IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 4, APRIL 2023

Revisiting, Benchmarking and Exploring API
Recommendation: How Far Are We?

Yun Peng*, Shuging Li*”, Wenwei Gu, Yichen Li, Wenxuan Wang,
Cuiyun Gao", and Michael R. Lyu, Fellow, IEEE

Abstract—Application Programming Interfaces (APIs), which encapsulate the implementation of specific functions as interfaces,
greatly improve the efficiency of modern software development. As the number of APIs grows up fast nowadays, developers can hardly
be familiar with all the APIs and usually need to search for appropriate APIs for usage. So lots of efforts have been devoted to improving
the APl recommendation task. However, it has been increasingly difficult to gauge the performance of new models due to the lack of a
uniform definition of the task and a standardized benchmark. For example, some studies regard the task as a code completion problem,
while others recommend relative APIs given natural language queries. To reduce the challenges and better facilitate future research, in

this paper, we revisit the APl recommendation task and aim at benchmarking the approaches. Specifically, the paper groups the
approaches into two categories according to the task definition, i.e., query-based AP recommendation and code-based API
recommendation. We study 11 recently-proposed approaches along with 4 widely-used IDEs. One benchmark named APIBench is
then built for the two respective categories of approaches. Based on APIBench, we distill some actionable insights and challenges for
API recommendation. We also achieve some implications and directions for improving the performance of recommending APIs,
including appropriate query reformulation, data source selection, low resource setting, user-defined APls, and query-based API

recommendation with usage patterns.

Index Terms—API| recommendation, benchmark, empirical study

1 INTRODUCTION

APPLICATION Programming Interfaces (APIs) provided by
software libraries or frameworks play an important
role in modern software development. Almost all programs,
even the basic “hello world!” program, include at least one
API. However, there are a huge number of APIs from differ-
ent modules or libraries. For example, the Java standard
library [51] provides more than 30,000 APIs. It is therefore
infeasible for developers to be familiar with all APIs. To
address this problem, many approaches are proposed to
recommend APIs based on input queries, which describe

e Yun Peng, Shuging Li, Wenwei Gu, Yichen Li, Wenxuan Wang, and
Michael R. Lyu are with the Chinese University of Hong Kong, Hong
Kong, China. E-mail: {ypeng, sqli21, wwgu2l, ycli21, wxwang, lyu}
@cse.cuhk.edu.hk.

o Cuiyun Gao is with the Guangdong Provincial Key Laboratory of Novel
Security Intelligence Technologies, Harbin Institute of Technology, Shenz-
hen 518055, China, and also with Peng Cheng Laboratory, Shenzhen
518066, China. E-mail: gcyydxf@gmail .com.

Manuscript received 26 December 2021; revised 21 July 2022; accepted 3
August 2022. Date of publication 8 August 2022; date of current version 18
April 2023.

This work was supported in part by the Research Grants Council of the Hong
Kong Special Administrative Region, China under Grant CUHK 14210920 of
the General Research Fund, in part by the National Natural Science Foundation
of China under Grant 62002084, in part by Guangdong Provincial Key
Laboratory of Novel Security Intelligence Technologies under Grant
2022B1212010005, in part by Stable support plan for colleges and universities
in Shenzhen under Grants GXWD2020 1230155427003-20200730101839009,
and in part by the Major Key Project of PCL under Grants PCL2022A03,
PCL2021A02 and PCL2021A09.

(Corresponding author: Cuiyun Gao.)

Recommended for acceptance by M. P. Robillard.

Digital Object Identifier no. 10.1109/TSE.2022.3197063

the programming task in natural language, or surrounding
context, i.e., the code already written by developers.

However, a uniform definition of the current API rec-
ommendation task is still absent, making the task hard to
be followed by potential researchers. Some studies [7],
[32], [46], [60], [62] regard the task as a code completion
problem, and recommend any code tokens including APIs.
These studies focus on improving the prediction results of
all the tokens instead of only APIs. Some studies [23], [27],
[38], [56], [58] recommend relative APIs on different levels
given natural language queries. Besides, the evaluation
results are difficult to be reproduced by future related
work. For example, for query-based API recommendation,
manual evaluation is generally adopted, so the perfor-
mance reported by different studies can hardly be aligned.
Comparing with widely-used Integrated Development
Enviroments (IDEs) or search engines is another com-
monly adopted yet inconsistent evaluation strategy in
previous research. Therefore, to better facilitate future
exploration of the API recommendation task, in this paper,
we summarize the recent related approaches and build a
general benchmark named APIBENCH.

To facilitate the benchmark creation, we group the recent
related approaches into two categories according to the task
definition: query-based API recommendation and code-
based API recommendation:

1) Query-Based API Recommendation. Approaches for
query-based API recommendation aim at providing related
APIs to developers given a query that describes program-
ming requirements in natural language. The approaches
can inform developers which API to use for a programming
task.

0098-5589 © 2022 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 02,2023 at 08:17:13 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-1936-5598
https://orcid.org/0000-0003-1936-5598
https://orcid.org/0000-0003-1936-5598
https://orcid.org/0000-0003-1936-5598
https://orcid.org/0000-0003-1936-5598
https://orcid.org/0000-0001-6323-1402
https://orcid.org/0000-0001-6323-1402
https://orcid.org/0000-0001-6323-1402
https://orcid.org/0000-0001-6323-1402
https://orcid.org/0000-0001-6323-1402
https://orcid.org/0000-0001-8513-6836
https://orcid.org/0000-0001-8513-6836
https://orcid.org/0000-0001-8513-6836
https://orcid.org/0000-0001-8513-6836
https://orcid.org/0000-0001-8513-6836
mailto:ypeng@cse.cuhk.edu.hk
mailto:sqli21@cse.cuhk.edu.hk
mailto:wwgu21@cse.cuhk.edu.hk
mailto:ycli21@cse.cuhk.edu.hk
mailto:wxwang@cse.cuhk.edu.hk
mailto:lyu@cse.cuhk.edu.hk
mailto:gcyydxf@gmail.com

PENG ET AL.: REVISITING, BENCHMARKING AND EXPLORING APl RECOMMENDATION: HOW FAR ARE WE?

2) Code-Based API Recommendation. Approaches for code-
based API recommendation aim at predicting the next API
given the code surrounding the point of prediction. They
can directly improve the efficiency of coding.

Besides the unreproducible evaluation, the two groups of
studies face their own challenges. 1) For query-based
approaches, high-quality queries play a critical role in accu-
rate recommendation. However, there may exist a knowl-
edge gap between developers and API designers in
choosing terms for describing queries or APIs. For example,
developers who do not know the term “heterogeneous list” in
API documents would use other words such as “list with dif-
ferent types of elements” in the query. Whether current query
reformulation techniques are effective for API recommenda-
tion and how effective it is are still remaining unexplored. 2)
For code-based approaches, the quality of code before the
recommendation point also affects the recommendation
performance. Generally, the approaches are evaluated by
simulating an actual development, i.e., some parts of a proj-
ect are removed for imitating a limited context. The APIs to
recommend may be located in the front, middle, or back of
the code, so exploring the impact of different recommenda-
tion points is important for understanding the recommen-
dation capability of existing approaches. Other factors such
as whether the APIs are standard or user-defined, lengths
of given context, and different domains can also influence
the recommendation performance, which have not yet been
fully investigated.

To comprehensively understand the above challenges
and align the performance of current approaches, we first
build a benchmark named APIBeENcH. APIBENCH is built on
Python and Java, and involves two datasets for evaluation,
named as APIBEncu-Q and APIBencH-C for query-based
and code-based approaches, respectively. APIBENCH-Q con-
tains 6,563 Java queries and 4,309 Python queries obtained
from Stack Overflow and API tutorial websites. APIBENCH-
C contains 1,477 Java projects with 1,229,698 source files
and 2,223 Python projects with 414,753 source files obtained
from GitHub. Based on APIBENCH, we study the following
research questions:

e RQI: How effective are current query-based and
code-based API recommendation approaches?

e RQ2: What is the impact of query reformulation tech-
niques on the performance of query-based API
recommendation?

e RQ3:What is the impact of different data sources on the
performance of query-based API recommendations?

e RQ4: How well do code-based approaches recom-
mend different kinds of APIs?

e RQ5: What is the performance of code-based approaches
in handling different contexts?

e RQ6: How well do code-based approaches perform
in cross-domain scenarios?

APIBENCH involves the implementation of the related
approaches proposed in the recent five years, specifically
including five query-based approaches and five code-based
approaches. In RQ1, we compare the performances of the
approaches in APIBEncH. To answer RQ2 and RQ3, we
apply four popular query reformulation techniques to the

1877

queries of APIBENCH-Q and observe the performance of the
query-based approaches given reformulated queries. To
answer RQ4 to RQ6, we analyze the APIs in APIBENncH-C
from different aspects and study the performance of code-
based approaches under different experimental settings.

Key Findings. Through the large-scale empirical study, we
achieve some findings and summarize the key findings as
below.

(1) For query-based API recommendation:

e While current approaches make a good progress on
class-level recommendation, recommending the exact
APImethods is still a challenging task.

e Query reformulation techniques, including query
expansion and query modification, are quite effec-
tive in improving the performance of query-based
approaches.

e Adding data sources such as Q&A forums and tuto-
rials that are more similar to real-world queries can
significantly improve the performance of current
approaches.

(2) For code-based API recommendation:

e Recent deep learning models such as Transformers
show superior performance on this task. Meanwhile,
current IDEs can achieve competitive performance as
recent pattern-based and learning-based approaches.
They work far more than just recommending APIs
based on alphabet orders.

e Current approaches are effective to recommend APIs
from standard libraries and popular third-party
libraries, but their performance drops a lot when rec-
ommending user-defined or project-specific APIs.

e Approaches trained on one single domain face the
problem of cross-domain adaptation. Approaches
trained on multiple domains achieve satisfying per-
formance when testing on most single domains, and
they even outperform those trained on correspond-
ing single domains.

Based on the findings, we conclude some implications
and suggestions that would benefit future research. On the
one hand, query-based API recommendation approaches
should be built along with query reformulation techniques
to handle queries with different qualities. We also encour-
age future work to leverage different data sources and few-
shot learning methods to address the low resource chal-
lenge in query-based API recommendation. On the other
hand, we suggest future code-based API recommendation
approaches focus on improving the performance of recom-
mending user-defined APIs as it is currently the major
bottleneck.

Contributions. To sum up, our contribution can be con-
cluded as follows.

e To the best of our knowledge, we are the first to sys-
tematically study both query-based and code-based
API recommendation techniques on two large-scale
datasets including Java and Python.

e We build an open-sourced benchmark named API-
BENCH to fairly evaluate query-based and code-based
approaches.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 02,2023 at 08:17:13 UTC from IEEE Xplore. Restrictions apply.

1878

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 4, APRIL 2023

Q&A Forums

Official Documentations
—)l API Candidates
API Tutorial Sites

Query Modification

Original Query: —
Calculate int value square root —_

Return int value square root

Query Expansion

finally calculate int value square root

v)
Retrieval-based i
Methods '

e

: Learning-based ;
' Methods 1

Recommendations:

java.lang.Math.sqrt(),
java.lang.Math.nextDown(),
java.lang.Math.cbrt()

Official Documentations
Q&A Forums
API Tutorial Sites

Query - API Pairs

Fig. 1. The typical query-based APl recommendation framework.

e We study how different settings can impact the per-
formance of current approaches, including query
quality, cross domain adaptation, etc.

e We conclude some findings and implications that
would be important for future research in API
recommendation.

The rest of this paper is organized as follows. We present
the background and regular API recommendation process
in Section 2. We describe the details of APIBENCH, current
baselines and evaluation metrics in Section 3. Then we intro-
duce the experiment results and potential findings on
query-based and code-based API recommendation in Sec-
tions 4 and 5, respectively. Based on the findings, we con-
clude some implications and future directions in Section 6.
Finally, we discuss threats to validity and conclusion in Sec-
tions 7 and 8, respectively.

2 BACKGROUND AND RELATED WORK

In this section, we summarize the query-based approaches
and code-based approaches, respectively.

2.1 Query-Based APl Recommendation Methods
We describe the typical query-based API recommendation
process in Fig. 1. Given a query “Calculate int value square
root,” query reformulation techniques first modify the query
as “return int value square root” or expand it as “finally calcu-
late int value square root”. A knowledge base built upon
available data sources is also prepared for API candidate
selection. Based on the knowledge base, retrieval-based
methods or learning-based methods recommend the APIs
relevant to the queries.

2.1.1 Query Reformulation Techniques

Input queries can be short in length or vague in semantics.
Besides, there may exist a knowledge gap between develop-
ers and search engines in query description. For rendering
search engines better understand the query semantics,
query reformulation is a common pre-processing method.
In general, there are two major types of query reformulation
approaches:

1) query expansion, which adds extra information to
the original queries;
2) query modification, which modifies, replaces or
deletes some words in the original queries.
Query Expansion. Query expansion aims at identifying
important words that are missing in the input queries. The

topic is originally stemmed from the field of natural lan-
guage processing (NLP). For example, the work [39] utilizes
word embeddings to map words in the vector space and
finds similar words to enrich the queries. For the API rec-
ommendation task, since APIs are encapsulated and orga-
nized according to classes and modules, class names and
module names are important hints for recommendation.
Rahman et al. [56], [58] propose to use keyword-API class
co-occurrence frequencies and keyword-keyword co-occur-
rence frequencies to build the relationship between words
and API classes, and add the suggested API class for query
expansion.

Query Modification. Query modification aims at mitigat-
ing both the lexical gap and knowledge gap between the
user queries and descriptions in knowledge base. The lexi-
cal gap, such as mis-spelling, can be easily addressed by
spelling correction and synonym search, etc. Recent work
focuses on how to mitigate the knowledge gap by replacing
inappropriate words in queries. Mohammad et al. [4]
extract important tokens in code, and Sirres et al. [65] lever-
age discussions and code from Stack Overflow posts to
build a knowledge base. Cao et al. [8] collect query refor-
mulation history from Stack Overflow and propose a Trans-
former-based approach to learn how developers change
their queries when search engines do not return desired
results.

