Chapter

Best Current Practice of SRE

Mary Donnelly, Bill Everett, John Musa, and Geoff Wilson
AT&T Bell Laboratories

6.1 Introduction

This chapter describes the best current practice (BCP) for doing soft-
ware reliability engineering (SRE) as adopted by AT&T. It represents
an integrated consensus of some 70 software project managers and
engineers based on practices employed by a large number of projects
within AT&T. Consequently, to maintain its integrity, we have not
incorporated material from other sources.

The practice of SRE provides the software engineer or manager the
means to predict, estimate, and measure the rate of failure occurrences
in software (including firmware). Such measures are understandable
to your customer. Using SRE in the context of software engineering,
you can:

m Analyze, manage, and improve the reliability of your software
products.

m Balance customer needs for competitive price, timely delivery, and a
reliable product.

® Determine when the software is good enough to release to your
customer, minimizing the risks of releasing software with serious
problems.

® Avoid excessive time to market due to overtesting.

Although portions of SRE are based on sophisticated statistical con-
cepts, available software tools as discussed in App. A allow the average
software developer or engineer to apply SRE easily, without the need
for statistical background.

The practice of SRE may be summarized in six steps:

219

220 Practices and Experiences

1. Quantify product usage by specifying how frequently customers will
use various features and how frequently various environmental con-
ditions that influence processing will occur.

2. Define quality quantitatively with your customers by defining fail-
ures and failure severities and by specifying the balance among the
key quality objectives of reliability, delivery date, and cost to maxi-
mize customer satisfaction.

3. Employ product usage data and quality objectives to guide design
and implementation of your product and to manage resources to
maximize productivity (i.e., customer satisfaction per unit cost).

4. Measure reliability of reused software and acquired software com-
ponents delivered to you by suppliers, as an acceptance require-
ment.

5. Track reliability during test and use this information to guide prod-
uct release.

6. Monitor reliability in field operation and use results to guide new
feature introduction, as well as product and process improvement.

This chapter will help assess the benefits and costs of doing SRE in
your organization or project. It will also aid you in visualizing how to
practice SRE and how to get started. It provides information on
resources and examples of successful applications.

6.2 Benefits and Approaches to SRE

SRE predicts, models, estimates, measures, and manages the reliabil-
ity of software-based products. It extends from product conception
through delivery and use by the customer. Again, reliability is the prob-
ability that a hardware or software system or component does its
required functions without failure for a specified period of time under
specified operating conditions.

Software reliability varies with how and in what environment the
software is used. Characterizing customer operating conditions as pre-
cisely as possible is an important part of SRE. This is done with a pro-
file or set of alternative uses and their occurrence probabilities under
different environmental conditions, as discussed in Chap. 5. Early in
the software development life cycle, you deal with functions or tasks
needed by the user in different environments and determine a func-
tional profile. Later, when you know how tasks will be implemented by
the system as operations, you translate the functional profile to an
operational profile.

Best Current Practice of SRE 221

6.2.1 Importance and benefits

Most surveys of users of software-based systems show that reliability
ranks first on the list of customer satisfiers. Eighty percent of AT&T’s
largest customers considered reliability to be the most important qual-
ity attribute to them. With greater use of software in products, the pro-
portion of total failures that are software related is increasing. Some
projects report that the number of customer-reported software failures
of their products exceeds the number of hardware failures. To be suc-
cessful in the marketplace a product must meet the quality expecta-
tions of its customers. To meet this end, you must be able to measure
quality from your customer’s perspective.

Fault-based measures commonly used in the software development
industry have served well as developer-oriented measures of quality.
They have helped to improve the quality of development processes in
the past and will continue to play an important role. However, users of
software products experience failures, not faults. Your customers are
not concerned as much with how many faults there are in your soft-
ware product as they are with how often the product will fail and the
impact such failures will have on the job they must do. Evaluating reli-
ability of software from the customer’s perspective requires failure-
based measures.

SRE will help your project

m Satisfy customer needs more precisely. Having precise reliability
requirements focuses development on meeting your customers’ reli-
ability needs. Reliability requirements enable system testers to con-
cretely verify that the finished product meets customers’ needs
before it is released.

m Deliver earlier. Delivering the exact reliability needed by the cus-
tomer avoids wasting time for unneeded extra testing.

m Increase productivity. By using the functional and operational pro-
files to focus resources on the high-usage functions or operations and
by developing and testing for exactly the reliability needed, produc-
tivity is improved.

m Plan project resources better. Before testing begins, SRE supports
prediction of the amount of system test resources needed, avoiding
unnecessary waste and disruption due to unpleasant surprises.

6.2.2 An SRE success story

AT&T’s International DEFINITY® PBX started a new quality program
that included doing SRE along with other proven quality methodolo-
gies [Abra92]. The SRE part of the program included

222 Practices and Experiences

m Defining an operational profile based on customer modeling

m Generating test cases automatically based on frequency of use
reflected in the operational profile

m Delivering software in increments to system test with quality factor
assessments (reliability being one factor)

m Employing clean-room development techniques together with fea-
ture testing based on the operational profile

= Testing to reliability objectives

The quality improvement from the previous major release was dra-
matic:

® A factor-of-10 reduction in customer-reported problems
» A factor-of-10 reduction in program maintenance costs
m A factor-of-2 reduction in the system test interval

m A 30 percent reduction in new product introduction interval

In addition, no serious service-affecting outages were reported in the
first two years of operation. There was significant improvement in cus-
tomer satisfaction. The reliability improvement and an aggressive
sales plan have pushed sales to 10 times those for the previous version.
Items contributing to these successes were as follows:

m Using reliability as a release criterion prevented excessive customer-
reported problems and associated maintenance activity.

m Using operational-profile-driven testing increased test efficiency: 20
percent of the operations represented 95 percent of the use; 20 per-
cent of the faults caused 95 percent of the failures; testing the 20 per-
cent high-usage operations first speeded reliability improvement.

6.2.3 SRE costs

The principal cost in applying SRE is determining the operational pro-
file. The effort depends on the number of operations defined and the
precision of their occurrence probabilities. You must use engineering
judgment to control the amount of work. In our experience, effort has
ranged from one staff week to one staff year, depending on the size and
the complexity of the project. The average effort (for a project with 10
developers, approximately 100,000 source lines and a development
interval of about 18 months) is about 2 staff months. Once you develop
the operational profile for a product, you need only update it for subse-
quent releases, a much smaller task. Another cost is associated with

Best Current Practice of SRE 223

processing and analyzing failure data during reliability growth testing,
which requires about 4 hours per week. The total SRE effort during a
test is thus usually less than 0.3 staff month. There is a training cost in
starting to apply SRE. At least one project representative needs a
course in SRE. Also, engaging an SRE consultant to transfer SRE
knowledge to the project during initial implementation (jump-start
consulting) is cost-effective. The cost (about one staff month of consul-
tant’s time) is offset by preventing costly mistakes in applying SRE.

Most SRE activities involve using SRE measures to better perform
tasks that projects normally do anyway. SRE does not contribute more
cost to these tasks. As most projects have multiple releases, and SRE
cost drops sharply after initial application, the per-release cost of SRE
1s about one staff month. The very largest projects (over 1000 software
developers and multiple large operational profiles) do not exceed an
effort of one person full time. Thus, for most projects, SRE costs consid-
erably less than 1 percent of total project cost.

6.2.4 SRE activities

Figure 6.1 illustrates SRE activities across the phases of the software
product life cycle. The phases, of course, need not follow a neat
sequence, and neither do the SRE activities. There is considerable over-
lap and iteration. Each SRE activity is therefore simply placed in the
phase in which most of the effort occurs. Sections 6.3 to 6.6 each dis-
cuss the activities of one phase in detail.

6.2.5 Implementing SRE incrementally

Most projects start by implementing just some of the SRE activities. As
they learn to apply and profit from these activities, they add additional
ones. A typical implementation sequence is shown in Table 6.1, with
the benefits from each step noted. The sequence applies to both new
and existing projects. This incremental approach keeps the rate of
change in your development process to a manageable level.

