y. Ong. An
adaptive gradient method for online AUC maximization.
In Proceedings of the Twenty-Ninth AAAI Conference on
Artificial Intelligence, January 25-30, 2015, Austin, Texas,
USA., pages 2568–2574, 2015.

[12] G. Dror, N. Koenigstein, Y. Koren, and M. Weimer. The
yahoo! music dataset and kdd-cup ’11. In Proceedings of
KDD Cup 2011 competition, San Diego, CA, USA, 2011,
pages 8–18, 2012.

BIBLIOGRAPHY 62

[13] Y. Engel, S. Mannor, and R. Meir. The kernel recursive
least-squares algorithm. IEEE Transactions on Signal
Processing, 52(8):2275–2285, 2004.

[14] W. Fan and A. Bifet. Mining big data: current status, and
forecast to the future. SIGKDD Explorations, 14(2):1–5,
2012.

[15] T. Fawcett. An introduction to ROC analysis. Pattern
Recognition Letters, 27(8):861–874, 2006.

[16] Y. Freund and R. E. Schapire. Large margin classification
using the perceptron algorithm. Machine Learning,
37(3):277–296, 1999.

[17] W. Gao, R. Jin, S. Zhu, and Z.-H. Zhou. One-pass AUC
optimization. In ICML, pages 906–914, 2013.

[18] I. Guyon, V. Lemaire, M. Boullé, G. Dror, and D. Vogel.
Design and analysis of the KDD cup 2009: fast scoring on
a large orange customer database. SIGKDD Explorations,
11(2):68–76, 2009.

[19] J. A. Hanley and B. J. McNeil. The meaning and use of the
area under a receiver operating characteristic (ROC) curve.
Radiology, 143(1):29–36, 1982.

[20] J. Hensman, N. Fusi, and N. D. Lawrence. Gaussian
processes for big data. In Proceedings of the Twenty-

BIBLIOGRAPHY 63

Ninth Conference on Uncertainty in Artificial Intelligence,
Bellevue, WA, USA, August 11-15, 2013, 2013.

[21] A. Herschtal and B. Raskutti. Optimising area under the
ROC curve using gradient descent. In ICML, 2004.

[22] S. C. H. Hoi, R. Jin, P. Zhao, and T. Yang. Online
multiple kernel classification. Machine Learning, 90(2):289–
316, 2013.

[23] J. Hu, H. Yang, I. King, M. R. Lyu, and A. M.-C. So.
Kernelized online imbalanced learning with fixed budgets.
In AAAI, Austin Texss, USA, Jan. 25-30 2015. AR =
531/1991 (26.67%).

[24] R. Jin, S. C. H. Hoi, and T. Yang. Online multiple kernel
learning: Algorithms and mistake bounds. In Algorithmic
Learning Theory, 21st International Conference, ALT 2010,
Canberra, Australia, October 6-8, 2010. Proceedings, pages
390–404, 2010.

[25] T. Joachims. A support vector method for multivariate
performance measures. In ICML, pages 377–384, 2005.

[26] P. Kar, B. K. Sriperumbudur, P. Jain, and H. Karnick.
On the generalization ability of online learning algorithms
for pairwise loss functions. In Proceedings of the 30th
International Conference on Machine Learning, ICML

BIBLIOGRAPHY 64

2013, Atlanta, GA, USA, 16-21 June 2013, pages 441–449,
2013.

[27] N. Karampatziakis and J. Langford. Online importance
weight aware updates. In UAI, pages 392–399, 2011.

[28] S. S. Keerthi and W. Chu. A matching pursuit approach to
sparse gaussian process regression. In Advances in Neural
Information Processing Systems 18 [Neural Information
Processing Systems, NIPS 2005, December 5-8, 2005,
Vancouver, British Columbia, Canada], pages 643–650,
2005.

[29] J. Kivinen, A. J. Smola, and R. C. Williamson. Online
learning with kernels. IEEE Transactions on Signal
Processing, 52(8):2165–2176, 2004.

[30] M. Kloft, U. Brefeld, S. Sonnenburg, and A. Zien. lp-
norm multiple kernel learning. Journal of Machine Learning
Research, 12:953–997, 2011.

[31] Y. Li and P. M. Long. The relaxed online maximum margin
algorithm. Machine Learning, 46(1-3):361–387, 2002.

[32] M. Lin, K. Tang, and X. Yao. Dynamic sampling approach
to training neural networks for multiclass imbalance
classification. IEEE Trans. Neural Netw. Learning Syst.,
24(4):647–660, 2013.

BIBLIOGRAPHY 65

[33] G. Loomes and R. Sugden. Regret theory: An alternative
theory of rational choice under uncertainty. The economic
journal, pages 805–824, 1982.

[34] Y. Nesterov. Introductory Lectures on Convex Optimization:
A Basic Course. Kluwer Academic Publishers, 2003.

[35] F. Orabona, J. Keshet, and B. Caputo. Bounded kernel-
based online learning. Journal of Machine Learning
Research, 10:2643–2666, 2009.

[36] A. Rakotomamonjy, F. R. Bach, S. Canu, and Y. Grand-
valet. SimpleMKL. Journal of Machine Learning Research,
9:1179–1225, 2008.

[37] F. Rosenblatt. The Perceptron: A probabilistic model
for information storage and organization in the brain.
Psychological Review, 65:386–408, 1958.