2.1.2 Recommendation With Knowledge Base

Knowledge Base. API recommendation approaches generally
require a knowledge base that contains all the existing APIs
as the search space. There are three primary sources for the
knowledge base creation, including: 1) official documenta-
tions which contain comprehensive descriptions about the
API functionality and structure. 2) Q&A forums, which pro-
vide the purposes of APIs and different API usage patterns.
Many studies [27], [55] leverage the Q&A pairs from Stack
Overflow to select API candidates. 3) Wiki sites, which
describe concepts that link different APIs. For example, Liu
et al. [38] utilizes API concepts from Wikipedia to help
build API knowledge graphs.

Retrieval-Based Methods. Retrieval-based methods retrieve
API candidates from the knowledge base and then rank the
candidate APIs by calculating the similarities between
queries and APIs. For example, Rahman et al. [56], [58] uti-
lize the keyword-API occurrence frequencies and API-API
occurrence frequencies to find the most relevant APIs.
Huang et al. [27] first identify the similar posts from Stack

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 02,2023 at 08:17:13 UTC from IEEE Xplore. Restrictions apply.

PENG ET AL.: REVISITING, BENCHMARKING AND EXPLORING API RECOMMENDATION: HOW FAR ARE WE?

Current Code Before
1 |Recommendation Point

Internal Context

1 public class Sort {

2 public static void main(String args[]) {
3 String[] strArray =

4 new String[] { "example" };

5 List 1 = Arrays.asList(strArray);
6

7

8

9

=

Collections.<Recommendation Point>;

}

External Context
Target Code

Fig. 2. The typical code-based APl recommendation framework.

Overflow by computing query-documentation similarities
and choose the APIs mentioned in posts as candidates. Liu
et al. [38] build an API knowledge graph to represent rela-
tionships between APIs and then calculate the similarities
between queries and certain parts of API knowledge graph
to rank the APIs.

Learning-Based Methods. Another type of method is to
automatically learn the relationships between queries and
APIs based on deep learning techniques. The knowledge
base provides query-API pairs as the ground truth. For
example, Gu et al. [23] formulate the task as a translation
problem in which a model is built to translate word sequen-
ces into API sequences. They propose an RNN model with a
encoder-decoder structure to implement the translation.

2.2 Code-Based APl Recommendation Methods

We describe the workflow of code-based API recommenda-
tion in Fig. 2. Given a target code, context representation is
an essential step. Based on the extracted context, pattern-
based methods or learning-based methods are adopted by
previous studies to recommend the next APL

2.2.1 Context for the Target Code

Most code-based API recommendation methods regard the
code before the recommendation point as the context. We
name such context as internal context since it only considers
code in the current source code or current function body.
For example, Line 1 ~ 6 of the target code in Fig. 2 belongs
to internal context. Xie et al. [70] find that replacing external
APIs in code (such as Arrays.asList() in Fig. 2) with their
implementations can help the identification of common
usage patterns. They propose to build a hierarchical context
by integrating the implementation out of the current source
file. We name the implementation of external APIs as exter-
nal context.

2.2.2 Context Representation

We divide the context representation methods into two
types, i.e., pattern-based representation and learning-based
representation. Pattern-based representations [12], [48], [49],
[69], [70] do not consider all the code tokens. Instead, they
only identify APIs to build API usage sequences, as shown
in Fig. 2a, API matrix, as shown in Fig. 2d, or API depen-
dency graphs to represent the current context. Learning-

>

e . Implementation of String,
} ' Arrays.asList(),... o

1879

Recommendations:

java.util.Collections.sort(),
d> java.util.Collections.addAll(),

[Pattern-based] [Learning-based]
java.util.Collections.min()

Methods Methods

(a) API Sequence: String, Arrays.asList, ...

(b) Token Flows: public class sort public ... (d) API Matrix

ClassDeclaration String | Arrays asList()
func1 0 1
(c) AST | MethodDeclaration func2 1 0
LocalVariable LocalVariable main 1 1
Declaration Declaration

Context Representation

based representations [24], [26], [32], [60], [67] usually repre-
sent the context with token flows, as illustrated in Fig. 2b, or
other syntax structures such as Abstract Syntax Trees
(ASTs), as illustrated in Fig. 2c.

2.2.3 Recommendation Based on Context

Pattern-Based Methods. API recommendation is inherently a
recommendation task, so some studies [12], [49] follow the
collaborative filtering (user-item) methodology of traditional
recommendation systems [61]. As shown in Fig. 2d, they
regard the internal context as the users and APIs as the items.
They then calculate the similarities between different users
to find the most similar API for recommendation. However,
the methods do not consider the relationships between
APIs. More recent work [69], [70] build API dependency
graphs or mines association rules to capture API usage
patterns.

Learning-Based Methods. Hindle et al. [26] discover the
naturalness of software, rendering it possible to deploy
machine learning or deep learning methods on code. Differ-
ent from pattern-based methods that consider the relation-
ships between API occurrences, learning-based methods
regard API as a single code token, and reformulate the
code-based API recommendation problem into a next token
prediction problem. Many statistical language models [47],
[59], [60], [67] are proposed to predict the next code token.
Besides using the token sequences, more recent work [24],
[32] try to leverage syntax and data flow information for
more accurate prediction.

Note that we do not aim to provide a comprehensive
summary about all query-based and code-based API recom-
mendation approaches but to choose some representatives
to describe the general workflow in this section. For a more
comprehensive literature review, we refer the readers to
previous surveys and empirical studies [34], [63], [64].

3 METHODOLOGY

In this section, we introduce the scope of the studied APIs,
the preparation of benchmark datasets, and implementation
details.

3.1 Scope of APIs

To fairly compare the current API recommendation approaches,
benchmark datasets should be prepared, during which the

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 02,2023 at 08:17:13 UTC from IEEE Xplore. Restrictions apply.

1880

scope of studied APIs first needs to be defined. In this work, we
focus our evaluation on two popular programming languages,
ie., Python and Java.

For facilitating the analysis of the challenges in API rec-
ommendation, we divide all APIs into standard APIs, user-
defined APIs, and popular third-party APIs. The standard APIs
refer to the APIs that are clearly defined and built-in in cor-
responding programming languages while the user-defined
APIs are defined and used in projects along with popular
third-party APIs. Following previous work [27], [38], [56],
[58] we evaluate query-based API recommendation meth-
ods only on the standard APIs since currently standard APIs
have the most comprehensive documentations and exten-
sive discussions to build the knowledge base. We evaluate
code-based API recommendation methods on all three
kinds of APIs. The details of each kind for different pro-
gramming languages are depicted below.

(1) Standard Java APIs. We choose the version Java 8 for
our analysis since it is the most widely-used version in
current projects according to the 2020 JVM Ecosystem
Report [66]. We collect 34,072 APIs from the Java documen-
tation [51] as standard APIs.

(2) Android APIs. We choose APIs from the Android
library [20] since Android is the most popular application of
Java programs. We collect 11,802 APIs from the official doc-
umentation of Android in total.

(3) Standard Python APIs. As Python Software Foundation
has stopped the support for Python 2, currently only 6% of
developers are still using Python 2, according to the devel-
opment survey conducted by Jetbrains [28]. Considering
that APIs of different versions above 3.0 are similar, we
choose the newest version 3.9 to ensure the compatibility,
and collect 5,241 APIs from Python standard library [53] as
the standard APIs.

(4) Popular Python third-party APIs. Python is well
extended by a lot of third-party modules. We choose five
widely-used modules with sufficient documentations,
including flask [14], django [11], matplotlib [41], pandas [52]
and numpy [50]. We collect 215, 700, 4,089, 3,296 and 3,683
APIs from them, respectively.

(5) User-defined APIs. For code-based API recommenda-
tion, we regard all the functions defined in current projects
as user-defined APIs. We do not explicitly collect them as a
fixed set because they vary across projects. By inspecting
the implementations, we can always identify the user-
defined APlIs.

3.2 Benchmark Datasets

In this section, we describe how we build the benchmark
datasets APIBENCH-Q and APIBENcH-C.

3.2.1 Creation of APIBEncH-Q

We build the benchmark dataset APIBENCH-Q by mining
Stack Overflow and tutorial websites. Note that we find that
currently there is no query-based API recommendation
approach specially designed for Python programs, but we
still collect the query benchmark for it to facilitate further
research investigation.

Mining Stack Overflow. As one of the most popular Q&A
forums for developers, Stack overflow contains much

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 4, APRIL 2023

discussion about the usage of APIs. Stack Overflow is the pri-
mary source for building APIBENcH-Q. We first download all
posts from Aug 2008 to Feb 2021 on Stack Overflow (SO) via
Stack Exchange Data Dump [13]. Each post is associated
with a tag about the related programming language. We fil-
ter out the posts not tagged as Java or Python, resulting in
1,756,183 Java posts and 1,661,383 Python posts. Similar to
other studies related to Stack Overflow mining [27], [55], we
further filter out the posts based on the following rules:

e To increase the quality of the posts, we remove the
posts that are not answered or do not have endorsed
answers.

e We remove the posts that do not contain the HTML
tag <code>, because we cannot extract any API
from them.

e We remove the posts that contain code snippets lon-
ger than two lines, since we focus on single API rec-
ommendation in this paper and code snippets longer
than two lines usually contain an API sequence. For
multiple code snippets in one post, we remove the
post only if all code snippets are longer than two
lines.

e We use string matching to find the APIs in the code
of each post and remove the posts that do not contain
any APIs involved in this paper, as described in
Section 3.1.

After the rule-based filtering, we obtain 156,493 Python
posts and 148,938 Java posts that contain descriptions about
APIs. However, some of the posts are not directly related to
API recommendation. For example, some posts only ask
about comparing two similar APIs. The unrelated posts are
hard to be automatically identified by rules. To ensure the
relatedness of the posts in our benchmark dataset, we invite
16 participants with an average of 3-year development
experience in Python or Java for manually checking. For
each post, two of the participants are involved to check the
following aspects:

1) whether the query asks about API recommendation;

2) whether the standard APIs recognized by the previ-
ous rules are intact, i.e., including the whole class
and method names.

3) whether the APIs in answers exactly address the
query.

If two participants provide the same answers for one post
and also one of the above three aspects is not satisfied, we
directly remove the post. If the two participants do not
reach an agreement, the post will be forwarded to one of the
authors to make a final decision.

As the remaining posts are still too many to be manually
checked, we conduct two rounds of annotations. In the first
round of annotations, we ask the annotators to label 100 ran-
domly selected posts and conclude the reasons for the cases
that they think are not about API recommendation. Then we
collect the keywords that frequently appear in these unrelated
cases, and remove the posts whose titles contain such key-
words. For example, some post titles may contain some spe-
cific error names such as “AttributeError: ‘Namespace’ object
has no attribute”. We identify these titles and remove them
because such posts tend to be related to debugging. However,

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 02,2023 at 08:17:13 UTC from IEEE Xplore. Restrictions apply.

PENG ET AL.: REVISITING, BENCHMARKING AND EXPLORING APl RECOMMENDATION: HOW FAR ARE WE?

TABLE 1
Statistics of APIBench-Q. Ori. Represent the Original Queries,
Exp. Represent the Expanded Queries Produced by Query
Expansion Techniques, Mod. Represent the Modified Queries
Produced by Query Modification Techniques

PL Stack Overflow Tutorial Websites
Ori. Exp. Mod. Ori. Exp. Mod.
Python 1,925 78,157 100,100 2,384 95,360 123,968

Java 1,320 80,343 68,640 5,243 319,783 272,636

we will keep the posts if the titles also contain the word
“how,” since we believe that the posts are likely to ask about
error handling APIs. Although the filtering strategy is coarse,
we can remove some noisy posts and facilitate manual anno-
tation. In the second round annotations, we ask annotators to
label all the remaining posts. It takes about one month to com-
plete the two-round annotation process. After both rounds of
annotations, we manually check 13,775 posts, in which 1,262
posts do not reach an agreement by the annotators and need
further check by one of the authors. We use the commonly-
used Fleiss Kappa score [15] to measure the agreement degree
between the two annotators and the value is 0.77. The result
indicates a high agreement between them. Based on the man-
ual check, 3,245 of the 13,775 labeled posts remain. We take
the titles of 3,245 posts as queries following previous stud-
ies [8], [27], and finally we get 1,925 Python queries and 1,320
Java queries. They comprise the first part of our benchmark
APIBENCH-Q, as shown in the second column of Table 1.

Mining Tutorial Websites. API tutorial websites are the sec-
ond major source of query-API pairs. We choose three popu-
lar API tutorial websites GeeksforGeeks [1], Java2s [2] and
Kode Java [3] to establish APIBENcH-Q. Different from Stack
Overflow that contains discussion on various topics, API
tutorial websites focus on providing examples of how to use
APIs. Therefore, manually annotating the relatedness of each
query to API recommendation is not necessary. We adopt
similar rules as mining Stack Overflow to filter out those
without code snippets or associated with large code snippets.
We finally collect 5,243 Java queries and 2,384 Python
queries, which comprise the second part of our benchmark
APIBENCH-Q), as shown in the fifth column of Table 1.

Note that we include all queries and corresponding APIs
as our test set in APIBENCH-Q. We do not build a uniform
training and validation set for query-based API recommen-
dation approaches because the data sources used by current
work are quite different. For example, using extra data sour-
ces is a major contribution for BIKER [27]. Lucene [16] does
not need the training set at all. It is hard for us to build a
unified training set for training all the approaches. To pre-
vent potential data leakage, we remove the instances that
overlap between training sets used by current approaches
and APIBENCH-Q in preprocessing phase.