The order of implementing the sets of activities in Table 6.1 is the
recommended one. However, there is considerable flexibility in choos-
ing the sets of activities to implement, and in modifying the sequence
to meet your project’s needs. If there are external factors that hamper
the implementation of a particular set, implement another set of activ-
ities in the sequence and return to the first one when the difficulties
are resolved. For example, although monitoring field reliability is
important and should be implemented early, the difficulties associated
with obtaining field data may require it to be implemented later. It’'s a
good practice to have an expert check the SRE implementation plan to

224 Practices and Experiences

make sure you haven’t inadvertently left out a prerequisite activity.
The section references in the “Details” column of Table 6.1 indicate
where to read more about the activities.

6.2.6 Implementing SRE
on existing projects

There is no essential difference between new and existing projects in
applying SRE for the first time. After it has been applied to one release,
however, you will need much less effort for succeeding releases. Most of
the activities noted in Fig. 6.1 will require only small updates after
they have been completed one time.

LIFE-CYCLE PHASE DEVELOPMENT STEPS SRE ACTIVITIES :
Feasibility Determine functional profile
Fea:rl‘l;"ﬂv T Define and classify failures
Requirements l Dovel ; — Identity customer reliability needs
: e
Requirements p|£n © Conduct trade-off studies
1 T Set reliability objectives
{Section 6.3)
Allocate retiability among components
Design , liabil -
Desian Engineer to mest reliability objectives
lmpler?irt‘antation Focus resources based on functional profile
imp!ementation Manage fault introduction and propagation
Measure reliability of acquired software
{Section 6.4)
System Test Determine opaerational profile
wsten; Tost Conduct reliability growth testing
an
Field Trial Track testing progress
Field Trial Project additional testing needed
Certify reliability objectives are met
(Section 6.5)
Project post-releass staff needs
Post Delivery I i 1 Monitor field reliability vs. objectives
_and Operation Maintenance | Track customer satistaction with reliabifity
Maintenance . . .
Time new feature introduction by
monitoring reliability
Guide product and procass improvement
with reliability measures
{Section 6.6)

Figure 6.1 SRE activities in the software product life cycle.

Best Current Practice of SRE 225
TABLE 6.1 Typical Incremental Introduction of SRE
Set of activities Benefits Details
1. Conduct reliability growth Know exactly what reliability 6.5
testing, track testing progress your customer would experience
at different points in time if you
released the software at those points
2. Determine functional and Speed up time to market by saving 6.3,6.5
operational profiles test time, reduce test cost
3. Define and classify failures, Release software at a time that 6.3,6.5
identify customer reliability meets customer reliability needs
needs, set reliability but is as early and inexpensive as
objectives, certify reliability possible
objectives are met, project
additional testing needed
4. Monitor field reliability versus =~ Maximize likelihood of pleasing 6.6
objectives, track customer customer with reliability
satisfaction with reliability
5. Time new feature introduction Ensure that software continues to 6.6
by monitoring reliability meet customer reliability needs in
the field
6. Focus resources based on Speed up time to market by guiding 6.4
functional profile development priorities, reduce
development cost
7. Allocate reliability among Reduce development time and cost 6.4
components by striking better balance among
components
8. Measure reliability of acquired = Reduce risks to reliability, schedule, 6.4
software cost from unknown software
9. Engineer to meet reliability Reduce development time and cost 6.4
objectives with better design
10. Guide product and process Maximize cost-effectiveness of 6.6
improvement with reliability product and process
measures improvements selected
11. Manage fault introduction Maximize cost-effectiveness of 6.4
and propagation reliability improvement
12. Project postrelease staff needs =~ Reduce postrelease costs with better 6.6
planning
13. Conduct trade-off studies Increase market share by providing 6.3

better match to customer needs

226 Practices and Experiences

6.2.7 Implementing SRE
on short-cycle projects

Small projects or releases or those with short development cycles may
require a modified set of SRE activities to keep costs low or activity
durations short. A reasonable approach is to select a reduced group of
sets of activities from Table 6.1, following approximately the order
listed. Leave out sets of activities whose benefits for your project do not
justify their costs or time durations.

Determining the functional and/or operational profiles is often the
SRE activity that takes the most cost and time. Reduction in cost and
time can be obtained by limiting the number of elements in the profile
[Musa93] and by accepting less precision.

One difficulty with small projects is the likelihood of only a small
sample of failures occurring during reliability growth testing. You can
still track testing progress, but not as precisely as you might wish.

6.3 SRE During the Feasibility
and Requirements Phase

Although the makeup of this phase may vary across projects, this sec-
tion describes the SRE activities, outlined in Fig. 6.1, that are con-
ducted during the feasibility and requirements stages. The feasibility
stage involves product concept development. The requirements stage
involves the development of detailed product requirements and a plan
to develop the product.

6.3.1 Feasibility stage

The output of the feasibility stage is either a feasibility report, product
prospectus, or a business plan. This defines a certain market and
explores the potential of the product to meet that market. It also
assesses the capability of the organization to produce the product for
the market in the time frame needed, at a price and level of reliability
desired by the customer relative to their competitors. For government
contract work the output consists of a response to a request for pro-
posal (RFP), which contains many of the items described above.

6.3.1.1 Determine functional profile. To determine the functional pro-
file, you must first establish the set of functions for the product. Func-
tions are characterized in terms of both the tasks performed and the
environmental factors that influence processing. For example, func-
tions of a telephone PBX system would include the types of telephone
calls placed and received by subclasses of users (e.g., managers, secre-
taries, and engineers). In addition, they would also contain information
on the environment, such as the types of telephone sets configured on

————— e —

Best Current Practice of SRE 227

the system and call features (for example, call forwarding) configured
on the sets by each class of user.

In the case of both functional and operational profiles, you can
account for criticality of functions or operations by weighting them.

Requirements are sometimes developed in great detail, so that in
effect they incorporate some of the system architecture and actually
specify the operations performed by the system. In that case, you can
determine an operational profile directly in this stage, rather than
after design and implementation.

Quality function deployment (QFD) is a useful method of working
with your customers to identify functions that satisfy their needs. Hav-
ing them ask, “How often do I visualize that need occurring?” and “How
costly is it to me when that need is not satisfied?” helps in defining a
functional profile and in defining classes of failures. Having a customer
answer these questions also helps them rank their needs in completing
the QFD process. For more detailed information on the functional pro-
file see Chap. 5.

6.3.1.2 Define and classify failures. You should define failure from your
customer’s perspective. Start with similar products with the same cus-
tomer base as your new product and determine the customer’s failure
experiences with them. Distinguish software failures from hardware
and procedural failures.

A good practice is to group identified software failures into a few
severity classes (say, three or four). This grouping should be done from
the viewpoint of the effect of failures on the customer’s ability to con-
duct business. The effect can be measured in terms of cost, service
degradation, or safety. Table 6.2 gives an example based on service
degradation for a telephone switching system.

There is a trade-off here. More classes require more effort later in the
life cycle in collecting and analyzing data for each class, whereas fewer
classes give a coarser resolution of the effect on the customer.

6.3.1.3 Identify customer reliability needs. You identify customer reli-
ability needs at a high level in this stage. A small team conducts the
assessment while defining other aspects of the product (e.g., feature set
content, capacity, and performance capabilities). A recommended team
consists of a system engineer, a system architect, a marketing (product
planning) person, a customer representative (marketing may serve as a
customer surrogate), a reliability analyst, and a system tester. The mar-
keting person is a likely candidate to lead this team.