[38] S. Ross, P. Mineiro, and J. Langford. Normalized online
learning. CoRR, abs/1305.6646, 2013.

[39] D. Sahoo, S. C. H. Hoi, and B. Li. Online multiple
kernel regression. In The 20th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
KDD ’14, New York, NY, USA - August 24 - 27, 2014,
pages 293–302, 2014.

[40] B. Schölkopf and A. Smola. Learning with Kernels. MIT
Press, Cambridge, MA, 2002.

BIBLIOGRAPHY 66

[41] M. W. Seeger, C. K. I. Williams, and N. D. Lawrence.
Fast forward selection to speed up sparse gaussian process
regression. In Proceedings of the Ninth International
Workshop on Artificial Intelligence and Statistics, AISTATS
2003, Key West, Florida, USA, January 3-6, 2003, 2003.

[42] S. Smale and Y. Yao. Online learning algorithms.
Foundations of Computational Mathematics, 6(2):145–170,
April 2006.

[43] S. Sonnenburg, G. Rätsch, C. Schäfer, and B. Schölkopf.
Large scale multiple kernel learning. Journal of Machine
Learning Research, 7:1531–1565, 2006.

[44] S. J. Stolfo, W. Lee, P. K. Chan, W. Fan, and E. Eskin.
Data mining-based intrusion detectors: An overview of the
columbia IDS project. SIGMOD Record, 30(4):5–14, 2001.

[45] S. V. Vaerenbergh, M. Lázaro-Gredilla, and I. Santamaría.
Kernel recursive least-squares tracker for time-varying
regression. IEEE Trans. Neural Netw. Learning Syst.,
23(8):1313–1326, 2012.

[46] J. S. Vitter. Random sampling with a reservoir. ACM
Trans. Math. Softw., 11(1):37–57, Mar. 1985.

[47] Y. Wang, R. Khardon, D. Pechyony, and R. Jones.
Generalization bounds for online learning algorithms with
pairwise loss functions. In COLT 2012 - The 25th

BIBLIOGRAPHY 67

Annual Conference on Learning Theory, June 25-27, 2012,
Edinburgh, Scotland, pages 13.1–13.22, 2012.

[48] X. Wu, V. Kumar, J. R. Quinlan, J. Ghosh, Q. Yang,
H. Motoda, G. J. McLachlan, A. F. M. Ng, B. Liu, P. S. Yu,
Z. Zhou, M. Steinbach, D. J. Hand, and D. Steinberg. Top
10 algorithms in data mining. Knowl. Inf. Syst., 14(1):1–37,
2008.

[49] H. Xia, S. C. H. Hoi, R. Jin, and P. Zhao. Online multiple
kernel similarity learning for visual search. IEEE Trans.
Pattern Anal. Mach. Intell., 36(3):536–549, 2014.

[50] Z. Xu, R. Jin, H. Yang, I. King, and M. R. Lyu. Simple and
efficient multiple kernel learning by group lasso. In ICML,
pages 1175–1182, Haifa, Israel, 2010.

[51] L. Yan, R. H. Dodier, M. Mozer, and R. H. Wolniewicz.
Optimizing classifier performance via an approximation to
the wilcoxon-mann-whitney statistic. In Machine Learning,
Proceedings of the Twentieth International Conference
(ICML 2003), August 21-24, 2003, Washington, DC, USA,
pages 848–855, 2003.

[52] H. Yang, J. Hu, M. R. Lyu, and I. King. Online imbalanced
learning with kernels. In NIPS Workshop on Big Learning,
Lake Tahoe, USA, 2013.

BIBLIOGRAPHY 68

[53] H. Yang, J. Hu, M. R. Lyu, and I. King. Online imbalanced
learning with kernels. In NIPS Workshop on Big Learning,
Dec. 05-10 2013.

[54] H. Yang and I. King. Ensemble learning for imbalanced e-
commerce transaction anomaly classification. In ICONIP,
pages 866–874, Bangkok, Thailand, 2009.

[55] H. Yang, I. King, and M. R. Lyu. Sparse Learning
Under Regularization Framework. LAP Lambert Academic
Publishing, April 2011.

[56] H. Yang, Z. Xu, J. Ye, I. King, and M. R. Lyu.
Efficient sparse generalized multiple kernel learning. IEEE
Transactions on Neural Networks, 22(3):433–446, March
2011.

[57] T. Yang, M. Mahdavi, R. Jin, J. Yi, and S. C. H. Hoi.
Online kernel selection: Algorithms and evaluations. In
Proceedings of the Twenty-Sixth AAAI Conference on
Artificial Intelligence, July 22-26, 2012, Toronto, Ontario,
Canada., 2012.

[58] L. Zhang, J. Yi, R. Jin, M. Lin, and X. He. Online kernel
learning with a near optimal sparsity bound. In Proceedings
of the 30th International Conference on Machine Learning,
ICML 2013, Atlanta, GA, USA, 16-21 June 2013, pages
621–629, 2013.

BIBLIOGRAPHY 69

[59] P. Zhao, S. C. H. Hoi, and R. Jin. Double updating online
learning. Journal of Machine Learning Research, 12:1587–
1615, 2011.

[60] P. Zhao, S. C. H. Hoi, R. Jin, and T. Yang. Online auc
maximization. In ICML, pages 233–240, 2011.