3.2.2 Creation of APIBENcH-C

We create the benchmark dataset APIBencH-C by mining
GitHub. GitHub [42] is one of the most popular websites for
sharing code and includes large numbers of code repositories
on different topics and programming languages. In order to

1881

explore the performance of API recommendation under dif-
ferent domains, we first determine the domains for analysis.
According to the JetBrains” developer survey and topic labels
provided by GitHub," we choose four popular domains for
Python and Java, respectively, as shown in Table 2. For
Python, we consider the domains “Machine Learning” (ML),
“Security,” “Web,” and “Deep Learning” (DL); while for Java,
we involve domains “Android,” “Machine Learning” (ML),
“Testing,” and “Security”. For each domain, we focus on the
repositories tagged with the corresponding topic labels. For
example, the “ML” domain only covers the repositories with
the “machine learning” tag. As GitHub automatically aggre-
gate all related projects under each domain, we directly collect
500 repositories with the most stars and 500 repositories with
the most forks on GitHub.? Besides the specific domains, we
also build a “General” domain which only considers the pop-
ularity of repositories. For the “General” domain, we collect
1,000 repositories with the most stars and 1,000 repositories
with the most forks on GitHub regardless of the topics.

Not all the collected repositories are applicable for code-
based API recommendation. Some popular repositories do
not contain enough code, e.g., only including documenta-
tions. To remove such repositories, we use cloc [5] to scan
the code in each repository and filter out the repositories
that 1) have fewer than 10 files or 2) have fewer than 1,000
lines of code or 3) have code in Python or Java but with the
ratio less than 10%. The number of projects, number of files,
and average number of code lines for each domain of API-
BeNcH-C are shown in Table 2.

As most approaches [19], [24], [32], [49], [60] for code-
based API recommendation require a training set to learn
the API patterns or train the models, we split APIBENcH-C
into a training set and a test set with a ratio of 80% and 20%,
respectively. Note that we do not split a project both into
the training set and test set, but put all the files of the same
project into either the training set or test set, because Alon
et al. [6] and LeClair et al. [36] find that code in the same
project usually share the same variable names and code pat-
terns, and splitting without considering project can cause
data leakage. For the approaches requiring a validation set,
we prepare it from the training set. In order to study the
impact of different recommendation points and different
lengths of functions on the performance of current
approaches, we analyze the average length of functions in
each repository. we leverage Kernel Density Estimation
(KDE) with Gaussian kernels to simulate the distributions.
The distributions of the “General” domain for the Python
and Java datasets are depicted in Fig. 3. From the figure, we
observe that function lengths are almost normally distrib-
uted. Most Python functions contain 5 ~ 30 lines of code
(LOC) and most Java functions contain 5 ~ 20 lines of code.
For studying the impact of function lengths, we divide the
functions into extremely short functions, functions of mod-
erate lengths, and extremely long functions according to the
confidence interval under 90% confidence level. The confi-
dence interval can be directly calculated by the standard
deviations and means. We first determine the confidence
interval of functions in different domains using standard

1. https:/ / github.com/topics
2. The collection was conducted during April 2021.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 02,2023 at 08:17:13 UTC from IEEE Xplore. Restrictions apply.

1882 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 4, APRIL 2023
TABLE 2
Statistics of Benchmark APIBencH-C
PL Domain #Projects #Files LOC #API Total number of APIs LOC Threshold of LOC Threshold of
(per func) (per func) (only testset) Short Func Long Func
Standard User-defined Popular

Python General 899 230,064 15.24 5.55 1,363,240 1,747,878 54,244 8.875 54.875
ML 323 46,556 13.89 6.08 629,437 339,821 125,377 12.65 46.05
Security 126 15,785 18.98 6.72 111,393 64,809 3,613 6 86.5
Web 568 82,771 14.14 5.05 369,114 241,602 11,832 7.35 51.625
DL 307 39,577 14.58 6.25 413,295 220,228 76,654 11.675 52.525

Java General 935 1,056,790 11.16 4.06 5,164,481 3,808,124 36,178 6.26 19.2
Android 377 87,468 8.24 291 517,461 267,141 75,069 7.28 16.8
ML 52 41,377 12.82 4.77 194,013 136,963 0 7.52 19.74
Testing 55 23,618 9.93 3.98 105,577 55,241 22 6.44 15.68
Security 58 20,445 12.35 532 125,558 74,471 1,243 6.88 20.78

The data includes both the training set and testing set.

deviations and regard the functions with lengths in the con-
fidence interval as functions of moderate lengths. We regard
functions with lengths smaller than the confidence interval
as extremely short functions and functions with lengths
larger than the confidence interval as extremely long func-
tions. Note that except for the study on the impacts of func-
tion length, in other experiments we only consider
functions of moderate lengths to guarantee that our col-
lected data is representative. The detailed thresholds of con-
fidence intervals for distinguishing extremely long and
short functions are illustrated in Table 2. We study the
impact of function lengths on the performance of code-
based approaches in Section 5.3.

In order to study the performance of current approaches
on different kinds of APIs, we convert source files of each
repository into ASTs and extract all the function calls in
them. We label a function call as a standard API or popular
third-party API if it matches one of the APIs collected in
Section 3.1. We label a function call as a user-defined API if
its implementation can be found in the current repository
via import analysis. The average number of API calls per
function, number of standard APIs and number of user-
defined APIs are shown in columns 6 ~ 8 of Table 2,
respectively.

3.3 Implementation Details
In this section, we describe the details of each approach
involved in the benchmark and the metrics for evaluation.

120
120

3

8
3
8

8
P ®
3 8

#Projects
2
8
#Projects

a
&

20

N
3

0 — 0 — -
0 20 4 60 80 0 10 20 30 40 50 60
LOCoerFunc LOCoerFunc

Fig. 3. Distribution of code lines per function for projects under general
domain (Left: Python, Right: Java).

Query Reformulation Techniques. We choose four popular
query reformulation techniques, including Google Prediction
Service [22], NLPAUG [40], SEQUER [8], and NLP2API [56].
The detailed description of each technique is illustrated in
Table 3. Google prediction service is included as one of the
most effective approaches in practice, while SEQUER [9] is
the state-of-the-art approach. NLPAUG [40] is considered
since it is widely used for query reformulation in many NLP
studies [31], [45], [54], [71]. We also include NLP2API [57]
since it differs from major reformulation methods by first pre-
dicting the API class related to the query and then adding the
predicted API class into the query.

Query-Based API Recommendation Approaches. We choose
five query-based API recommendation approaches pub-
lished by recent top conferences, including KG-API-
Summ [38], BIKER [27], RACK [58], and DeepAPI [23],
along with a popular search library Lucene [16]. The
detailed description of each baseline is shown in Table 3.
We reproduce the five approaches based on the replication
packages released by the authors. Besides, we build a naive
baseline that recommends APIs by computing the similari-
ties between queries and API descriptions based on BERTO-
verflow [35]. The native baseline serves as an indicator of
the basic performance of similarity-based models. We also
notice that different sources are adopted by the approaches
for creating the knowledge base. For example, the naive
baseline and DeepAPI only consider official documentation,
while BIKER and RACK also involve the Q&A forum —
Stack Overflow. We list the knowledge source of each
approach in Table 3. During implementation, we do not
align the sources of the approaches, since the sources are
claimed as contributions in the original papers. Instead, we
design a separate RQ to study the impact of knowledge
sources on the performance of API recommendations.

During studying the impact of query reformulation on the
recommendation performance, we implement all the four
query reformulation techniques for each of the six API rec-
ommendation baselines because all the baselines do not inte-
grate query reformulation techniques in the original papers.

Code-Based API Recommendation Approaches. We choose
four IDEs and five approaches published on recent top con-
ferences as our code-based API recommendation baselines.
A detailed description of each baseline is shown in Table 4.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 02,2023 at 08:17:13 UTC from IEEE Xplore. Restrictions apply.

PENG ETAL.: REVISITING, BENCHMARKING AND EXPLORING API RECOMMENDATION: HOW FAR ARE WE? 1883
TABLE 3

The Query Reformulation Techniques and Query-Based APl Recommendation Approaches Involved in the Paper
Approach Category/ Data Source PL Venue Year
Query Reformulation
Google Prediction Service [22] Query expansion, modification Any - 2021
NLPAUG [40] Query expansion, modification Any - 2021
SEQUER [8] Query expansion, modification Any ICSE 2021
NLP2API [56] Query expansion Java ICSME 2018
Query-Based API Recommendation
RACK [58] Official documentation, Stack Overflow Java ICSE 2016
KG-APISumm [38] Official documentation, Wikipedia Java FSE 2019
Naive Baseline Official documentation Any - 2021
DeepAPI [23] Official documentation Java FSE 2016
Lucene [16] Official documentation Any - 2021
BIKER [27] Official documentation, Stack Overflow Java ASE 2018

For tools, the years they were last updated are listed. The column name “PL” indicates the applicable programming language.

For the IDEs and some of the approaches such as Trav-
Trans [32] and Deep3 [59], they can predict any code tokens
besides API tokens. In this paper, we focus on evaluating
their performance in recommending APIs. Following prior
research [19], [24], [32], [49], [60], we use the training set of
APIBENCH-C to train each of the approaches in academia for
a fair comparison.

PAM [19] is the only context-intensive approach, primarily
designed for intra-project API pattern mining. In this paper,
we also extend the approach to cross-project recommendation
by selecting the best API from projects in the training set for
each test case. The extended version of PAM is named as
PAM-MAX, which indicates the theoretical maximum perfor-
mance the context-insensitive approach can achieve.

Evaluation Metrics. Since both query-based and code-
based API recommendation baselines output a ranked list
of candidate APIs, we adopt the commonly-used metrics in
recommendation tasks for evaluation. The Mean Reciprocal
Rank (MRR), Mean Average Precision (MAP), and Normal-
ized Discounted Cumulative Gain (NDCG) metrics are
widely adopted by previous API recommendation stud-
ies [27]. In this study, we also involve a new metric Success
Rate. The Success Rate@k is defined to evaluate the ability
of an approach in recommending correct APIs based on the

top-k returned results regardless of the orders. To deter-
mine the relevance score in NDCG calculation, we use a rel-
evance score of 1 if an approach hits the correct API class,
and a relevance score of 2 if the correct API method is hit.
Therefore, we can align the performance of class-level and
method-level approaches.

4 EMPIRICAL RESULTS OF QUERY
REFORMULATION AND QUERY BASED
APl RECOMMENDATION

In this section, we study the RQ 1-3 discussed in Section 1
and provide the potential findings concluded from the
empirical experiments. Since currently no query-based API
recommendation approach is specially designed for Python
APIs, we focus on studying query-based API recommenda-
tion approaches for Java.

4.1 Effectiveness of Query-Based API
Recommendation Approaches (RQ1-1)

To answer RQ1, we evaluate the six query-based API rec-
ommendation baselines listed in Table 3 by using the origi-
nal queries in our benchmark APIBENCH-Q. The evaluation

results are illustrated in Table 5.

TABLE 4

The Code Based APl Recommendation Baselines Included in This Empirical Study
Approach Representation PL Venue Year
Practical IDE
PyCharm [30] Code tokens Python - 2021
Visual Studio Code [43] Code tokens Python - 2021
Eclipse [17] Code tokens Java - 2021
Intelli] IDEA [29] Code tokens Java - 2021
Approach in Academia
TravTrans [32] AST Python ICSE 2021
PyART [24] Token flow Data flow Python ICSE 2021
Deep3 [59] AST, DSL Python ICML 2016
FOCUS [49] API Matrix Java ICSE 2019
PAM [18] API sequence Java FSE 2016
PAM-MAX API sequence Java FSE 2016

For tools we list the year of its most recent update time. The column name “PL” indicates the applicable programming language.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 02,2023 at 08:17:13 UTC from IEEE Xplore. Restrictions apply.

1884 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 4, APRIL 2023
TABLE 5
The Basic Performance of Query-Based API Recommendation Baselines Without Applying any Query Reformulation
Techniques at Different Metrics (Top-1,3,5,10)
Baseline Level Success Rate@k MAP@k MRR NDCG@k
Top-1 Top-3 Top-5 Top-10 Top-1 Top-3 Top-5 Top-10 Top-1 Top-3 Top-5 Top-10
RACK Class 0.17 030 035 0.41 0.17 023 024 0.24 025 017 024 026 028
KG-APISumm Class 019 033 040 0.50 019 025 0.26 0.27 028 019 024 027 031
Naive Baseline Class 0.07 013 0.16 0.21 0.07 010 0.10 0.10 0.11 0.07 009 010 0.13
Method 0.02 0.03 0.04 0.05 001 0.02 0.03 0.03 0.03 007 009 010 0.13
DeepAPI Class 0.19 027 029 0.30 019 022 023 0.23 023 017 022 023 024
Method 0.05 0.09 0.10 0.11 0.05 0.07 0.07 0.07 007 017 022 023 024
Lucene Class 0.15 0.21 0.24 0.29 015 017 0.18 0.17 0.19 012 0.15 0.16 0.20
Method 0.04 0.08 0.10 0.14 0.04 0.06 0.06 006 0.07 012 015 016 0.20
BIKER Class 0.33 0.51 0.59 0.67 0.33 041 041 0.39 044 027 032 035 042
Method 0.12 023 0.29 0.37 012 016 0.18 0.18 019 027 032 035 042

Note that we define NDCG as a uniform metric to evaluate class level and method level together, so the NDCG scores listed in two levels have the same values.

The red numbers indicate the best performance achieved in top-10 results.

Class-Level versus Method-Level. Regarding the class-level rec-
ommendation, as shown in Table 5, we can find that BIKER
achieves the highest Success Rate, e.g., 0.67 for Success
Rate@10, indicating that BIKER is more effective in finding the
correct API class in the top-10 returned results for 60%~70%
of cases. Unsurprisingly, the naive baseline shows the worst
performance for all the metrics. Even so, the naive baseline
can successfully predict the correct API class for around 20%
of cases. However, with respect to the method-level recommen-
dation, all the approaches show obvious declines. For exam-
ple, the Success Rate@10 of BIKER is only 0.37, decreasing by
44.8% compared to the class-level recommendation. The Suc-
cess Rates@10 of DeepAPI and Lucene are only around 0.10,
which is far from the requirement of practical development.
On average, the approaches fail to give the exact methods for
57.8% APIs that they give the correct classes in top-10 returned
recommendations. Thus, recommending method-level APIs
still remains a great challenge.