Establish who (other suppliers) and what (alternative products) your
competitors are and assess their reliability capabilities. A good way of
defining the level of reliability required is to relate the product to an
existing product or set of products having the same customer base. For

228 Practices and Experiences

TABLE 6.2 Severity Classification Based on Service Degradation

Severity
classification Definition Example
Catastrophic Entire system failed, no No one can get dial tone
functionality left
Severe A high-priority customer You can make local but
feature is not working not long-distance calls
Significant Customers must change You can’t use your
how they use the system calling card in a pay
phone but must read
number to operator
Minor Problem is not noticeable Some maintenance
by customers functions are not

currently performed

example, relating a new product to an existing switching system prod-
uct, a reliability assessment might state “product X should have a reli-
ability comparable to switching system Y used in the customer central
office.”

As a minimum, determine an approximate acceptable failure inten-
sity for each severity class. Typical acceptable values of failure inten-
sity can range from one failure per 100 hours (low-severity failures for
routine business applications) through one failure per billion hours
(air traffic control or nuclear power plant shutdown). This approach
was used within AT&T to establish the reliability of a large network
system which included 337 thousand new-end changed source lines
(KNCSL) of new software reused from previous products and of a PBX
system with over 1100 thousand lines of code (KLOC).

6.3.2 Requirements stage

The requirements stage involves preparing a detailed requirements
specification for the product and laying out a development plan. The
requirements specification expands the needs and high-level features
defined during the feasibility stage. It includes attributes such as prod-
uct reliability, availability, performance, and capacity. A requirements
specification must have a section defining the reliability requirements
of the product. The development plan outlines the resources, costs, and
schedules needed to develop the product. You determine resources,
costs, and schedules from the product requirements specification,
including the reliability specifications. The development plan should
include adequate resources and schedule for reliability-related activi-
ties. These activities include reliability training of staff (Sec. 6.7.1) and
particular reliability activities conducted during each phase of the
product life cycle (Secs. 6.3 through 6.6).

Best Current Practice of SRE 229

The reliability assessment started in the feasibility stage is refined
in this stage in forming your reliability requirements. You establish
specific quantified reliability objectives. These are based on the func-
tional profile and failure definitions you have determined and that you
continue to refine. For example, for a PBX product used in a telemar-
keting application, you might specify that a software failure that could
cause a system outage should occur no more than once every three
months. When such an outage occurs, it should be recoverable in less
than 30 minutes.

In this stage, the system engineer would generally serve as team
leader of the reliability assessment team formed in the feasibility
stage. You should also seriously consider adding a field support person
to the team.

6.3.2.1 Conduct trade-off studies. A major cost in developing your prod-
uct 1s associated with testing in general and with reliability growth test-
ing in particular. For some product developments, testing accounts for
over half of the development cost. Trade-off studies help you in setting
objectives for reliability, cost, and delivery date. Investigate the balance
among these attributes and functionality with respect to reliability
growth testing and current software engineering technology.

Reliability and functionality. The number of functions is correlated with
the number of lines of code developed, total faults introduced, and hence
failure intensity. Thus, increasing functionality generally decreases
reliability. Increased levels of reliability generally equate to increased
levels of testing, which means increased time and cost.

Reliability, cost, and delivery date. Increasing the failure intensity objec-
tive (and hence reducing reliability) reduces reliability growth testing
time and cost but increases the cost associated with field failures. Cost
assoclated with field failures includes cost to the supplier in terms of
repair, field support service, and potential lost future business. In addi-
tion, there is cost to the customer. For simplicity, we assume that the
field failure cost increases linearly with the number of failures,
although this assumption is probably conservative.

You can plot the total life-cycle cost (defined here to be the sum of the
cost of doing reliability testing and field failure cost) versus the failure
intensity objective (left-hand plot of Fig. 6.2). There is an optimum
value of failure intensity objective for which the life-cycle cost is mini-
mum. As field failure cost will vary with the failure severity class, indi-
vidual trade-off studies can be done for each. Likewise, you can plot the
time to do reliability growth testing versus the failure intensity objec-
tive (right-hand plot of Fig. 6.2) to determine which delivery date
would correspond to a specified objective. The SRE tools discussed in
App. A will produce plots like these.

230 Practices and Experiences

LIFE-CYCLE COST TEST COMPLETION DATE
$8M Aug '94
Jun ‘941
$6M}
Apr '94|
$4M| N TOTAL COST
Feb '941 Scheduled Release
System-Test Cost _
$2M} — Dec '93l
Field Failure Cost
oMb L ‘ , Oct 934
0 10 20 10 40 50 0 10 20 30 40 50

FAILURE INTENSITY OBJECTIVE - Failures/1000-CPU HR

Figure 6.2 Cost and release date trade-offs.

Modeling to support trade-off studies. Currently, parameters of some reli-
ability growth models can be predicted from product and development
process characteristics. Product characteristics include such items as
newly developed lines of code and lines of reused code. Process charac-
teristics depend on the development environment and development
organization. Determine them for the same or a similar situation. They
include such quantities as requirements volatility, thoroughness of
design documentation, and programmer experience level. Most process
characteristics are incorporated in models through their effect on fault
density.

Chapter 7 of [Musa87] provides details on conducting trade-off stud-
ies using one such model. Examples of their application and details on
the model employed in such studies are also provided. Since these stud-
ies are performed early in the product life cycle, be aware that there
can be substantial errors in absolute results, although relative results
are usually valid.

6.3.2.2 Set reliability objectives. Separate reliability objectives are
established for each failure category. Usually, system reliability objec-
tives are set first (chap. 4 in [Ever90] and secs. 3.7.1 and 4.7.1 in
[SAE90]) and then allocated between hardware and software. Factors
that influence setting software reliability objectives include:

» Explicitly stated reliability requirements from a request for proposal
or standards document

m Reliability performance of and customer satisfaction with previous
releases or similar products

Best Current Practice of SRE 231

m Capabilities of competition (including both direct competitors and
indirect ones such as the manual methods the product is intended to
displace)

® Trade-offs with other characteristics such as performance, delivery
date, and cost

m Warranty considerations

» Potential of reusing highly reliable components from other software
systems

® Technology capabilities and constraints (e.g., use of fault-tolerant
techniques)

For example, one project set reliability objectives on a particular cate-
gory of failures based on customer experiences with existing similar
products. Another project set reliability objectives for its new products
by relating customer acceptance of previous products and failure rates
observed during their system test.

As another example, a large-scale switching system has established
objectives on software asserts, audits, peripheral processor interrupts,
and system interrupts, based on the number of telephone calls origi-
nated. The project combines these measures to compute a stability
index that also has a particular objective associated with it. The stabil-
ity index objective is based on measures from previous releases of the
switching system software and from customer satisfaction with these
releases. See, for example, [Berg89] and [DiMa91].

Effect on architecture. Reliability requirements may strongly influence
the architecture adopted for a product. In turn, changes to architecture
may dramatically affect reliability. During this phase of the life cycle
and continuing into the design and implementation phase, the archi-
tecture evolves through successive iterations. There may be successive
reviews in this iterative process referred to as discovery reviews. The
reliability assessment conducted during each of the stages in this
phase provides valuable information for these reviews. The reliability
analyst should participate in each of these reviews.

Availability. Availability is an important consideration in setting reli-
ability objectives. It depends on how much time elapses after a failure
before service can be restored. For example, for one product, the cate-
gory of failures for which reliability objectives were set was those fail-
ures that required a reboot of the system to restore service. The
particular reliability objectives were satisfactory only if the reboot
time was under 15 minutes. Consequently, the project included an
objective on the reboot time as part of the reliability objective.

232 Practices and Experiences

6.4 SRE During Design and
impilementation Phase

Although the structure of this phase may vary across projects, this sec-
tion describes the SRE activities, outlined in Fig. 6.1, that are con-
ducted during the design and implementation stages.

6.4.1 Design stage

The design stage involves translating a requirements specification into
a design of the software product. During the implementation stage, the
design is used to implement the code for the software programs.

The system architecture, expressing the system concept in terms of
hardware and software components and the interfaces among them
and with the external environment, is completed during this stage.
As described in Sec. 6.3, the architecture evolves through successive
iterations. A reliability analysis can assess whether the successive
iterations of the architecture will satisfy reliability and availability
requirements, as will be discussed in subsequent sections.

6.4.1.1 Allocate reliability among components. While defining the archi-
tecture, consider alternative ways of dividing the system into compo-
nents while achieving the overall reliability objective. Various factors
should be considered when you divide the system into components (see
[Musa87], pp. 85-88). These factors include the physical nature of the
system, the nature of previously collected data (for example, what sets
of similar elements of known reliabilities exist), the need to track a par-
ticular component for project management purposes, and the amount of
effort required for data collection. [Fran93] and [Pant91] describe com-
ponent analysis experiences.

To determine the reliabilities required for the components, first
make a trial allocation of the reliabilities. Next, calculate the system
reliability using the trial allocation. Adjust the allocation so that the
system reliability requirement is met, along with approximate equality
of development time, difficulty, and risk for the components and mini-
mum total system cost.

6.4.1.2 Engineer to meet reliability objectives. There are several meth-
ods for engineering the product to meet reliability objectives.

Plan recovery strategies. Many software failures result from transient
environmental conditions such that if execution of the software is sim-
ply retried, the failure will not repeat. However, before execution is
retried, some attempt should be made to repair possibly damaged data.
Also, execution needs to be restarted from some known (possibly previ-

Best Current Practice of SRE 233

ously “checkpointed”) place of execution. Finally, mechanisms should
be in place to determine when a failure has occurred and to prevent
further execution so as to contain damage to program data. [Lee90] dis-
cusses techniques of failure detection, damage confinement, and fail-
ure recovery.

Use redundant software elements. Redundant software elements can
increase reliability only if they are not exactly the same copies. One
approach is to have different groups develop them independently
[Aviz85]. However, you probably can’t achieve completely independent
development in practice. Hence, the possible improvement is limited.
Therefore, developers have used redundant software only in ultrareli-
able systems (typically, systems with failure intensity objectives less
than 10°° failure/CPU hr). Chapter 14 will discuss fault-tolerant soft-
ware reliability engineering techniques in detail.

Identify high-risk areas. Two techniques used in safety-critical and
ultrareliable systems design that are beginning to find their way into
software design are FMEA and fault tree analysis. FMEA (failure
modes and effects analysis) is a bottom-up technique that starts by
defining failure modes of the components and then assesses how they
can cause systemwide failures. Fault tree analysis (see Chap. 15 for
details) is a top-down technique that starts with failures at the system
level and successively decomposes and relates these failures to failures
at the subsystem and component levels. Although FMEA and fault tree
analysis are not extensively used for software in general, these tech-
niques are finding applications in safety-critical software (e.g., see
[Leve86]).

6.4.1.3 Focus resources based on functional profile. The functional pro-
file can help you, as a developer, focus on what is really important from
the customer’s standpoint. The information it provides on the fre-
quency of use and criticality of different functions can help weigh
design alternatives. For example, a designer might opt for a simpler
manual recovery design for a condition that occurs infrequently rather
than for a more complex automated recovery design.

6.4.2 Implementation stage

6.4.2.1 Focus resources based on functional profile. The functional pro-
file can also help allocate effort during the implementation stage, based
on the relative usage and criticality of different functions. For example,
you might expend more inspection effort or do more thorough testing for
high-usage than low-usage functions. Similarly, the functional profile
can provide helpful guidance for ordering the time periods scheduled for
developing the functions (highest use and criticality first).

234 Practices and Experiences

6.4.2.2 Manage fault introduction and propagation. Since faults are the
underlying cause of failures in software, controlling the number of
faults introduced in each development step and the number of faults
that propagate undetected to the next development step is important
in managing product reliability. Although we discuss the topic in this
phase, you must manage faults across all phases of the life cycle. Many
development practices affect fault management. A few of the more
important ones are as follows:

m Practicing a development methodology. Using a common approach
in translating high-level design into code, and in documenting it, is
particularly important for larger projects. It facilitates good commu-
nication between project team members, helping reduce introduction
of faults into the software.

n Constructing modular systems. A modular system consists of well-
defined, simple, and independent parts interacting through well-
defined interfaces. Small, simple modules are easier for designers
and programmers to build and hence less prone to faults being intro-
duced through human error. Also, modular designs are more main-
tainable and hence decrease the chances that detected faults are
incorrectly repaired. [Ever90] provides a list of criteria for decom-
posing systems into manageable sets of modules.

s Employing reuse. Reuse of software components that have been
well tested for an operational profile that is close to that expected for
your system reduces fault introduction. The alternative is to develop
new components. They will almost certainly have more faults than
the properly reused ones.

m Doing unit and integration testing. Testing plays a major role in
preventing faults from propagating to a next development step. Unit
tests verify modules’ functions as specified in their low-level (or mod-
ule) designs. Integration tests verify that modules interact as speci-
fied in the high-level design (or architecture). [ISO87] requires
design verification through tests, design reviews, and other mea-
sures. [ANSI86] requires that software projects maintain test plans
and recommends the contents of these plans.

m Conducting inspections and reviews. You can review or inspect
requirements, design documents, software code, user manuals, user
training materials, and test documents. Both reviews and inspec-
tions use a small team of people to compare the output of a develop-
ment step with what was specified on input to that step.

m Controlling change. Many failures result from change in the inter-
mediate items produced as part of the completed product. Such inter-

Best Current Practice of SRE 235

mediate items include the code of software components, design and
requirement specifications, test plans, and user documentation. To
reduce the occurrence of such failures, you need to manage the vari-
ous versions of such items and how they go together to produce the
completed product. This is called version control. You must also
maintain an orderly procedure for submitting, tracking, and com-
pleting requested changes to items (referred to as change control).
Reducing the rate of change of requirements generally increases reli-
ability. Projects often refer to requested changes as modification
requests or MRs. Version and change control are together referred to

as configuration management.

6.4.2.3 Measure reliability of acquired software. If you use acquired
software in your product (i.e., software that was not developed or tested
in previous releases of your product), you will have to decide if the reli-
ability of the software should be certified for your application. Acquired
software may be a commercial off-the-shelf program, reused modules
(increasingly common for productivity reasons), or software delivered
by a contractor.

A concern is that acquired software may have been tested and used
under a different set of conditions than is expected for your applica-
tion. Therefore its reliability may be different in your application than
in other applications. In such a case, the reliability should be certified
using the operational profile for your application. Certify acquired soft-
ware as early as possible. This allows you time to take action if the soft-
ware displays a level of reliability that is less than what you require.

Reliability demonstration testing. Certifying the reliability of existing

software can be done by using reliability demonstration testing. Select
test cases at random according to the operational profile. Do not fix the
inderlying faults that cause failures. The test tells you after each fail-
re whether the software should be accepted or rejected or whether
1 should continue testing,

tool can be useful to construct the chart shown in Fig. 6.3 and to
failure times on it (see App. A). The action you take depends on the

n in which the failure point is located. Note that you continue test-
fter the first three failures in the example, but stop testing and

it the software after the fourth. The test is based on sequential

ling theory.

SRE During the System Test
‘ield Trial Phase

m test and field trial activities certify that the software require-
i of the product are met and that the product is ready for general

236 Practices and Experiences

use by the customer. The system test stage is critical, since it is the
last stage in the development process where corrective action can be
taken to improve the reliability of the product before release to the
first customer.

The field trial stage validates the specifications and system test reli-
ability in a customer’s environment. It is the first use of the product at
a customer site. The end of this stage marks the general availability of
the product to all customers.

This section describes the SRE activities outlined in Fig. 6.1 that are
conducted during this phase.

6.5.1 Determine operational profile

Determining the operational profile is an important part of test plan-
ning, which generally occurs substantially ahead of the system test
stage proper. The operational profile is a set of operations and their
associated probability of occurrence. Operations are characterized by
considering both tasks performed and environmental factors that
influence processing. An operation may represent a command, or a
command with its parameters or input variables set within certain
ranges, executing in a particular environment. For example, separate
operations might represent the same command executing in normal
and overload traffic environments. Test cases must be based on the
operations as they are implemented in the system, rather than on the
functions conceived during system definition.