Finding 1: Existing approaches fail to predict 57.8% method-
level APIs that could be successfully predicted at the class
level. The performance achieved by the approaches is far from
the requirement of practical usage. Accurately recommending
the method-level APISs still remains a great challenge.

Retrieval-Based Methods versus Learning-Based Methods. By
comparing learning-based methods, such as DeepAPI and
naive baseline, with the other retrieval-based methods, we
can observe that learning-based methods achieve relatively
lower performance regarding the Success Rate@10 metric.
For example, on average, retrieval-based methods can accu-
rately predict 46.8% class-level and 25.5% method-level
APIs among all the cases in the top-10 returned results,
respectively, while learning-based methods can only suc-
cessfully recommend 25.5% class-level and 8% method-
level APIs. A possible reason may be the insufficient train-
ing data for the learning-based methods in this task domain.
Since there are more than 30,000 APIs from the official docu-
mentation, learning-based methods require a large number
of query-API pairs for training. However, even the largest
Q&A forum, Stack Overflow, contains only about 150,000

posts after our pre-processing, which is not enough for
model training.

Finding 2: Learning-based methods do not necessarily outper-
form retrieval-based methods in recommending more correct
APIs. The insufficient query-API pairs for training limit the
performance of learning-based methods.

Performance in API Ranking. From Table 5, we find that there
exist obvious gaps between the scores of Success Rate@k
and the metrics for evaluating API ranking, such as MAP@k
and NDCG@k. For example, RACK achieves Success
Rate@10 score at 0.41, but its MAP@10 score is only 0.24.
This indicates that although the approaches are able to find
the correct APIs, they cannot well rank them ahead in the
returned results. The low MRR scores, e.g., 0.11 ~ 0.44 for
class-level API recommendation and 0.03 ~ 0.19 for
method-level API recommendation, and NDCG scores also
show the poor ranking performance of the approaches. The
results manifest that API ranking is still challenging for cur-
rent approaches.

Finding 3: Current approaches cannot rank the correct APls
well, considering the huge gap between the scores of Success
Rate and the other ranking metrics.

To sum up, accurately recommending method-level APIs
and ranking candidate APIs still remain great challenges.
Besides, the insufficient data for training hinder the perfor-
mance of current learning-based approaches.

4.2 Effectiveness of Query Reformulation
Techniques (RQ2)

Original queries can be short in length or contain vague
terms. Query reformulation aims at changing original
queries for facilitating downstream tasks. In this RQ, we
explore the impact of query reformulation on the perfor-
mance of query-based API recommendation.

We implement the four query reformulation techniques,
as listed in Table 3, for the original queries. We name the

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 02,2023 at 08:17:13 UTC from IEEE Xplore. Restrictions apply.

PENG ETAL.: REVISITING, BENCHMARKING AND EXPLORING API RECOMMENDATION: HOW FAR ARE WE?

B SEQUER M Google MMM NLPAUG (BERT)

o e o o o o
S o) N w w
o o S a S a

Improvement of Success Rate@10

g
=)
o

g
=}

0

RACK KG-APISumm Naive Baseline

1885

BN NLPAUG (W2V-SO) BB NLPAUG (W2V-News) MEEl NLP2API

DeepAPI Lucene BIKER

(a) Query Expansion

B NLPAUG (WordNet) MBI NLPAUG (Random)

0.30

0.25

0.20

0.

.
(&)

0.

o
o

0.

o
a

0.

o

0

Improvement of Success Rate@10

-0.05

RACK KG-APISumm DeepAPI

BN NLPAUG (BERT)

B NLPAUG (W2V-SO) WMl NLPAUG (W2V-News)

Lucene Naive Baseline BIKER

(b) Query Modification

Fig. 4. The maximum improvement of Success Rate @10 by all query reformulation techniques on class-level query-based API recommendation
baselines. We do not evaluate the performance of RACK and KG-APISumm in NLP2API reformulated queries as they are only class-level recom-
mendation approaches while NLP2API directly give the predicted API classes. Note that we include Google Prediction Service and SEQUER as
expansion techniques here because they expand the queries in most cases.

queries reformulated by query expansion techniques and
query modification techniques as expanded queries and
modified queries, respectively. For each original query, we
conduct the reformulation 10 times, producing 10 expanded
or modified queries, with the statistics shown in Table 1.
Note that NLPAUG [40] is a comprehensive data augmenta-
tion library for general NLP tasks. We choose the popular
word-level insertion and substitution methods designed for
manipulating single sentences based on five models, includ-
ing BERTOverflow [35], Google News Word2vec [21], Stack
Overflow Word2vec [68], WordNet [44], and Random model,
in the library to generate expanded and modified queries.
The queries output by the query reformulation techniques
are not ranked in order, and may impact the downstream API
recommendation performance variously. To explore the max-
imum potential effect brought by query reformulation techni-
ques, we evaluate the API recommendation approaches on
each reformulated query and choose the best result for analy-
sis. We choose the maximum improvement instead of average
improvement for analysis based on the following considera-
tions: 1) It is hard to provide a fair comparison between query
reformulation approaches that rank the processed queries
such as SEQUER and query reformulation approaches that
do not rank the processed queries such as NLPAUG. 2) Query
modification would change the query semantics [8], [37];

therefore, using average improvement tends to involve
wrong queries and bias the evaluation results. 3) Our goal is
to show the potential of current query reformulation
approaches, and motivate future research on query reformu-
lation to enhance the performance of API recommendation.

We study the impact of query reformulation on API rec-
ommendation from the following two aspects:

1) whether query reformulation techniques can help pre-
dict more correct APIs;

2) whether query reformulation can improve the API
ranking performance.

4.2.1 Influence on Predicting More Correct APIs

With Query Reformulation versus Without Query Reformula-
tion. The Success Rate metric reflects the proportion of the
APIs an approach can correctly predict. The results of
implementing the reformulation techniques on API recom-
mendation approaches are illustrated in Fig. 4 (class-level)
and Fig. 5 (method-level). From the figures, we observe that
query reformulation can increase the performance of API
recommendation in most cases. Only for a few cases,
the performance drops, which can be attributed to the
inefficiency of some query reformulation techniques. For
example, NLPAUG (WordNet) and NLPAUG (Random)

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 02,2023 at 08:17:13 UTC from IEEE Xplore. Restrictions apply.

1886

tend to poorly modify the original queries for recommenda-
tion, as shown in Figs. 4b and 5b. Overall, on average the
process improves the class-level and method-level recom-
mendation by 0.11 and 0.08, which is a corresponding boost
of 27.7% and 49.2% compared with the basic performance
on original queries.

Finding 4: Query reformulation techniques are quite effective
in helping query-based API recommendation approaches give
the correct API by adding an average boost of 27.7% and
49.2% on class-level and wmethod-level recommendations,
respectively.

Query Expansion versus Query Modification. By comparing
the class-level and method-level recommendation results of
query expansion and query modification in Figs. 4 and 5,
respectively, we observe that all the query expansion techni-
ques improve the API recommendation performance, but
not all the query modification techniques benefit the recom-
mendation. For example, NLPAUG (WordNet) and
NLPAUG (Random) generally decrease the performance of
current approaches both in class-level and method-level
recommendations. This indicates that query expansion
techniques bring more stable improvement than query
modification techniques. Furthermore, on average, query
expansion techniques improve the performance by 0.13 and
0.10 on class-level and method-level recommendation,
which is much higher than the improvement of 0.09 and
0.06 achieved by query modification techniques. This also
suggests that query expansion techniques are more effective
than query modification techniques.

Finding 5: Query expansion is more stable and effective to
help current query-based API recommendation approaches
give correct APIs than query modification.

Comparing Different Query Expansion Techniques. As shown
in Figs. 4a and 5b, NLP2API and NLPAUG (BERT) present
the largest improvement on the performance of query-based
APl approaches at both class level and method level. For ana-
lyzing the improvement, we use two examples to illustrate
the query expansion results of NLP2API and NLPAUG
(BERT), respectively. In both examples, the most effective
approach BIKER fails to predict the API based on the original
queries but succeeds given the reformulated queries.

Example 1: Query Expansion

NLP2API

Returns a new Document instance
DocumentBuilderFactory Returns a
new Document instance

TECHNIQUE
ORIGINAL QUERY
PrOCESSED QUERY

In the first example, NLP2API expands the query by add-
ing a predicted API class DocumentBuilderFactory that is
related to the original query. With such an explicit hint, the
recommendation approach can narrow down the search
scope and pinpoint the requested API method.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 4, APRIL 2023

BN SEQUER WS Google MEEN NLPAUG (BERT) EEEE NLPAUG (W2-SO) EEEE NLPAUG (W2V-News) EEEN NLP2API

0.25

DeepAPI

Improvement of Success Rate@10
o o o S
2 2 2 2
B 3 E B

°

Naive Baseline Lucene BIKER

(@) Query Expansion

WEE NLPAUG (WordNet) — WEEN NLPAUG (Random) ~ WEENl NLPAUG (BERT) ~ WEEN NLPAUG (W2V-SO) NN NLPAUG (W2V-News)

0 -- ——

0.20

o
]

Improvement of Success Rate@10
o o
o =
& 3

o
3

Naive Baseline DeepAPI Lucene BIKER

(b) Query Modification

Fig. 5. The maximum improvement of Success Rate@10 by all query
reformulation techniques on method-level query-based APl recommen-
dation baselines.

Example 2: Query Expansion

NLPAUG (BERT)
Java reverse string
java reverse character string

TECHNIQUE
ORIGINAL QUERY
ProCESSED QUERY

In the second example, the query is looking for the API
java.lang.StringBuilder.reverse(), whose description in official
documentation is “Causes this character sequence to be replaced
by the reverse of the sequence”. NLPAUG (BERT) adds a rele-
vant word character to enrich the semantics of the original

query.

Example 3: Query Expansion

TECHNIQUE NLPAUG (W2V-S0)

ORIGINAL Convert from Radians to Degrees in Java
QUERY

PRrROCESSED Convert from AV Radians to Degrees in Long
QUERY Java

Comparing NLPAUG (W2V) with NLPAUG (BERT) and
NLP2API in Figs. 4 and 5, we find that the NLPAUG (W2V)
is much less effective. To obtain a possible reason for such a
difference, we give the third example below. As shown in
this example, we find that NLPAUG (W2V) adds two irrele-
vant words into the original query, which negatively
impacts the prediction results of BIKER. This also indicates
that contextual embeddings such as BERT are more effective
than traditional word embeddings.

Finding 6: In query expansion, adding predicted API class
names or relevant words to queries are more useful than add-
ing other tokens.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 02,2023 at 08:17:13 UTC from IEEE Xplore. Restrictions apply.

PENG ETAL.: REVISITING, BENCHMARKING AND EXPLORING API RECOMMENDATION: HOW FAR ARE WE?

BN SEQUER B Google B NLPAUG (BERT)

Improvement of NDCG@1

o
=}

-0.02

RACK KG-APISumm Naive Baseline

1887

BN NLPAUG (W2V-SO) B NLPAUG (W2V-News) N NLP2API

DeepAPI Lucene BIKER

(a) Query Expansion

BN NLPAUG (WordNet) I NLPAUG (Random)

o
.
o

o
N
o

o
=}
a

g
o
s}

-0.10

Improvement of NDCG@1
s s
=y o
(9] (9]

-0.20

-0.25

RACK KG-APISumm

B NLPAUG (BERT)

Naive Baseline

B NLPAUG (W2V-SO)

B NLPAUG (W2V-News)

DeepAPI Lucene BIKER

(b) Query Modification

Fig. 6. The maximum improvement of NDCG @ 1 by all query reformulation techniques on query-based API recommendation baselines under original

successful cases.

Comparing Different Query Modification Techniques. Among
all query modification techniques, NLPAUG (BERT)
presents the biggest improvement on all the baselines at
both class level and method level. Example 4 illustrates
how NLPAUG (BERT) modifies words in the original query.
In the example, the original query asks about ways to calcu-
late the time difference between two dates and the correct
API is java.time.Period.between(). The description of the API
in its official documentation is “obtains a period consisting of
the number of years, months, and days between two dates”. How-
ever, the word “difference” used in the original query does
not clearly describe the functional request. NLPAUG
(BERT) modifies the word into “months” which exactly
appears in the official description. Based on the modifica-
tions, the correct API is recommended.

Example 4: Query Modification

TecuniQUE NLPAUG (BERT)

ORIGINAL How do I calculate difference between two dates
QUERY

Processep how do they I calculate months difference
QUERY between two dates

From the second and fourth examples above, we find that
BERT-based models show great performance on both query

expansion and query modification to help improve the per-
formance of current query-based API recommendation
approaches. This indicates that even though the current data
source limits the performance of these models to directly pre-
dict the correct APIs, they can be used to improve the query
quality as query reformulation techniques.

Finding 7: BERT-based data augmentation shows superior
performance in query modification compared with other query
modification techniques.

4.2.2 Influence on the Performance of APl Ranking

In this section, we analyze the impact of query reformulation
techniques on the performance of API ranking. Since the ideal
case is that the correct APIs rank first in the returned results,
we use the metric NDCG@1 which considers both class-level
and method-level recommendation performance. We com-
pute the changes of NDCG®@1 scores for the query-based API
recommendation approaches before and after query reformu-
lation. Besides, to focus our analysis on the performance of
API ranking instead of the overall recommendation accu-
racy, the computation is performed only on the cases
that are correctly predicted with and without query
reformulation.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 02,2023 at 08:17:13 UTC from IEEE Xplore. Restrictions apply.