Test planners usually determine the operational profile, with exten-
sive collaboration from system engineers and designers. It is desirable
to involve test planners in the feasibility and requirements phase. The

15

CONTINUE

ACCEPT Figure 6.3 Reliability demon-
: stration chart: failures versus

1_,—‘ : : § execution time.
ol—.... ... [AN T . i

Best Current Practice of SRE 237

members of the team work together to specify the operational profile
and to create test cases in conformance with the profile.

There are two main ways of deriving the operational profile used
during testing. One is recording actual operation of a previous release
or existing similar system. The other is estimating the operational pro-
file, starting from the functional profile developed during the feasibil-
ity and requirements phase (Sec. 6.3). You often use some combination
of both approaches.

Multiple operational profiles. It may be necessary to develop different
operational profiles for different market segments with different appli-
cations. As an example, a point-of-sale system in a supermarket located
in an urban area is likely to have a different usage profile than one in
a suburban area. Also, you might fine-tune a special version of the sys-
tem to meet a customer’s high-reliability requirement for a particular
set of functions. There are no technical limitations to the number of
operational profiles you can define, but you are practically limited by
the costs of developing and using them.

Ultrareliable operations. Catastrophic failures demand extra preventive
effort. The frequency at which such failures occur is usually low
(almost zero). The entire system need not be highly reliable; only the
critical operations demand high reliability. For example, in a nuclear
reactor power system, the alarm and shutdown operations must not
fail. These operations (and only these operations) should have ultra-
reliable objectives. You may wish to establish a separate operational
profile for them and test them separately.

For more detail on the determination of the operational profile, see
Chap. 5.

6.5.2 System test stage

6.5.2.1 Conduct reliability growth testing. In reliability growth testing,
system testers execute test cases in proportion to how often their corre-
sponding operations occur in the field, as characterized by the opera-
tional profile. By mirroring customer use, reliability growth testing is
likely to find the failures that cause the greatest customer dissatisfac-
tion and will reflect the reliability the customer will experience.

You can select more than one test case per operation. First, select the
operation randomly, in accord with its probability of occurrence. Note
that frequently used operations tend to be selected first. Then select
the test case randomly from those that belong to the operation, avoid-
ing repetition. When failures occur, identify and remove the faults that
are causing them. Repeated failures that occur during the period while
failures are being resolved are not counted. When only the first occur-

238 Practices and Experiences

rence of failures is counted, the failure intensity is based on the
unknown faults remaining in the software. Failure intensity decreases
with execution time (reliability growth).

The goal of reliability growth testing is to attain a level of confidence
that the software product is being released with reliability that meets
customers’ needs. An example of many projects that have used SRE for
this purpose is the case study described in [Ehrl90]. Reliability growth
testing is usually the last step in system test. However, you need to
allow enough execution time to demonstrate that the reliability objec-
tive is met.

Test automation. Investing some effort in automating the reliability
growth testing process will often pay off. You can usually automate test
selection and failure identification and recording. There are some fail-
ures you must identify manually, because you cannot specify their
symptoms in advance. If automatically identified failures represent a
constant proportion of all failures, you can rely on automatic identifi-
cation and apply a correction factor. '

Related types of testing. Certain special types of testing often meet the
criteria for reliability growth testing. You may be able to combine fail-
ure data from these tests with reliability growth testing data to yield
better reliability estimates.

m Regression testing ensures that old functions continue to work in the
face of changes such as repair of problems and incorporation of new
functions. Using the operational profile to drive regression testing is
a particularly efficient way to accomplish this function.

w Feature testing verifies that the features/functions of a system are
present and work as specified. It usually proceeds sequentially by
functions, concentrating on one function and then another. Testers at
present ordinarily don’t use the operational profile to select or exe-
cute feature test cases. Thus, the rate at which failures occur does not
reflect the rate at which the customer would see failures. Combining
such data with reliability growth testing data is not advisable.

However, with some effort, you can select test cases randomly in
proportion to the frequencies specified by the operational profile, as
noted at the start of this section. You can then use failure execution
time data with existing software reliability models to estimate relia-
bility. For more information see Chap. 5. Feature testing based on an
operational profile is often more effective, because features are tested

with user operations. This has been done in International DEFINITY
[Abra92].

Best Current Practice of SRE 239

m Performance and load testing not only locates load/stress points at
which the system fails to meet objectives, but also certifies that the
software satisfies certain objectives regarding response time, through-
put rates, start-up time, and capacity. Use the operational profile to
drive performance and load testing so that it reflects customer usage.
Since there is often a tendency to focus on peak-period usage, and sys-
tems behave differently under different load conditions, care must be
taken to test at different levels if you wish to include the failure data
in your reliability estimates.

Data colliection. You will need to collect during system test the data
shown in Table 6.3. The data are classified by the SRE activities you
expect to perform. Include answers to the following questions in your
planning:

1. Who will gather the data?
2. How will the data be collected?
3. What tools will be needed to support the data collection?

4. Who will analyze and interpret the data?

Measuring execution time. The use of SRE models during system test
assumes that you can measure the execution time when failures occur.
CPU time is a direct measure of execution time.

TABLE 6.3 Data to Collect in System Test

Type of data to be collected

SRE activity

. Execution time of failures or another
measure that can relate to execution time

. Severity classification of failures

. Resource usage data

¢ Tester time for failure identification

* Developer time for failure resolution

* Computer time for failure identification
and resolution

. Number of faults found

. Developed (new and modified) code in
source instructions

. Number of new faults spawned during
failure resolution

. Average instruction execution rate of
processor

. Total code in object instructions

Track testing progress, project
additional testing needed, certify
reliability objectives are met

Project additional calendar time
needed for test

Conduct trade-off studies (cost and
schedule with reliability) for next
generic or a new product with
similar software and development
characteristics

240 Practices and Experiences

Several tools exist to measure the CPU time to a failure for a UNIX®
application. UNIX® produces an entry in a process accounting file when-
ever a process is terminated, which can be extracted using the UNIX®
“acctcom” administrative command. You can write a simple program to
process the accounting file and record the execution time and calendar
time when a failure occurred in the correct format for the software reli-
ability tool.

Approximating execution time. CPU time is the preferred way of mea-
suring execution time, but sometimes you cannot easily obtain it. In
that case, you can estimate execution time by a variety of other means.
You can use any measurement that is correlated with execution time.
Examples are clock time, weighted clock time, number of commands
executed [Ehrl90], telephone calls processed [Harr89], and interrupts
processed. If the software fully utilizes its processor and is operating
continuously through the time period, then execution time is equiva-
lent to clock time. For weighted clock time, you can approximate execu-
tion time by the product of clock time and the system utilization.

6.5.2.2 Track testing progress and certify that reliability objectives are met.
During reliability growth testing, failure data is collected and a soft-
ware reliability tool (App. A) is used to track testing progress and pro-
ject additional testing needed. Based on progress, management can
make any necessary adjustments in resources and schedule as system
testing continues. If you estimate reliability on a per-component basis,
you can identify components with reliability problems for particular
attention. When the current failure intensity reaches the failure inten-
sity objective, you can certify that the reliability objective is met. You
may need to do this for each severity class.

Adjusting for incremental delivery to system test. Software reliability models
assume a stable program executing in a constant environment. However,
software may change because of requirements changes or integration of
parts during development. There are three approaches te handling soft-
ware evolution during system test to get good reliability estimates:

1. Ignore change, and let the model adapt for itself. This is the best
solution when the software is changing slowly in a continuous fash-
ion and there is a final period of stability.

2. View the software change in terms of the addition or removal of
independent components. This is best when you have a small num-
ber of changes, each an independent component.

3. View changes as occurring throughout the program. Here you adjust
the failure times to what they would have been if the complete soft-
ware had been present at the start of test. This is the best approach

Best Current Practice of SRE 241

when you have many changes of medium size, and it can be handled
automatically by SRE Toolkit (see App. A and the Data and Tool Disk).

A detailed description of the three approaches to adjusting for incre-
mental delivery of software during system test is given in [Musa87].

6.5.3 Field trial stage

When system testing is complete, software moves to the next stage, field
trial. Field trial is sometimes referred to as beta test or first office appli-
cation (FOA). It is advantageous if the field trial location has an opera-
tional profile that is close to the main-line usage of the product. You
should have a field trial plan that includes failure recording procedures.

6.5.3.1 Certify that reliability objectives are met. During field trial, you
collect failure data from the field site. You use field failure data and a
software reliability tool to measure the reliability of the product in the
field. Then you compare this with the reliability of the product mea-
sured at the end of system test.

Several factors can cause the field trial reliability to differ from the
system test reliability:

® The definition of what the customer perceives as a failure is different
from the definition used in testing the product.

» Inaccurate data collection during system test and/or field trial.

u The field and test operational profiles differ, the test environment
not accurately reflecting field conditions.

Use of reliability growth modeling. If you resolve failures during the field
trial and count only the first occurrence of each failure, you can apply
a reliability growth model. The combined failure data from system test
and from field trials can be concatenated, provided that failure defini-
tions and the operational profile remain the same.

Example 6.1 Figure 6.4 is an example of the shape of the reliability growth
model fitted to combined stability test (reliability growth test) and beta test fail-
ure data. The results in this example show that more failures were experienced
during beta test than were expected at the end of system test [Ehrl90]. A discon-
tinuity in the slope of the measured failure behavior is apparent. Based on sta-
bility test data, one additional failure had been expected during beta test.
However, 16 additional failures occurred. Analysis indicated that the additional
failures occurred because the operational profile used during stability test dif-
fered significantly from the beta test operational profile. The profile used in sta-
bility test did not include start-up operations such as database provisioning.
Thus, behavior like that experienced can be a valuable warning sign that your
testing is not realistic and needs to be modified.

242 Practices and Experiences

100

Cumulative failures

_________ Fit to beta
............. Fit to stability and beta
Fit to stability

0 | | |
0 200 400 600 800 1000 1200 1400
Cumulative total CPU time

Figure 6.4 Measurements. System T stability (08/02/88-11/27/88) and beta test
(12/01/88-03/21/89).

6.6 SRE During the Postdelivery
and Maintenance Phase

During the postdelivery and maintenance phase, you deploy the prod-
uct to your customers. Maintenance consists of removing the faults
associated with failures reported by customers. This section describes
the SRE activities that are conducted during this phase.

6.6.1 Project postrelease staff needs

You can use reliability models to project staff needs following the

release of a software product. This includes:

1. The customer’s operations staff to support service recovery following
failures

2. The supplier’s staff to handle customer-reported failures

3. The supplier’s software development staff to locate and remove
faults associated with customer-reported failures

When failures are not resolved during operations, constant reliabil-
ity models (models with constant failure intensity) are used to project

Best Current Practice of SRE 243

items 1 and 2 for a given release. This is the situation between mainte-
nance releases of delivered software products when no fixes or patches
are introduced in the software. Less severe faults are generally not
corrected between maintenance releases. When severe failures are
resolved, use reliability growth models to project item 3.

6.6.2 Monitor field reliability
versus objectives

If your organization has operations responsibility, you will find soft-
ware reliability measurements useful for monitoring the reliability of
the operating software. If not, you should attempt to get these data
from your customer as an index of customer satisfaction. Failure inten-
sity is approximately constant for a given release. However, there may
be a period of reliability growth just after installation of a new release
due to field fixes [Chri88].

Several projects at AT&T and elsewhere have reported on their expe-
riences in analyzing failure data collected from field sites. The 5ESS
U.S. telephone switch release 5E6 used software reliability to track
product reliability after release to the field sites. An analysis of the
data collected in the first month of operations showed that 5E6 met its
projected reliability goals. Further analysis showed that 5E6 was bet-
ter than the previous release after one year of operation. Field analysis
identified one particularly troublesome failure, which received special
attention during the development of the next release.

5ESS International collected failure intensity data from customer
locations after release for four different time periods [DiMa91, Pant91].
They used this data to validate that the estimated failure intensity at
the end of verification testing matched what was being observed at cus-
tomer sites. The present failure intensity in the field varied about 25
percent around the corresponding failure intensity measured at the end
of verification. However, the average failure intensity (total failures
divided by the total execution hours) for each of the four time periods
was 15 percent lower than the average failure intensity for the last
three verification loads. Discrepancies were attributed to differences in
the operational profiles used during verification testing and the cus-
tomer’s environment. The project used failure intensity and other met-
rics to assess the quality of the product and the development process
[DiMa91].

If you observe differences in reliability in the customer’s environment
from what was predicted by system test, you should consider the same
possible causes as were listed for the field trial stage in Sec. 6.5.3.1.

If reliability differs because the field and test operational profiles do
not match, you need to find the source of the mismatch and take appro-
priate corrective action. The mismatch may be either in tasks or envi-

L
244 Practices and Experiences

ronmental factors. As an example of the latter, simulators used in test
to replace hardware components may not have faithfully reflected the
operation of the replaced components. If the difference is substantial,
you may wish to use an updated profile for the next release. Example
6.1 shows how differences in the operational profile between system
test and beta test can affect measured reliability [Ehr190].

Collecting failure data. To do software reliability estimation during
operation, collect failure data that is tied to the execution time of the
software, just as you did during reliability growth testing. Thus you
need to determine total execution time across many customer sites. In
field operations, more people will be involved, and you will need to
carefully plan your data collection. For more information, see Chap. 11.

Some users may not report a given failure if they are not certain that
a failure occurred or if they have focused on quick recovery rather than
reporting. Thus, there is a need to motivate users to report failures and
provide feedback so they will continue to do so.

For a true measure of field failure intensity, you need information
about all failures. For other purposes, information about just the first
occurrence of each failure (as provided by modification requests or
MRs) will suffice. For example, MRs can be used to size the program-
ming staff needed to remove faults. Collecting MRs is less expensive
than manually collecting all failure occurrences. You may choose from
several potential sources for obtaining failure data, but understand
that each source has its advantages and limitations.

Using data from trouble tracking systems. To collect data on fail-
ures, many projects use a trouble-tracking system. In a typical opera-
tion, when the customer at a field site encounters a failure, they call in
a trouble report. A “TR” (trouble report) number is assigned and infor-
mation about the failure is entered into the system. The field support
person assigned to the failure categorizes it (e.g., hardware, operator,
software) and assigns a severity class.

The severity assigned depends on

m The extent to which the problem degrades system operation
® The lack of a work-around

m The customer’s perception of the failure

If the failure is judged to be a new one, the field support person opens
" a modification request (MR). Although the same failure is likely to be
reported from more than one site, resulting in multiple TRs, only one
MR is (should be) opened. Thus, the number of MRs shows the first
occurrences of failures, while TR numbers include repetitions of the
same failures at different or even the same sites. An estimate of failure

Best Current Practice of SRE 245

intensity based on first occurrences of failures will yield an estimate
of the failure intensity that will exist when the faults causing the
reported failures have been removed.

One cannot assume there will be a TR for every occurrence of a fail-
ure in the field because some may not be reported. In practice, then, the
number of TRs will fall between the number of first-occurrence failures
and the total number of failures occurring in the field.

Talking directly to users. The operations staff at the field sites may
maintain failure logs. Talking with the users and examining these logs
can provide a true picture of the failures occurring. The discussion may
clear up misunderstandings, for example, when the number of TRs is
low, yet the customer voices dissatisfaction. This might occur if a project
organization has been unresponsive to field problems §n the past. To
reduce the expense of this approach, sample just a few sites and adjust
the results to estimate the total number of failures that occurred.