1888

= Original

c06

Qos
]

14

0 04
2

8
go3
S

2]
02
. I.
00

RACK KG-APISumm Naive Baseline DeepAPI Lucene BIKER

= Deleted Avg mmm Deleted_Max

(a) Class Level

== Original mmm Deleted_Avg

i .II l.l - II
BIKER

DeepAPI Lucene Naive Baseline

= Deleted_Max

Success Rate@10
o o =) o o
o N w IS o

o

(b) Method Level

Fig. 7. The maximum and average Success Rate@10 on all baselines
when randomly deleting some words in original queries.

The results are illustrated in Fig. 6. As can be seen in Fig. 6a,
most query expansion techniques also improve the ranking
results of the query-based recommendation approaches.
Among all the query expansion techniques, SEQUER,
NLPAUG (BERT), RACK and NLP2API can improve the
ordering performance relatively better than the others. The
biggest improvement of 0.14 (32% boost) is achieved by
NLP2API on the Lucene approach. We also find that on aver-
age query expansion also improves MRR by 0.09 (36% boost)
and 0.08 (89% boost) on class-level and method-level recom-
mendation, respectively, which indicates that the correct APIs
are ranked much higher based on reformulated queries.
According to Fig. 6b, compared with query expansion techni-
ques, query modification techniques are much less effective in
improving the API ranking performance. For example, the
average improvement of NDCG@1 brought by query modifi-
cation is 0.01 (4% boost), which is 0.06 (14% boost) for query
expansion techniques. Comparing different data augmenta-
tion methods, we also find that WordNet and random meth-
ods tend to negatively impact the ranking results, leading to
24% and 14% drop in terms of NDCG@]1, respectively. The
results indicate that inappropriate query modification will
reduce the ranking performance of the query-based recom-
mendation approaches.

Finding 8: Expanding queries or modifying queries with appro-
priate data augmentation methods can improve the ranking per-
formance of the query-based API recommendation techniques.

To sum up, query reformulation, especially query expansion,
can not only help current approaches recommend more cor-
rect APIs, but also improve the ranking performance. How-
ever, the reformulation step is generally ignored by current
studies. Future work is suggested to involve such a step for
more accurate APl recommendation.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 4, APRIL 2023

4.2.3 A Special Query Modification Method:
Word Deletion

In previous subsections, we compare and evaluate differ-
ent query expansion and modification techniques. They
aim at enriching the original queries by adding, replacing
or modifying some words without deleting words. In this
section, we focus on studying the impact of word deletion,
a special query modification method, on the performance
of query-based API recommendation approaches. Differ-
ent from the previous query reformulation techniques
which rely on external data sources, the word deletion
method we studied does not leverage any extra knowl-
edge. Our goal is to explore whether original queries con-
tain meaningless or noisy words. Specifically, we
randomly delete some words from the original query
every time and produce ten different modified queries for
one original query.

The maximum and average Success Rate@10 scores
based on the modified queries are illustrated in Fig. 7. As
can be seen, the average performance of the query-based
API recommendation approaches, denoted as the orange
bar, decreases by 0.05 (13% drop) at class level and 0.03
(18% drop) at method level. The results are not surprising,
and indicate that most words in the original queries are
helpful for the recommendation. However, the maximum
scores, denoted as the green bar, all show that word dele-
tion improves the recommendation performance with an
average boost of 38% and 64% for class level and method
level, respectively. The improvement demonstrates that
the original queries contain noisy words that can bias the
recommendation results, although most of the words are
useful for recommendation. After checking all cases, we
find that word deletion is helpful for successfully recom-
mending APIs of 545 queries, which maybe attributed to
that some noisy words are removed from the original
queries. To understand what kinds of words are noisy for
the accurate recommendation of these 545 queries, we
manually compare the original queries and processed
queries. We summarize three possible situations as below:
1) 349 (64%) queries contain unnecessary or meaningless
words.

Example 5: Word Deletion

TECHNIQUE Random Deletion

ORIGINAL Standard way to iterate over a StringBuilder in
QUERY java

PROCESSED Standard way to iterate over a StringBuilder in
QUERY java

In Example 5, the phrases “Standard way to” and “in java”
are not beneficial for pinpointing the correct API. Stop word
removal also has a limited effect on eliminating these
words. 2) 156 (29%) queries contain too detailed words for
explanation.

Example 6: Word Deletion

Random Deletion
converts a color into a string like 255,0,0
converts a color into a string like 255,0,0

TECHNIQUE
ORIGINAL QUERY
PrROCESSED QUERY

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 02,2023 at 08:17:13 UTC from IEEE Xplore. Restrictions apply.

PENG ET AL.: REVISITING, BENCHMARKING AND EXPLORING APl RECOMMENDATION: HOW FAR ARE WE?

In Example 6, the phrase “like 255,0,0” is used to explain
the “string”. However, such phrases never appear in the
official documentation and the specific number adversely
impacts the recommendation results. 3) 34 (6%) queries con-
tain extreme long descriptions.

Example 7: Word Deletion

TecHNIQUE ~ Random Deletion

ORIGINAL how to add progress bar to zip utility while
QUERY zipping or extracting in java

PrOCESSED how to add progress bar to zip utility while
QUERY zipping or extracting in java

Based on work [8], most queries have the lengths of
between one to seven words. In our manual analysis
process, one query is regarded as extremely long if it
contains more than 10 words. In Example 7, the words
after “while” actually describe nothing about the task.
The long query descriptions can decrease the weight of
useful words in the queries thus confusing API recom-
mendation approaches.

Finding 9: Original queries raised by users usually contain
noisy words which can bias the recommendation results, and
query reformulation techniques should consider involving
noisy-word deletion for a more accurate recommendation.

4.3 Data Sources (RQ3)

In RQ1-1, we highlight that insufficient data greatly limits
the performance of current learning-based methods. In this
section, we conduct a deep analysis on the influence of dif-
ferent data sources on the recommendation results. From
Table 3, we can observe that current approaches generally
leverage three different data sources: official documenta-
tion, Q&A forums, and tutorial websites. For analysis, we
choose two methods, Lucene and naive baseline, which are
flexible to incorporate different data sources. Specifically,
we evaluate the methods on the part of queries from the
tutorial websites collected in APIBENCH-Q, and the method
training is conducted based on the following knowledge
base:

1) only official documentation,

2) only Stack Overflow posts, and

3) Dboth official documentation and Stack Overflow

posts.

The experiment results are shown in Fig. 8. As can be
seen, training on Stack Overflow posts achieves much
better performance than on official documentation at
both class and method levels. For example, Lucene
achieves a 29% boost in class-level and an 169% boost in
method-level recommendation when searching based on
Stack Overflow than on official documentation; and the
naive baseline even achieves a 71% boost in class-level
and a 602% boost in method-level recommendation. The
advantage of leveraging Stack Overflow posts may be
attributed that the discussion on Stack Overflow is more
natural and similar to user queries, compared with the
descriptions in the official documentation. Besides, the

1889

SO m Mixed

(Class Level)

mmm Original

0.0 I I I I
icel

Lucene Lucene
(Class Level) (Method Level)

o o o
o w IS

Success Rate@10

o

(Method Level)

Fig. 8. The Success Rate@10 of Lucene and Naive Baseline under
three data source settings.

extended usage of some APIs is rarely mentioned in offi-
cial documentation but is widely discussed in Stack
Overflow. An example is used to illustrate the influence
of different data sources.

Example 8: Data Source

BASELINE Lucene
ORIGINAL Compute the md5 hash of a File
QUERY

Correct API java.security. MessageDigest.digest(), java.
security.MessageDigest.getInstance()

API Completes the hash computation by
DescripTION performing final operations such as padding
SMILAR SO How can I generate an MD5 hash in Java?
Post

In Example 8, the query asks about the API for generating
an MD5 hash of a file. However, there is no standard API
specially designed to generate the MD5 hash, so Lucene
focuses on two words “hash” and “file” for recommendation.
But the official description of ground truth API java.security.
MessageDigest.digest() does not contain the word “file” since
it is a general API that not merely handles files. Under this
circumstance, Lucene recommends a more relevant but
wrong APl java.nio.file.attribute FileTime.hashCode(). When
involving Stack overflow posts, as there already exists dis-
cussion on how to generate the MD5 hash, Lucene can easily
pinpoint and recommend the correct APIin the posts.

The advantage of leveraging Stack Overflow for recom-
mendation is also demonstrated by the BIKER approach [27],
which is the most effective approach in Section 4.1. Our find-
ing is consistent with the claim in the work [27] that Stack
Overflow posts can mitigate the semantics gap between user
queries and official descriptions.

Finding 10: Apart from official documentation, using other data
sources such as Stack Overflow can significantly improve the
performance of query-based API recommendation approaches.

5 EMPIRICAL RESULTS OF CODE-BASED API
RECOMMENDATION

In this section, we study the RQ1 and RQ 4 ~ 6 discussed in
Section 1. To study RQ1, RQ4 and RQ5, we evaluate the per-
formance of all the code-based API recommendation
approaches on the “General” domain of our benchmark API-
BencH-C, as shown in Table 2, since the “General” domain

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 02,2023 at 08:17:13 UTC from IEEE Xplore. Restrictions apply.

1890 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 4, APRIL 2023
TABLE 6
The Performance of Code-Based API Recommendation Baselines at Different Metrics (Top-1,3,5,10)
PL Baseline Success Rate@k MAP@k MRR NDCG@k
Top-1 Top-3 Top-5 Top-10 Top-1 Top-3 Top-5 Top-10 Top-1 Top-3 Top-5 Top-10
Python TravTrans 0.45 0.57 0.59 0.62 0.45 0.50 0.51 0.51 0.51 045 0.52 0.53 0.54
Deep3 0.21 0.34 0.37 0.43 0.20 0.27 0.28 0.28 0.28 0.21 0.29 0.30 0.32
PyART 029 038 046 0.60 029 033 035 0.37 037 029 034 037 041
Java FOCUS 0.01 0.03 0.04 0.06 0.01 0.02 0.02 0.03 0.03 0.01 0.02 0.03 0.04
PAM 0.01 0.02 0.03 0.05 0.01 0.02 0.02 0.02 0.02 0.01 0.02 0.02 0.03
PAM-MAX 0.22 0.32 0.36 0.45 0.22 0.26 0.27 0.28 0.28 0.22 0.27 0.29 0.32

All baselines are trained and tested on the full dataset from “General” domain of APIBENCH-C except for PyART. Since PyART takes months to train and test on
our full dataset, we randomly sampled 20% of original training and testing testset to evaluate it. The “PL” column indicates the programming language the base-

lines target. The red number indicates the best performance.

includes code with different topics and can reflect the overall
performance of baselines. For studying the ability of cross-
domain adaptation in RQ6, we evaluate the performance of
the approaches on all the five domains of our APIBEncH-C.

5.1 Effectiveness of Existing Approaches (RQ1-2)
According to Table 4, three approaches for Python and three
approaches for Java are evaluated on the “General” domain
of APIBENCH-C. The results are depicted in Table 6. We can
observe that the learning-based method TravTrans obtains
the best performance on the Python dataset, achieving 0.62
and 0.54 for Success Rate@10 and NDCG@10, respectively.
The results mean that TravIrans can successfully recom-
mend 62% of APIs in our benchmark and well predict the
API rankings. However, the traditional statistical method
Deep3 only achieves 0.43 and 0.32 for Success Rate@10 and
NDCG®@10, respectively, while the pattern-based method
FOCUS and PAM achieve less than 0.10 for both Success
Rate@10 and NDCG®@10. This suggests that learning-based
methods obtain superior performance in code-based API
recommendation, which is quite different from query-based
API recommendation. The possible reason is that lots of
well-organized public code repositories provide sufficient
data for training code-based API recommendation models.
We also find that FOCUS and PAM show low recommen-
dation accuracy, with all the metric values lower than 0.1.
The low performance is attributed to the context

representation of the approaches. PAM is a context-insensi-
tive approach, which only mines the top-N APIs that are
most likely to be used in the training set and directly recom-
mends them for each file in the test set; while FOCUS takes
one step further by extracting the APIs in the test set and
building a matrix to match the APIs in the training set. Such
coarse-grained context representation or context-insensitive
representation does not well capture the relations between
APIs. PAM-MAX shows the theoretical best performance
context-insensitive methods can achieve. However, the per-
formance of PAM-MAX is still lower than that of TravTrans
and PyART which consider fine-grained code features such
as code tokens and data flows. The results indicate the effec-
tiveness of fine-grained approaches for code-based API
recommendation.

Besides the recent code-based API recommendation
approaches, we also compare the widely-used IDEs. Since
it is hard to automatically evaluate IDEs’ recommenda-
tion performance, we sampled 500 APIs from the original
large test set of APIBENCH-C based on the distribution
shown in Table 2. We then conduct a manual evaluation
by imitating the behaviors of developers on the 500 sam-
pled APIs. We show the results on the sampled test set in
Table 7. As can be seen, for Python, Pycharm achieves the
Success rate@10 at 0.49 and NDCG@10 at 0.40, which is
truly competitive to the performance of TravTrans, with
Success Rate@10 and NDCG@10 at 0.50 and 0.44,

TABLE 7
The Performance of Code-Based API Recommendation Baselines Along With 4 Widely Used IDEs Tested on 500 Cases Sampled
From the Testset of all Domains in APIBeNcH-C

PL Baseline Success Rate@k MAP@k MRR NDCG@k
Top-1 Top-3 Top-5 Top-10 Top-1 Top-3 Top-5 Top-10 Top-1 Top-3 Top-5 Top-10
Python TravTrans 038 046 048 0.50 038 042 042 0.43 0.43 038 043 044 044
Deep3 019 026 031 0.38 019 022 023 0.24 024 019 023 025 028
PyCharm 0.31 042 047 0.49 0.31 036 037 0.37 037 031 038 040 040
VSCode 005 015 021 0.35 005 009 011 0.13 013 0.05 0.11 014 0.18
Java FOCUS 0.02 004 0.05 0.07 0.02 003 0.03 0.04 004 002 003 004 0.04
PAM 0.01 0.02 0.05 0.07 0.01 0.02 0.02 0.03 0.03 0.01 0.02 003 0.04
PAM-MAX 027 038 043 0.56 027 031 0.33 0.34 034 027 033 035 039
Eclipse 028 042 049 0.60 028 034 035 0.37 037 028 036 039 042
Intelli] IDEA 042 058 0.65 0.67 042 049 051 0.51 051 042 051 054 0.55
The “PL” column indicates the programming language the baselines target. The red number indicates the best performance. The rows with background indi-

cates the performance of IDEs.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 02,2023 at 08:17:13 UTC from IEEE Xplore. Restrictions apply.