Automated failure data collection. The problem with TR and MR
systems is that they were not designed to collect failure data. Some
recent practitioners have reported that the practical extension of SRE
to software systems’ field usage requires instrumenting data collection
so that the burden of data collection does not degrade the data. Under
such an arrangement, field systems monitor their own health and then
report data back to the development machine for analysis and inter-
pretation.

6.6.3 Track customer satisfaction

Tracking field reliability in relation to objectives is necessary but not
sufficient by itself. Select a sample of customer sites and survey their
level of satisfaction with product reliability. You may be meeting your
objectives but your customer may not be satisfied. Dissatisfaction may
be due to inappropriate objectives being set or to other factors appear-
ing in their use of the product. If there is dissatisfaction, you will want
to follow up by modifying the objectives or by making any necessary
field support service and product changes.

6.6.4 Time new feature introduction
by monitoring reliability

Changes to add new functionality to a system will also likely add new
defects, causing the failure intensity to rise. If the addition of new fea-
tures is or can be separated from the removal of previous faults, a field
operations manager may wish to use discretion in deciding when the
new features are installed. The failure intensity of the system will
exhibit a general stability about some value over the long term, but

4

246 Practices and Experiences

with swings around this value when newly developed features are peri-
odically incorporated. Failure intensity will increase just after you add
new features. Periods in which fixes are installed to remove faults will
exhibit decreasing failure intensity.

A field operations manager is often faced with conflicting demands.
Some users want certain new features to be introduced as soon as pos-
sible. Other users, employing existing features, will insist that reliabil-
ity be as high as possible. If these conflicts can be negotiated and a
failure intensity objective established, the manager’s job is then sim-
plified. New features are introduced only when the failure intensity is
below the objective.

The manager may use the amount of margin below the service objec-
tive as a guide to the size of the change to be permitted (see “Impact of
Design Change,” pp. 204-205, in [Musa87] for instruction on estimat-
ing this size). [Hami78] discusses an SRE application much like the
one just described.

6.6.5 Guide product and process
improvement with reliability measures

First, categorize field failures for analysis by their severities and fre-
quencies experienced (if available). One might, for instance, analyze
failures of severities 1 and 2 that exceed a certain frequency. Note that
the frequency of a failure can vary from site to site. Once the selection
of failures has been made, a root-cause analysis can begin on each
underlying fault causing the failure to determine:

® Where and why the fault was introduced
m Why it escaped detection earlier in the development cycle

m What process change(s) are needed to reduce the probability that
similar faults will be introduced in the future or at least increase the
probability that such faults will be detected in the stage(s) where
they are introduced

6.7 Getting Started with SRE

In the previous sections, you learned how and when to do SRE in your
project. This section will help you:

1. Prepare your organization to do SRE.

2. Find information and support for doing SRE.

3. Do an SRE self-assessment.

Best Current Practice of SRE 247

6.7.1 Prepare your organization for SRE

6.7.1.1 SRE as a process. A key factor for a successful implementa-
tion of SRE is integrating SRE activities into an organization’s soft-
ware development process. First, you need to understand how SRE
activities interrelate with development activities. These interrelation-
ships are summarized in Fig. 6.1 and described in Secs. 6.3 through
6.6. Second, you need to understand who is to do what task or activity
and when they are to do it. Table 6.4 summarizes the people who are
involved in doing SRE and the life-cycle phase in which they are most
likely involved. Large organizations may benefit in tailoring an SRE
process for their organization.

r s
6.7.1.2 Seven-step program. Two important ingredients for success-
fully introducing SRE into your organization are commitment by man-
agement and motivation of staff.

Table 6.5 is a sample seven-step implementation program that was
followed with one organization.

The program first focuses on getting up-front management commit-
ment by developing awareness of SRE and the benefits of doing it
through a personal briefing. The level of commitment can be measured
by the willingness of your management to expend resources and to
review progress periodically in completing the steps in this program.

The program motivates your staff by providing adequate training
and consulting support so that people understand and can do the jobs
that are expected of them. Jump-start consulting ensures team mem-
bers responsible for implementing SRE are properly supported in their
efforts. It provides guidance, constructive critique, tutoring, and prob-
lem solving as required by project needs. Implementation might con-
sist of one (or more) 4- to 6-month efforts with your team of one or more
members who work part-time on the effort. It is important to designate
one member of the team as a decision-making representative for your
project. _

Most efforts focus on first implementing SRE within system test to
monitor and track reliability growth. On successfully completing this
initial effort, you can add setting reliability objectives and defining an
operational profile that better reflects customer usage of the product.

The program in Table 6.5 would be appropriate for organizations
ranging from 50 to several thousand people. If your organization is
smaller, parts of this program can be used to tailor a more appropriate
program for you.

It is certainly possible to use outside experts instead of training your
own personnel on a project if necessary. However, this is generally

<

>4 pe

PR

T MM M

el i

>

LT T S

sIas)
Je8euew suoleiado pue uorje[(elsUl
197597 WoISAG

JouS1sop 189,

I99UIZUS 2oURINSSE A)[eNd)

JoSBUBW }59],

IowWwerdosd

IoUSISep aI8M1J0S

PITYDIR DIBMIJOG

JFOULTUD WBISAG

1SATBUR SWA)SAQ

IoouLdus AI[Iqerey

Jegeuew Juatudorasa(]

Jageueur josfoig

Jadeuew JonpoiJd

90UBURUTEUL
pue
AIaA1[opIsod

el PIeY
pue
1597) WaISAQ

uoryejuawaduar
pue ugisa(

sjusuaInbal
pue
Aqisesy

soseyd a[0£0-9J1] arem}jog

uo1jPUNJ qop

3y4s Buioq W paajoau| sjdoad 9 318VL

248

"J0]je uonejuswa(dun gyg 1oddns sueo) uorjejuswejduir Sunnsuod
0T Yoom I0)Jy 0} SUn)NSU0d J02ITP SPIACL] HYUS [enpraipug jreys-duanp L
“uoryejuswadur surea) uorjejuswadur 98.nod Furue(d
s90M 0T + 0 Tenytut 103 uerd uorjoe ue dofaas(q HYS [enplaIpuf ofoxd gyg 9
‘S[[TYS pue afpalmouy HUS qrdop-ut ogs uonejuswadurt gyQ 28IN0D
SYa9M § +(SuIpaau sIaquIaWI Wed) axedalg UL PIA[OAUL A[J09IIp PJrig Jspuonrpeid JYS G
‘S[Is pue sdpamouy gy yrdep-ur 95109 MITAIIAD
syoOM g + () Surpesu jou s1aqUItU Wee] aaedasg AYS Butsn yosload jo JJeig Jyels jeeloag ¥
"s110])e uonejuswa(durt [errur sunp@ow
QIO 10 AUO AJIIUSP] "901ApE 9AL3 Z deys dn-mofjoj
SH9OM G + () ‘SULIgoU0D pue suorjsenb 01 puodsay UI PIAJOAUL SASZBUBT INOY-0MT, ¢
Anqisuodsar 3591
“uorteyuewadwr g 10] wa)sAs Jo ‘quomidojasap
syoeload rerpusrod 109(0s JIm ‘Guneeurdus wosLs 98IN0J MITAIIAD
SHI9M € + () oYM SISFBUBW 0] SSOUARME S Wwoloxd y1m s1edeuep Jefeuew palorg 4
‘uoryeordde erUI I0]
0 SUOTRISPISTHOD {SSOUIBME S TUSWAFRURTH SATINIIKY gurgerrq HYS 1
uay asodang JdusIpne JUL W[dsrg
19318], wels01d

suolneziuebiQ 104 weabold dn-1eis 34s §'9 319vL

(=1}
<
N

250 Practices and Experiences

TABLE 6.6 Contacts for Support Resources

Items Contact
AT&T SRE courses AT&T Technical Education Center
1-800-TRAINER
AT&T SRE Toolkit See enclosed Data and Tool Disk
IEEE SRE video (3 hrs) IEEE Computer Society Press

800-272-6657, order number 1994AV

Software Reliability: Measurement, McGraw-Hill
Prediction, Application by Musa, 800-338-3987
Okumoto, ITannino

undesirable because these experts will lack specific project knowledge;
it will be much more difficult to integrate SRE with your development
process; and you will not be preparing your people for the future.

Experience indicates that the development of the functional and
operational profiles are the activities where you are most likely to need
expert consultation.

6.7.2 Find more information or support

Table 6.6 lists several contacts for finding more information or support.
The particular contacts shown may become out of date between
updates to this text, but a reasonable amount of diligence should lead
the reader to the desired information.

6.7.3 Do an SRE self-assessment

Use the statements in the following subsections to assess the confor-
mance of your project or process with the best current practice of SRE.
For each statement below that is completely true, score the number of
points indicated at the beginning of the statement. The activities in
each phase correspond to those listed in Fig. 6.1 and discussed in Secs.
6.3 through 6.6. Note that the activities can overlap into other phases
as well. For any statement that is partially true, score 1 point. If you
can justify why a particular statement is not applicable or not cost-
effective for your project, you may take full credit for that statement
and attach a written explanation of your justification.
Conformance level is based on the total points received as follows:

Total score Conformance level
60 to 64 Fully conforms
45 to 59 Mostly conforms
25 to 44 Partially conforms

0to 24 Does not conform

Best Current Practice of SRE 251

6.7.3.1 Feasibility and requirements phase points
In writing your requirements specification, you:

(3) Determine functional profile (alternatively, may determine oper-
ational profile directly)

(3) Define and classify failures

(3) Identify customer reliability needs

(2) Conduct trade-off studies to help set objectives for reliability,
delivery date, functionality, and cost

(3) Set reliability objectives

6.7.3.2 Design and implementation phase points
As you define the architecture and design, you:

(2) Allocate system reliability to components so that the overall reli-
ability objective is met

(2) Engineer to meet reliability objectives
During implementation, you:

(2) Focus resources based on functional profile
(2) Manage fault introduction and propagation

(2) Measure reliability of acquired software

6.7.3.3 System test and field trial phase points
During product validation, you:

(3) Determine operational profile

(3) Conduct reliability testing, consistent with the operational profile

(3) Track testing progress, acting on differences between expected
and achieved reliability

(2) Project additional testing needed

(5) Certify that reliability objectives are met before release

6.7.3.4 Postdelivery and maintenance phase points
Before product release, you:

(2) Project postrelease staff needs
After product release, you:

(3) Monitor field reliability versus objectives, acting on differences

(2) Track customer satisfaction with reliability

252 Practices and Experiences

(2) Guide new feature introduction by monitoring reliability

(3) Guide product and process improvement with reliability measures

6.7.3.5 Organizational and project preparation points
Your organization and project demonstrate adequate preparation for
SRE through:

(2) Visible management commitment

(2) Training of at least one local expert in SRE application

(2) An agreed-upon set of reliability metrics

(2) A supported set of SRE tools

(2) An agreed-upon and monitored set of expected SRE benefits

(2) Planning reliability-related activities, and providing adequate
resources and schedule time for them

TOTAL: points

6.8 Summary

SRE presents a life-cycle approach to managing software reliability. It
provides a software engineer or manager the means to estimate and
measure the rate of failure occurrence in software. The main focus of
SRE is on how the customer will use the product in their environment.
Software product usage is part of the reliability definition.

During the product feasibility and requirements phase, the functions
the product will perform for each user, the frequencies of use of these
functions, and criticality are defined. These functions establish the
functional profile. Failures are defined and categorized from the
product-user perspective. The reliability objectives for different uses of
the product are established based on trade-off studies between func-
tionality, reliability, cost, and schedule. Tools are used to determine
these trade-offs.

During the design and implementation phase, the developer allo-
cates reliability objectives between the hardware and software compo-
nents. The functional profile helps focus development resources
according to frequency of customer usage and criticality. Operations
are characterized by considering both the tasks to be performed and
the environmental factors that influence processing. Since most soft-
ware applications are built from acquired software (software not devel-
oped or tested in previous releases of the product), the reliability of this
software has to be certified. This certification can be done using a reli-
ability demonstration testing tool.

Best Current Practice of SRE 253

During the system test and field trial phase, the focus is on ensuring
that the completed software meets the reliability objectives as speci-
fied in the requirements. The functional profile is refined into an oper-
ational profile that is used to select operations during system test in
accordance with the occurrence probability. The philosophy of opera-
tional profile testing is to test the operations the customer will most
likely use, and time is not spent on testing little-used and noncritical
operations. Failures are reported and faults removed. Tools use the fail-
ure data to determine the current failure intensity and estimate
release date. The system is released when the failure intensity objec-
tive (software reliability objective) has been achieved. This avoids
excessive time due to overtesting. The reliability objective for the prod-
uct can be determined by combining the hardware reliability objective
and the software reliability objective.

The practice of SRE continues during postdelivery and maintenance.
Field reliability is monitored against established product objectives
and customer satisfaction. This information can be used to improve the
reliability of future product releases and to improve the quality of the
development process.

Problems

6.1 Studies to date show that up-front SRE investment during the develop-
ment cycle results in earlier delivery, increased productivity, lower mainte-
nance cost, and satisfied customers.

a. What SRE activities are important to achieve this payback?

b. What benefits are achieved?

c¢. In what phase of the life cycle do these activities occur?

6.2 A software reliability program requires that the development cycle of the
product be definable and measurable. Reliability cannot be assumed if it can-
not be defined and measured. A successful metrics program critically depends
upon the quality of the data that is needed as input.
a. What type of data is needed to establish the functionality of the
product?
b. What type of data is needed to establish a reliability objective?
c. What type of data is needed during reliability growth test to certify
that the reliability objectives of the system are met?
d. What type of data should be collected during reliability growth test to
provide historical data needed to establish a reliability objective for
the next release or for a new product similar to this product?

6.3 The current airline reservation system has been in existence for 3 years.
During this time three major problems have occurred:

= System performance. Transaction processing during the busy period has not
been acceptable. The response time is adequate when the system is lightly

254

Practices and Experiences

loaded. It becomes a problem around 10 A.M. and remains a problem to around
3 p.M. Response time is particularly bad from 11:30 to 1:30.

System availability. The system is unavailable because the data base fails
and must be restarted.

Cost of new functions. The reservation system is a dynamic one and is fre-
quently updated to include new services. Travel reservation personnel are say-
ing that the costs of implementing new features are excessive.
a. A new release for the software is now needed. Your job as a system
engineer/analyst is to establish a functional profile and to negotiate
with the customer on:

® Performance requirements
= Reliability requirements
» Cost

(1) What is your first step?

(2) What information is needed to determine the functional profile?

(3) Establish the definition of failures for this system.

(4) Categorize these failures into severity classifications.

(5) How would you establish the functionality and failure intensity
objective for the new software?

(6) How does decreasing the number of features increase reliability
of the product?

(7) Where in the life cycle of the new release should inspections be
scheduled?

b. The software is now in the design stage. Your job as reliability engineer
is to ensure that the reliability requirements for the software are met.
(1) How can the total reliability (hardware and software) of the air-

line reservation system be determined?

(2) To update the transaction database, a large amount of acquired
software will be used. How can you determine if the reliability of
the acquired software meets the reliability requirements for the
system?

c. The software has completed the implementation stage and is enter-
ing the system test stage. Your job as lead system tester is to ensure
that the reliability objectives of the software will be met on release.
(1) What information is needed to determine the operational profile?
(2) Failure execution time may be hard to measure. What other mea-

sure could you use? What will be the unit of the failure intensity
objective?

(3) What type of information is important to the test manager?

(4) How will you track the progress of system test and determine
when the software reliability objective is met?

(5) Often the entire software is not available for system test. Can you
use SRE tools with incremental development?

d. The software is now in operation in the field. Your job as reliability
engineer 1s to determine if the field reliability of the software differs
from the reliability that was measured at the end of system test. If
the reliability is different, what are the main factors that could have
contributed to the difference?