PENG ET AL.: REVISITING, BENCHMARKING AND EXPLORING APl RECOMMENDATION: HOW FAR ARE WE?

mmm Standard mmm Popular

TravTrans Deep3 FOCUS PAM PAM-MAX

= User-defined

o S o
= > ®

Success Rate@10

o
N

0.0

Fig. 9. The Success Rate@10 of baselines on three categories of APIs
at the “General” domain of APIBench-C.

respectively. For Java, IDEs also show competitive perfor-
mance compared with the baseline approaches. The
results demonstrate that the widely-used IDEs are gener-
ally effective in API recommendation and far from relying
on alphabet orders for recommendation.

Finding 11: DL models such as TravTrans show superior per-
formance on code-based API recommendation by achieving a
Success Rate@10 of 0.62, while widely-used IDEs also obtain
satisfying performance by achieving a Success Rate@10 of 0.5
~0.6.

5.2 Capability to Recommend Different Kinds of
APIs (RQ4)

Exploring which kinds of APIs tend to be wrongly pre-
dicted is essential for understanding the bottleneck of cur-
rent approaches and for providing clues for further
improvement. In Section 3, we have classified all APIs into
standard APIs, popular third-party APIs and user-defined
APIs. In this RQ, we study the performance of current base-
lines for different kinds of APIs. Specifically, we evaluate
TravTrans, Deep3, FOCUS, PAM and PAM-MAX on the
full test set of the “General” domain, with results shown in
Fig. 9.

As can be seen in Fig. 9, most approaches achieve a
very high Success Rate@10 on standard APIs. For exam-
ple, TravIrans even successfully recommends more than
90% of standard APIs in the test set. The approaches also
present relatively good performance for the popular
third-party libraries, e.g., TravTrans achieves a Success
Rate@10 of more than 0.8. As standard APIs and popular
APIs from third-party libraries are widely used in real-
world projects, data-driven methods can achieve superior
performance. However, it is hard for the approaches to
correctly recommend the user-defined APIs as they fail to
predict 35.3% ~ 91.3% more of user-defined APIs compar-
ing to the prediction of standard APIs.

Finding 12: Although current approaches achieve good per-
formance on recommending standard and popular third-party
libraries, they face the challenges of correctly predicting the
user-defined APIs.

5.3 Capability to Handle Different Contexts (RQ5)

As context representation is an important part of the cur-
rent code-based API recommendation shown in Fig. 2, it
is worthwhile to study the impact of different contexts
on the performance of current approaches. In this RQ,

1891

= Moderate

TravTrans Deep3 FOCUs PAM

= long mmm Short

Success Rate@10
o o o o o
S 2 2 & 8

°

0.0

Fig. 10. The Success Rate @10 of baselines on extremely short, normal
and extremely long contexts at the “General” domain of APIBENch-C.

we explore the impact of the following two different
types of context.

e lengths of functions, which evaluates the capability
of current approaches to handle different lengths of
contexts;
e different recommendation points, since different rec-
ommendation points affect how much context an
approach can be aware of before recommendation.
Capability to Handle Different Lengths of Functions. In Sec-
tion 3 and Table 2 we classify all functions of APIBENcH-C
into extremely short functions, functions of moderate
lengths, or extremely long functions by sampling the first
5%, middle 90% and last 5% according to the distribution of
function lengths. As code-based API recommendation is
often based on the context in a function, the length of func-
tion can represent the length of context that an approach
needs to handle. We study the performance of current base-
lines on functions of different lengths and show the results of
TravTrans, Deep3, FOCUS, PAM, and PAM-MAX in Fig. 10.

From Fig. 10, we find that most baselines share similar
performance distributions on functions of different lengths.
They present the best performance on functions with moder-
ate lengths and suffer from performance drops on extremely
long or short functions. To be more specific, the performance
drops by 7.1% for extremely long functions and 10.6% for
extremely short functions on average. The results indicate
that context length can affect the performance of current
approaches. Besides, the approaches are more difficult to rec-
ommend correct APIs for the functions of extremely short
lengths than those of extremely long lengths.

Finding 13: Context length can impact the performance of
current approaches in API recommendation. The approaches
perform poorly for the functions with extremely short or long
lengths, and accurate recommendation for the extremely short
functions is more challenging.

mm Front Wem Middle mEm Back

TravTrans Deep3 FOCUS PAM

Success Rate@10

°
N

°

0.0
PAM-MAX

Fig. 11. The Success Rate @ 10 of baselines on three categories of rec-
ommendation points at the general domain of APIBENncH-C.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 02,2023 at 08:17:13 UTC from IEEE Xplore. Restrictions apply.

1892 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 4, APRIL 2023
TABLE 8
The Cross-Domain Success Rate @ 10 of Python Code-Based API Recommendation Baselines

Training Domain TravTrans Deep3 PyART

ML Security Web DL ML Security Web DL ML Security Web DL
ML 0.64 0.58 053 0.71 0.42 0.41 0.36 0.48 0.39 0.35 040 0.40
Security 0.40 0.54 054 0.39 0.31 0.51 042 0.29 0.36 0.48 047 0.36
Web 0.54 0.63 0.64 0.51 0.33 0.42 046 0.31 0.42 0.47 0.50 0.40
DL 0.66 0.58 0.50 0.68 0.44 0.39 033 044 0.43 0.36 0.38 045
General 0.72 0.76 0.78 0.74 0.55 0.65 0.62 057 0.44 0.44 046 046

The rows list the domains where three baselines are trained and the columns list the domains where three baselines are evaluated. The red number indicates the
best performance an approach achieves when trained on one domain (The largest number in each row). The numbers with gray background indicates the best per-
formance achieved on a specific testing domain (The largest number in each column).

Capability to Handle Different Recommendation Points.
Similar to the previous work [49], we first define three
locations of recommendation points. Suppose that the
LOC of a function is n and the total number of APIs used
in the function is m. we define a recommendation point
that is on the ay, line of the function and is the b, API in
the function locates on

1) the front of functionif a/n < 1/4and b/m < 1/4,or

2) the middle of function if 1/4 < a/n < 3/4 and
1/4 < b/m < 3/4,or

3) theback of functionif a/n > 3/4and b/m > 3/4.

We show an example for illustrating front, middle and
back recommendation point in Listing 1.

Listing 1. Example of Recommendation Points

I public static void main(String args[]) {

String[] strArray =
1 new <Front Recommendation Point>

7 List 1 =

Arrays.<Middle Recommendation Point>

10 Collections.<Back Recommendation Point>;

For all the APIs in the test set of the “General” domain,
we replace them with placeholders of the above three types
of recommendation points for evaluation. We also remove
APIs in extremely long or short functions (according to the
thresholds shown in Table 2) to alleviate the influence of
function lengths. We show the results of TravTrans, Deep3,
FOCUS, PAM and PAM-MAX in Fig. 11.

From Fig. 11, we observe that current approaches gener-
ally perform worse at the front recommendation points by
achieving an average Success Rate@10 of 0.316. This is intui-
tive since there exists less information for current
approaches to leverage at front recommendation points.
However, it is worth noting that not all approaches achieve
the best performance at the back recommendation point
which is associated with the most context among all the rec-
ommendation points. The reason may be that the
approaches cannot well handle the overwhelming informa-
tion in long contexts.

Finding 14: The location of recommendation points can affect
the performance of current approaches. Current approaches
perform worst at front recommendation points due to limited
contexts. Some of them also suffer from overwhelming contexts
at back recommendation point.

To sum up, different contexts can affect the performance of
current code-based API recommendation approaches.
Among them, the extremely short contexts and front recom-
mendation points bring the most challenges for the accurate
recommendation.

5.4 Adaptation to Cross-Domain Projects (RQ6)
We have divided APIBEncH-C into five different domains in
Section 3. In this section, we aim at studying the adaption
capability of current approaches for cross-domain projects.
We train the approaches in one domain and evaluate them
in other different domains. We choose the approaches Trav-
Trans, Deep3, and PyART, which are all designed for
Python, for analysis. We do not involve the approaches
FOCUS, PAM, or PAM-MAX, since they use coarse-grained
context representations or context-insensitive feature, and
are difficult to incorporate project-specific information. The
first four rows of Table 8 list the cross-domain Success
Rate@10 of TravTrans, Deep3 and PyART, respectively.
According to Table 8, the approaches trained on one
domain generally perform best on the test set of the same
domain. For example, when trained on data from the
“Security” domain, TravIrans, Deep3 and PyART obtain
the best scores at 0.54, 0.51 and 0.48 on the test set of the
same domain, respectively, in terms of Success Rate@10.
However, their performance drops by 2.1% ~ 43.1% when
recommending APIs from different domains.

Finding 15: Current approaches using fine-grained context
representation are sensitive to the domain of the training data
and suffer from performance drop when recommending cross-
domain APIs.

We also analyze the cross-domain performance of the
approaches when training on multiple domains instead of
on one single domain. Such analysis is worthwhile to
explore whether different domains can complement each
other. Then we train the approaches on the projects from

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 02,2023 at 08:17:13 UTC from IEEE Xplore. Restrictions apply.

PENG ET AL.: REVISITING, BENCHMARKING AND EXPLORING APl RECOMMENDATION: HOW FAR ARE WE?

the “General” domain of APIBEncH-C and evaluate them on
the other four different domains. We show the results in the
last row of Table 8.

From the table, we can see that the approaches trained
on the “General” domain generally show the best perfor-
mance when evaluating on different domains. For exam-
ple, TravTrans trained on the “General” domain achieves
the Success Rate@10 of 0.72, 0.76, 0.78 and 0.74 on ML,
Security, Web and DL domains, respectively, which is sig-
nificantly higher than the corresponding best scores
obtained by TravTrans trained on single one domain. We
observe an average boost of 14% for the performance of
the approaches when trained on multiple domains than
on a single domain. The results indicate that training
approaches on multiple domains greatly improve the rec-
ommendation performance.

Finding 16: Training on multiple domains helps the current
approaches to recommend APIs in different single domains,
and the performance is generally better than only training on a
single domain.

6 DiscussioN AND FUTURE WORK

6.1 Query Reformulation for Query-Based API

Recommendation

In Section 4.2, we find that query reformulation techniques
can not only help current query-based API recommendation
approaches find more correct APIs but also improve the
ranking performance. Based on query reformulation, BIKER
can even achieve a Success Rate@10 of 0.80 in class-level
and 0.51 in method-level API recommendation. The results
demonstrate that query quality has a great impact on the
recommendation results and suggest that query reformula-
tion should become a common pre-processing technique
used before query-based API recommendation. We also dis-
cover that some query reformulation techniques, such as
adding predicted API class names or relevant words, can
improve the performance of query-based API recommenda-
tion approaches. However, to the best of our knowledge,
few studies have considered integrating these techniques,
which could be one major reason that current approaches
achieve limited performance.

By implementing a random deletion strategy, in Sec-
tion 4.2.3 we find that user queries usually contain noisy
words, which can bias the recommendation results. We
summarize three kinds of cases in which a query contains
noisy words. However, there exists very little work that
aims to detect and eliminate the irrelevant words for recom-
mendation systems, which poses a great challenge for cur-
rent approaches to be robust when handling various user
queries. Although a random deletion strategy reduces the
overall performance on average, the positive improvement
of deletion on some specific words indicates the potential
benefits of noisy word deletion.

Implication 1: Current query-based API recommendation
approaches should be integrated with query reformulation
techniques to be more effective.

1893

6.2 Data Sources for Query-Based API
Recommendation

In Section 4.1, we point out that current query-based API
recommendation approaches face the problem of building a
comprehensive knowledge base due to the lack of enough
data such as query-API pairs. In Section 4.3, we further dis-
cover that there is a semantic gap between user queries and
descriptions from the official documentation. Both the lack
of enough data for knowledge base creation and the seman-
tic gap increase the difficulty of accurate API recommenda-
tion based on only official documentation. Such challenges
can not be easily solved by improving learning-based mod-
els or pattern-based models. One effective way to mitigate
the difficulty is to involve Stack Overflow posts, as analyzed
in Section 4.3. While Stack Overflow is only one type of data
source, our analysis demonstrates that adding appropriate
data sources can improve the performance of query-based
API recommendation approaches.

Implication 2: Apart from query reformulation, adding
appropriate data sources provides another solution to bridge
the gap between queries and APIs.

6.3 Low Resource Setting in Query-Based API
Recommendation

In Section 4.1, we find that current learning-based methods
do not necessarily outperform traditional retrieval-based
methods. We attribute the results to the limited data such as
query-API pairs in the query-based API recommendation
task, which is a low-resource scenario [10], [25]. We also dis-
cover that pre-trained models such as BERT show superior
performance in query reformulation in Section 4.2. This
indicates that current pre-trained models can implicitly mit-
igate the semantic gap between user queries and official
descriptions of APIs. Future work is suggested to explore
how to make the best use of pre-trained models for query-
based API recommendation based on limited available data.

Implication 3: Few-shot learning with powerful pre-trained
models can be a solution to further improve the performance of
query-based API recommendation.

6.4 User-Defined APIs

In Section 5.2, we find that current code-based API recom-
mendation approaches, no matter pattern-based or learn-
ing-based models, all face the challenge of recommending
user-defined APIs. User-defined APIs have become the
major bottleneck to further improve the performance of cur-
rent code-based API recommendation approaches. How-
ever, as user-defined APIs usually do not appear in the
training set, they can hardly be learned by machine learning
methods or be mined by pattern-based methods. A possible
solution used by current approaches [27], [33] is to regard
the API as a code token and predict the token based on pre-
vious contexts. However, this solution also fails if the API
token never appears in previous context. Thus, accurately
predicting user-defined APIs should be one major direction
of code-based API recommendation in future work.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 02,2023 at 08:17:13 UTC from IEEE Xplore. Restrictions apply.

1894

Implication 4: User-defined API recommendation is one
major bottleneck for improving the performance of current
code-based API recommendation approaches and remains
unsolved.

6.5 Query-Based APl Recommendation With Usage
Patterns

In this paper, we only focus on testing whether an approach
can recommend the correct APIs, but we believe developers
can always benefit more from detailed information about
how to use the recommended APIs. A common method is
to provide summaries such as the signature and constraints
extracted from official documentation along with the recom-
mended APIs. For example, KG-APISumm proposed by Liu
et al. [38] provides a detailed summary of the recom-
mended API class. However, official documentation some-
times cannot provide enough usage information about an
API, which may cause API misuse. For instance, a fresh
developer may search “how to read a file” in Python and the
recommended API should be fileObject.read(), but without
sufficient experience to use file operations, the developers
may forget to close the file after reading it.

A possible solution to complement official documenta-
tion and avoid possible API misuse is to provide usage pat-
terns from other developers. In the above example, a
common usage pattern open(), fileObject.read(), fileObject.close
() can prevent dangerous file operations. As there exist
some pattern mining approaches on code, we can combine
query-based API recommendation with code-based pattern
mining methods for better providing the usage pattern.

Implication 5: Code-based API recommendation approaches
can provide usage patterns to enrich the results returned by
query-based API recommendation approaches.

6.6 Implications for Different Group of Software
Practitioners

In this subsection, we conclude some implications for differ-
ent group of software practitioners.

Software Researchers. For query-based API recommenda-
tion, we conclude that query reformulation techniques can
bring significant improvement for current API recommen-
dation approaches in Section 4.2. Despite of the effective-
ness of query reformulation, it still remains unexplored on
the factors that impact the performance of the technique.
We believe a comprehensive study towards query reformu-
lation can be an important future direction for API recom-
mendation. For code-based API recommendation, we find
that the major bottleneck for current approaches is user-
defined API recommendation in Section 5.2. We suggest
software researchers to focus more on the user-defined API
recommendation for improving the practicability of API
recommendation approaches.

Software Developers. As illustrated in Section 4.3, there
exists a knowledge gap between official documentation and
user queries, which limits the performance of current
query-based API recommendation approaches. For devel-
opers who design new APIs, we believe adding more practi-
cal examples in the documentation or using more natural

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 4, APRIL 2023

language descriptions would mitigate the knowledge gap.
In Section 4.2.3, we find that current queries sometimes con-
tain unnecessary information that confuse the API recom-
mendation approaches. For developers who search for
APIs, we believe that creating a query by using more profes-
sional words instead of unnecessary long descriptions can
facilitate the search process.

7 THREAT TO VALIDITY

In this section, we describe the possible threats we may face
in this study and discuss how we mitigate them.

7.1 Internal Validity
Our research may face the following internal threats:

Baseline Re-Implementation. In this paper, we re-imple-
mented several baselines according to the code or replica-
tion packages released by their authors. However, as some
baselines are not primarily designed for API recommenda-
tion, we slightly modified their code and adapted them into
our task and our benchmark. For example, we limit the pre-
diction scope of code completion baselines to only API
tokens. Such adaptations may cause the performance of
baselines to be slightly different from those in the original
papers. To mitigate this threat and validate the correctness
of our re-implementation, we refer to some related work
that cites these baselines and confirm our experiment results
with them.

Data Quality. We build APIBENcH-Q by manually select-
ing and labeling API-related queries from Stack Overflow
and some tutorial websites. This process involved some
human checks so that some subjective factors may influence
the quality of our datasets. To mitigate this threat, we
involve at least two persons to label one case and let one of
our authors further check if the previous two persons give
different opinions to the case. We also implement some
rules to automatically filter out the cases that are explicitly
unrelated to API recommendation.

Identification of User-Defined APIs. We utilize commonly-
used static import analysis to analyze the import statements
in each source file and try to identify the implementation of
imported libraries. To guarantee the quality of our bench-
mark dataset, we regard an API as a user-defined API only
if we can find its implementation. However, since the com-
pleteness of static import analysis is still an open challenge,
there may exist several user-defined APIs that cannot be
identified. We will further refine the dataset when more
advanced static important analysis tools are available.

7.2 External Validity
Our research may face the following external threats:

Data Selection. To the best of our knowledge, APIBENCH is
the largest benchmark in API recommendation task. We try
to make it more representative by selecting real-world code
repositories from the most popular domains at GitHub and
real-world queries from the largest Q&A forum StackOver-
flow according to several developer surveys [28], [66]. All
findings in this empirical study are based on this dataset.
However, there may still be slight differences when adapt-
ing our findings into other domains and datasets that we do
not discuss in this paper.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 02,2023 at 08:17:13 UTC from IEEE Xplore. Restrictions apply.

PENG ET AL.: REVISITING, BENCHMARKING AND EXPLORING APl RECOMMENDATION: HOW FAR ARE WE?

Programming Language. Our study focuses on the API rec-
ommendation on Python and Java, and the findings
included in this study may not be generalized to other pro-
gramming languages. However, we believe the impacts of
programming languages should not be significant as Python
and Java are the most representative dynamically typed and
statically typed languages, respectively.

8 CoONCLUSION AND FUTURE WORK

In this paper, we present an empirical study on the API
recommendation task. We classify current work into
query-based and code-based API recommendation, and
build a benchmark named APIBENcH to align the perfor-
mance of different recommendation approaches. We con-
clude some findings based on the empirical results of
current approaches.

For query-based API recommendation approaches, we
find that 1) recommending method-level APIs is still chal-
lenging; 2) query reformulation techniques have great
potential to improve the quality of user queries thus they
can help current approaches better recommend APIs.
What’'s more, user queries also contain some meaningless
and verbose words and even a simple word deletion
method can improve the performance; 3) approaches built
upon different data sources have quite different performan-
ces. Q&A forums such as Stack Overflow can greatly help
mitigate the gap between user queries and API descriptions.

For code-based API recommendation, we emphasize the
superior performance of current deep learning models such
as Transformer. However, they still face the challenge of
recommending user-defined APIs. We also find different
contexts, such as different location of recommendation
points and context length, can impact the performance of
current approaches. Besides, current approaches suffer
from recommending cross-domain APIs.

Based on the findings, we summarize some future direc-
tions on improving the performance of API recommenda-
tion. For query-based approaches, we encourage researchers
to integrate query reformulation techniques with query-
based API recommendation approaches to obtain better per-
formance, but how to choose the best query reformulation
strategy still remains as future work. We also believe some
few-shot learning methods and different data sources can
bridge the gap between user queries and knowledge base
under low resource scenarios. For code-based approaches,
we recommend future work to focus on improving the per-
formance of user-defined APl recommendation and train the
approach on multiple domains instead of a single domain.

Apart from the findings and implications concluded in
this paper, we also identify some future work that can be
conducted for APl recommendation. First, our paper
focuses on benchmarking and provides an objective evalua-
tion for all approaches. However, some approaches provide
summaries for the recommended APIs that are not assessed
in our study. For such approaches, subjective evaluation
such as a developer survey can be conducted for verifying
the quality of recommended API descriptions and usage
information. Future work could consider complementing
our work. Second, our empirical results show that query
reformulation techniques are quite effective to improve the

1895

query quality. As this paper mainly focuses on API recom-
mendation, we do not discuss different query reformulation
techniques comprehensively. Future work can focus on
studying the query reformulation techniques for facilitating
downstream tasks.

We released our benchmark APIBENcH and all experi-
ment results at Github®. We hope this empirical study can
remove some barriers and motivate future research on API
recommendation.

REFERENCES

[1]1 Geeks4geeks website. 2021. [Online]. Available: https://www.
geeksforgeeks.org/

[2] Java2s website. 2021. [Online]. Available: http://www .java2s.
com/

[3] Kode Java website. 2021. [Online]. Available: https://kodejava.
org/

[4] M. M. Rahman and C. K. Roy, “Improved query reformulation
for concept location using coderank and document structures,”
in Proc. 32nd IEEE/ACM Int. Conf. Automat. Softw. Eng., 2017,
pp- 428-439.

[5] AlDanial, “Count lines of code,” 2021. [Online]. Available:
https://github.com/AlDanial/cloc

[6] U. Alon, S. Brody, O. Levy, and E. Yahav, “code2seq: Generating
sequences from structured representations of code,” 2018,
arXiv:1808.01400.

[7]1 M. Bruch, M. Monperrus, and M. Mezini, “Learning from exam-
ples to improve code completion systems,” in Proc. 7th Joint Meet-
ing Eur. Softw. Eng. Conf. ACM SIGSOFT Symp. Found. Softw. Eng.,
2009, pp. 213-222.

[8] K. Cao, C. Chen, S. Baltes, C. Treude, and X. Chen, “Automated
query reformulation for efficient search based on query logs from
stack overflow,” in Proc. IEEE/ACM 43rd Int. Conf. Softw. Eng.,
2021, pp. 1273-1285.

[9] K. Cao, C. Chen, S. Baltes, C. Treude, and X. Chen, “The demo link

for sequer,” 2021. [Online]. Available: https://sequer-tpznovfjxa-

uc.a.run.app/?query=

M. Diab, “Data paucity and low resource scenarios: Challenges

and opportunities,” in Proc. 26th ACM SIGKDD Int. Conf. Knowl.

Discov. Data Mining, 2020, Art. no. 3612.

Django. Django api reference. 2021. [Online]. Available: https://

docs.djangoproject.com/en/3.2/ref/

A. Renika D’Souza, D. Yang, and C. V. Lopes, “Collective intelli-

gence for smarter API recommendations in python,” in Proc. IEEE

16th Int. Work. Conf. Source Code Anal. Manipulation, 2016, pp. 51—

60.

Stack Exchange, “Stack exchange data dump,” 2021. [Online].

Available: https:/ /archive.org/details/stackexchange

Flask, “Flask API reference,” 2021. [Online]. Available: https://

flask.palletsprojects.com/en/2.0.x/api/

J. Fleiss, “Measuring nominal scale agreement among many rate-

rs,” Psychol. Bull., vol. 76, pp. 378-382, 1971.

Apache Software Foundation. Lucene. 2021. [Online]. Available:

https:/ /lucene.apache.org/

Eclipse foundation. the eclipse ide. 2021. [Online]. Available:

https://www.eclipse.org/eclipseide/

J. Fowkes and C. Sutton, “Parameter-free probabilistic API mining

across github,” in Proc. 24th ACM SIGSOFT Int. Symp. Found.

Softw. Eng., 2016, pp. 254-265.

M. Jaroslav Fowkes and C. Sutton, “Parameter-free probabilistic

API mining across GitHub,” in Proc. 24th ACM SIGSOFT Int.

Symp. Found. Softw. Eng., 2016, pp. 254-265.

Google, “Android API reference,” 2021. [Online]. Available:

https://developer.android.com/reference

Google, “The Google news Word2Vec model,” 2021. [Online].

Auvailable: https://code.google.com/archive/p/word2vec/

Google, “The interface of Google prediction service,” 2021. [Online].

Available: http:/ /suggestqueries.google.com/complete/search?

[10]

[11]

[12]

[13]
[14]
[15]
[16]
[17]

[18]

[19]

[20]
[21]

[22]

3. The address of benchmark is at https:/ / github.com/JohnnyPeng18/
APIBench

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 02,2023 at 08:17:13 UTC from IEEE Xplore. Restrictions apply.

https://www.geeksforgeeks.org/
https://www.geeksforgeeks.org/
http://www.java2s.com/
http://www.java2s.com/
https://kodejava.org/
https://kodejava.org/
https://github.com/AlDanial/cloc
https://sequer-tpznovfjxa-uc.a.run.app/?query=
https://sequer-tpznovfjxa-uc.a.run.app/?query=
https://docs.djangoproject.com/en/3.2/ref/
https://docs.djangoproject.com/en/3.2/ref/
https://archive.org/details/stackexchange
https://flask.palletsprojects.com/en/2.0.x/api/
https://flask.palletsprojects.com/en/2.0.x/api/
https://lucene.apache.org/
https://www.eclipse.org/eclipseide/
https://developer.android.com/reference
https://code.google.com/archive/p/word2vec/
http://suggestqueries.google.com/complete/search?
https://github.com/JohnnyPeng18/APIBench
https://github.com/JohnnyPeng18/APIBench

1896

[23]

[24]

[25]

[26]

[27]

[28]

[29]
[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[391

[40]
[41]
[42]
[43]
[44]

[45]

[46]

[47]

[48]

[49]

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 4, APRIL 2023

X. Gu, H. Zhang, D. Zhang, and S. Kim, “Deep API learning,” in
Proc. 24th ACM SIGSOFT Int. Symp. Found. Softw. Eng., 2016,
pp. 631-642.

X. He, L. Xu, X. Zhang, R. Hao, Y. Feng, and B. Xu, “PyART:
Python API recommendation in real-time,” in Proc. IEEEJACM
43rd Int. Conf. Softw. Eng., 2021, pp. 1634-1645.

M. A. Hedderich, L. Lange, H. Adel, J. Strotgen, and D. Klakow,
“A survey on recent approaches for natural language processing
in low-resource scenarios,” in Proc. Conf. North Amer. Chapter
Assoc. Comput. Linguistics: Hum. Lang. Technol., 2021, pp. 2545—
2568.

A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. T. Devanbu, “On the
naturalness of software,” in Proc. 34th Int. Conf. Softw. Eng., 2012,
pp. 837-847.

Q. Huang, X. Xia, Z. Xing, D. Lo, and X. Wang, “API method rec-
ommendation without worrying about the task-API knowledge
gap,” in Proc. 33rd IEEE/ACM Int. Conf. Autom. Softw. Eng., 2018,
pp. 293-304.

Jetbrains, “Python developer survey conducted by jetbrains and
python software foundation,” 2020. [Online]. Available: https://
www jetbrains.com/lp/python-developers-survey-2020/
JetBrains, “The intellij idea ide,” 2021. [Online]. Available:
https://www jetbrains.com/idea/

JetBrains, “The pycharm ide,” 2021. [Online]. Available: https://
www jetbrains.com/pycharm/

E. Jing, K. Schneck, D. Egan, and S. A. Waterman, “Identifying
introductions in podcast episodes from automatically generated
transcripts,” 2021, arXiv:2110.07096.

S. Kim, J. Zhao, Y. Tian, and S. Chandra, “Code prediction by
feeding trees to transformers,” in Proc. IEEE/ACM 43rd Int. Conf.
Softw. Eng., 2021, pp. 150-162.

S.Kim, J. Zhao, Y. Tian, and S. Chandra, “The replication package
of travtrans,” 2021. [Online]. Available: https://github.com/
facebookresearch/code-prediction-transformer

M. Lamothe, Y.-G. Guéhéneuc, and W. Shang, “A systematic
review of API evolution literature,” ACM Comput. Surv., vol. 54
no. 8, Oct. 2021, Art. no. 171.

lanwuwei. A pre-trained bert on stackoverflow corpus. 2021.
[Online]. Available: https:/ /github.com/lanwuwei/BERTOverflow
A. LeClair, S. Jiang, and C. McMillan, “A neural model for gener-
ating natural language summaries of program subroutines,” in
Proc. 41st Int. Conf. Softw. Eng., 2019, pp. 795-806.

B. Li, Y. Hou, and W. Che, “Data augmentation approaches in nat-
ural language processing: A survey,” Al Open, 2022. [Online].
Available: https://doi.org/10.1016%2Fj.aiopen.2022.03.001

M. Liu et al., “Generating query-specific class API summaries,” in
Proc. 27th ACM Joint Meeting Eur. Softw. Eng. Conf. Symp. Found.
Softw. Eng., 2019, pp. 120-130.

M. Ly, X. Sun, S. Wang, D. Lo, and Y. Duan, “Query expansion via
WordNet for effective code search,” in Proc. 22nd IEEE Int. Conf.
Softw. Anal., Evol. Reengineering, 2015, pp. 545-549.

E. Ma, “NLP augmentation,” 2019. [Online]. Available: https://
github.com/makcedward/nlpaug

Matplotlib. Matplotlib API reference. 2021. [Online]. Available:
https:/ /matplotlib.org/stable/api/index.html

Microsoft. GitHub website. 2021. [Online]. Available: https://
github.com/

Microsoft, “The visual studio code editor,” 2021. [Online]. Avail-
able: https:/ /code.visualstudio.com/

G. A. Miller, “WordNet: A lexical database for English,” Commun.
ACM, vol. 38, no. 11, pp. 3941, Nov. 1995.

B. Newman, P. K. Choubey, and N. Rajani, “P-adapters: Robustly
extracting factual information from language models with diverse
prompts,” 2021, arXiv:2110.07280.

A. T. Nguyen et al., “API code recommendation using statistical
learning from fine-grained changes,” in Proc. 24th ACM SIGSOFT
Int. Symp. Found. Softw. Eng., 2016, pp. 511-522.

A. T. Nguyen and T. N. Nguyen, “Graph-based statistical lan-
guage model for code,” in Proc. IEEE[ACM 37th IEEE Int. Conf.
Softw. Eng., 2015, pp. 858-868.

A. Tuan Nguyen et al.,, “Graph-based pattern-oriented, context-
sensitive source code completion,” in Proc. 34th Int. Conf. Softw.
Eng., 2012, pp. 69-79.

P. T. Nguyen, J. Di Rocco, D. Di Ruscio, L. Ochoa, T. Degueule,
and M. Di Penta, “FOCUS: A recommender system for mining
API function calls and usage patterns,” in Proc. IEEE[/ACM 41st
Int. Conf. Softw. Eng., 2019, pp. 1050-1060.

[50]

[51]

[52]
[53]
[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

Numpy. Numpy API reference. 2021. [Online]. Available:
https:/ /numpy.org/doc/stable/reference/

Oracle, “Java se 8 API documentation,” 2021. [Online]. Available:
www.oracle.com/technetwork/java/javase/documentation/
jdk8-doc-downloads-2133158.html

Pandas. Pandas API reference. 2021. [Online]. Available: https://
pandas.pydata.org/docs/reference/index.html

Python. Python standard library. 2021. [Online]. Available:
https://docs.python.org/3/library/

M. Raghu and E. Schmidt, “A survey of deep learning for scien-
tific discovery,” 2020, arXiv:2003.11755.

M. M. Rahman and C. Roy, “Effective reformulation of query for
code search using crowdsourced knowledge and extra-large data
analytics,” in Proc. IEEE Int. Conf. Softw. Maintenance Evol., 2018,
pp. 473-484.

M. M. Rahman and C. Roy, “NLP2API: Query reformulation for
code search using crowdsourced knowledge and extra-large data
analytics,” in Proc. IEEE Int. Conf. Softw. Maintenance Evol., 2018,
pp- 714-714.

M. M. Rahman and C. Roy, “The replication package for NLP2API,”
2021. [Online]. Available: https://github.com/masud-technope/
NLP2API-Replication-Package

M. M. Rahman, C. K. Roy, and D. Lo, “RACK: Automatic API
recommendation using crowdsourced knowledge,” in Proc.
IEEE 23rd Int. Conf. Softw. Anal., Evol. Reengineering, 2016,
pp. 349-359.

V. Raychev, P. Bielik, and M. Vechev, “Probabilistic model for
code with decision trees,” in Proc. ACM SIGPLAN Int. Conf.
Object-Oriented Program., Syst., Lang. Appl., 2016, pp. 731-747.

V. Raychev, M. Vechev, and E. Yahav, “Code completion with sta-
tistical language models,” in Proc. 35th ACM SIGPLAN Conf. Pro-
gram. Lang. Des. Implementation, 2014, pp. 419-428.

F. Ricci, L. Rokach, and B. Shapira, Introduction to Recommender
Systems Handbook. Boston, MA, USA: Springer, 2011, pp. 1-35.
R. Robbes and M. Lanza, “Improving code completion with
program history,” Autom. Softw. Eng., vol. 17, no. 2, pp. 181-
212, 2010.

M. P. Robillard, E. Bodden, D. Kawrykow, M. Mezini, and
T. Ratchford, “Automated API property inference techniques,”
IEEE Trans. Softw. Eng., vol. 39, no. 5, pp. 613637, May 2013.
M. P. Robillard, W. Maalej, R.]. Walker, and T. Zimmermann, Rec-
ommendation Systems in Software Engineering, Berlin, Germany:
Springer Publishing Company, Incorporated, 2014.

R. Sirres et al., “Augmenting and structuring user queries to sup-
port efficient free-form code search,” in Proc. 40th Int. Conf. Softw.
Eng., 2018, Art. no. 945.

snyk. Jvm ecosystem report 2020. 2021. [Online]. Available:
https:/ /snyk.io/blog/developers-dont-want-to-leave-java-8-as-
64-hold-firm-on-their-preferred-release/

Z. Tu, Z. Su, and P. Devanbu, “On the localness of software,” in
Proc. 22nd ACM SIGSOFT Int. Symp. Found. Softw. Eng., 2014,
pp- 269-280.

V. Efstathiou, C. Chatzilenas, and D. Spinellis, “Word embed-
dings for the software engineering domain,” in Proc. 15th Int.
Conf. Mining Softw. Repositories, 2018, pp. 38—41.

F. Wen, E. Aghajani, C. Nagy, M. Lanza, and G. Bavota, “Siri,
write the next method,” in Proc. IEEE/ACM 43rd Int. Conf. Softw.
Eng., 2021, pp. 138-149.

R. Xie, X. Kong, L. Wang, Y. Zhou, and B. Li, “HiRec: API recom-
mendation using hierarchical context,” in Proc. IEEE 30th Int.
Symp. Softw. Rel. Eng., 2019, pp. 369-379.

L. Xue, M. Gao, Z. Chen, C. Xiong, and R. Xu, “Robustness evalua-
tion of transformer-based form field extractors via form attacks,”
2021, arXiv:2110.04413.

Yun Peng received the BEng degree from the
University of Science and Technology of China.
He is currently working toward the PhD degree
with the Chinese University of Hong Kong. His
research interests are on intelligent code analy-
sis, program analysis and artificial intelligence for
software engineering. He published several
papers on top conferences of software engineer-
ing such as ICSE and ESEC/FSE.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 02,2023 at 08:17:13 UTC from IEEE Xplore. Restrictions apply.

https://www.jetbrains.com/lp/python-developers-survey-2020/
https://www.jetbrains.com/lp/python-developers-survey-2020/
https://www.jetbrains.com/idea/
https://www.jetbrains.com/pycharm/
https://www.jetbrains.com/pycharm/
https://github.com/facebookresearch/code-prediction-transformer
https://github.com/facebookresearch/code-prediction-transformer
https://github.com/lanwuwei/BERTOverflow
https://doi.org/10.1016%2Fj.aiopen.2022.03.001
https://github.com/makcedward/nlpaug
https://github.com/makcedward/nlpaug
https://matplotlib.org/stable/api/index.html
https://github.com/
https://github.com/
https://code.visualstudio.com/
https://numpy.org/doc/stable/reference/
www.oracle.com/technetwork/java/javase/documentation/jdk8-doc-downloads-2133158.html
www.oracle.com/technetwork/java/javase/documentation/jdk8-doc-downloads-2133158.html
https://pandas.pydata.org/docs/reference/index.html
https://pandas.pydata.org/docs/reference/index.html
https://docs.python.org/3/library/
https://github.com/masud-technope/NLP2API-Replication-Package
https://github.com/masud-technope/NLP2API-Replication-Package
https://snyk.io/blog/developers-dont-want-to-leave-java-8-as-64-hold-firm-on-their-preferred-release/
https://snyk.io/blog/developers-dont-want-to-leave-java-8-as-64-hold-firm-on-their-preferred-release/

PENG ET AL.: REVISITING, BENCHMARKING AND EXPLORING APl RECOMMENDATION: HOW FAR ARE WE?

Shugqing Li received the BEng degree from the
Southern University of Science and Technology
(SUSTech). She is currently working toward the
PhD degree with the Department of Computer
Science and Engineering, The Chinese Univer-
sity of Hong Kong (CUHK). Her research inter-
ests include software testing, software analysis,
and intelligent software engineering.

Wenwei Gu received the BEng degree from the
Huazhong University of Science and Technology,
Wouhan, China. He is currently working toward the
PhD degree with the Computer Science and
Engineering Department, The Chinese University
of Hong Kong, Hong Kong SAR. His current
research interests focus on Alops and data
mining.

Yichen Li received the BEng degree from the
Huazhong University of Science and Technology,
Wuhan, China. He is currently working toward the
PhD degree with the Computer Science and
Engineering Department, The Chinese University
of Hong Kong, Hong Kong. His current research
interests focus on software analysis and software
reliability.

Wenxuan Wang received the BS degree in com-
puter science and technology from the Huazhong
University of Science and Technology, Wuhan,
Hubei, China. He is currently working toward the
PhD’s degree with the Department of Computer
Science and Engineering, The Chinese Univer-
sity of Hong Kong. His research interests include
Al software reliability and Nature Language Proc-
essing. He has published more than 10 refereed
journal and conference papers in his research
areas.

;
-

e

1897

Cuiyun Gao received the PhD degree from the
Department of Computer Science and Engineer-
ing, The Chinese University of Hong Kong, in
2018. She is currently an associate professor
with the Harbin Institute of Technology, Shenz-
hen. Her research interests include software
repository mining, code intelligence, and malware
detection. She had published more than 35 publi-
cations in top-tier conferences and journals in her
area of expertise. She also served as a reviewer
for many conferences and journals.

Michael R. Lyu (Fellow, IEEE) received the BS
degree in electrical engineering from National
Taiwan University, Taipei, Taiwan, the MS degree
in computer science from the University of Cali-
fornia, Santa Barbara, and the PhD degree in
computer science from the University of Califor-
nia, Los Angeles. He is currently Choh-Ming Li
professor of Computer Science and Engineering
in The Chinese University of Hong Kong. His
research interests include software engineering,
software reliability, machine learning, cloud and
mobile computing, and distributed systems. He has published more than
600 refereed journal and conference papers in his research areas. His
Google Scholar citation is more than 46,000, with an h-index of 104. He
initiated the first International Symposium on Software Reliability Engi-
neering (ISSRE), in 1990. He was an associate editor of IEEE Transac-
tions on Reliability, IEEE Transactions on Knowledge and Data
Engineering, IEEE Transactions on Services Computing, and Journal of
Information Science and Engineering. He is currently on the editorial
board of IEEE Access, Wiley Software Testing, Verification and Reliabil-
ity Journal (STVR), and ACM Transactions on Software Engineering
Methodology (TOSEM). He was elected to AAAS fellow (2007), ACM fel-
low (2015), and named IEEE Reliability Society Engineer of the Year
(2010). He was granted with China Computer Federation (CCF) Over-
seas Outstanding Contributions Award, in 2018, and the 13th Guanghua
Engineering Science and Technology Award, in 2020. He was also
named in The Al 2000 Most Influential Scholars Annual List with three
appearances, in 2020.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 02,2023 at 08:17:13 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

