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Shrinking the feature size of very large scale integrated circuits (VLSI)

with advanced lithography has been a holy grail for the semiconductor indus-

try. However, the gap between manufacturing capability and the expectation

of design performance becomes critically challenged in sub-16nm technology

nodes. To bridge this gap, design for manufacturing (DFM) is a must to co-

optimize both design and lithography process at the same time. DFM for

advanced lithography could be defined very differently under different circum-

stances. In general, progress in advanced lithography happens along three

different directions: (1) new patterning technique (e.g., layout decomposi-

tion for different patterning techniques); (2) new design methodology (e.g.,

lithography aware standard cell design and physical design); (3) new illumi-

nation system (e.g., layout fracturing for EBL system, stencil planning for

EBL system).

In this dissertation, we present our research results on design for man-

ufacturing (DFM) with multiple patterning lithography (MPL) and electron
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beam lithography (EBL) addressing these three DFM research directions in

advanced lithography.

For the research direction of new patterning technique, we study the

layout decomposition problems for different patterning technique and explore

four important topics: (1) layout decomposition for triple patterning; (2) den-

sity balanced layout decomposition for triple patterning; (3) layout decom-

position for triple patterning with end-cutting; (4) layout decomposition for

quadruple patterning and beyond. We present the proof that triple pattern-

ing layout decomposition is NP-hard. Besides, we propose a number of CAD

optimization and integration techniques to solve different problems.

For the research direction of new design methodology, we will show the

limitation of traditional design flow. That is, ignoring triple patterning lithog-

raphy (TPL) in early stages may limit the potential to resolve all the TPL

conflicts. We propose a coherent framework, including standard cell compli-

ance and detailed placement, to enable TPL friendly design. Considering TPL

constraints during early design stages, such as standard cell compliance, im-

proves the layout decomposability. With the pre-coloring solutions of standard

cells, we present a TPL aware detailed placement where the layout decompo-

sition and placement can be resolved simultaneously. In addition, we propose

a linear dynamic programming to solve TPL aware detailed placement with

maximum displacement, which can achieve good trade-off in terms of runtime

and performance.

For the EBL illumination system, we focus on two topics to improve the

viii



throughput of the whole EBL system: (1) overlapping aware stencil planning

under MCC system; (2) L-shape based layout fracturing for mask preparation.

With simulations and experiments, we demonstrate the critical role and

effectiveness of DFM techniques for the advanced lithography, as the semicon-

ductor industry marches forward in the deeper sub-micron domain.
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Chapter 1

Introduction

Shrinking the feature size of very large scale integrated circuits (VLSI)

with advanced lithography has been a holy grail for the semiconductor in-

dustry. However, the gap between manufacturing capability and the expecta-

tion of design performance becomes critical challengs for sub-32nm technology

nodes [78,102]. Before addressing these challenges, we introduce some prelim-

inaries of the current main-stream lithography system.

Wafer
Medium

Projection
Lens

Mask

Light Source

Figure 1.1: Schematic diagram of conventional lithography system.
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As illustrated in Fig. 1.1, a conventional lithography system consists

of four basic components: light source, mask, projection lens, and wafer. The

high energy laser source sheds light on the mask and exposes the wafer through

an extremely complex combination of projection lens. In the conventional

lithography system, the resolution (R) is represented as follows [67]:

R = k1 ×
λ

NA
(1.1)

where λ is the wavelength of the light source (currently 193nm), k1 is process-

related parameter, and NA is the numerical aperture. For smaller feature sizes

(smaller R), we need smaller k1 and larger NA. The theoretical limitation of

k1 is 0.25 with intensive optical proximity correction (OPC) [97]. The NA can

be enhanced from 0.93 to 1.35 using a technique called immersion lithography,

where water is used as the medium between the lens to wafer. But it is

hard to find new liquid material to get more than 1.35 NA value in the near

future [60]. Therefore, the current optical lithography system is reaching its

fundamental limit and severe variations are observed on the wafer at sub-32nm

technology nodes. Due to these severe variations, the conventional lithography

is no longer capable for emerging technology nodes and a set of advanced

lithography techniques are called for help.

In emerging technology node and the near future, multiple patterning

lithography (MPL) has become the most viable lithography technique. As

shown in Fig. 1.2 (a), in MPL the original layout design is divided into sev-

eral masks. Then each mask is implemented through one exposure-etch step,
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(a)

Electrical Guns

Wafer

2nd Apenture

Shaping Apentures

(b)

Figure 1.2: Advanced lithography technique candidates: (a) multiple pattern-
ing lithography (MPL); (b) electron beam lithography (EBL).

through which the layout can be produced. Generally speaking, MPL con-

sists of double patterning lithography (DPL), triple patterning lithography

(TPL), or even quadruple patterning lithography (QPL) [48, 106, 109]. There

are two main types of DPL with different manufacturing processes: litho-

etch-litho-etch (LELE) [48] and self-aligned double patterning (SADP) [114].

The advantage of MPL is that the effective pitch improves which can further

enhance lithography resolution [64]. Thus DPL has been heavily developed

by industry for 22nm technology node, while triple patterning or quadruple

patterning has been explored in industry test-chip designs [16].

In the longer future (for the logic node beyond 14nm), electron beam

lithography (EBL) is a promising advanced lithography technique, along with

other candidates, e.g., extreme ultra violet (EUV), directed self-assembly (DSA),

and nanoimprint lithography (NIL) [78]. As shown in Fig. 1.2 (b), EBL is

a maskless technology that shoots desired patterns directly into the silicon
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wafer using charged particle beam [77]. EBL has been widely deployed in

the mask manufacturing, which is a significant step affecting the fidelity of

the printed image on the wafer and critical dimension (CD) control. In ad-

dition, due to the capability of accurate pattern generation, EBL system has

been developed for several decades [79]. Compared with the traditional litho-

graphic system, EBL has several advantages. (1) Electron beam can be easily

focused into nanometer diameter with charged particle beam, which can avoid

the diffraction limitation of light. (2) The price of a photomask set is getting

unaffordable, especially through the emerging MPL techniques. As a maskless

technology, EBL can reduce the manufacturing cost. (3) EBL allows flexi-

bility for fast turnaround times and even late design modifications to correct

or adapt a given chip layout. Because of all these advantages, EBL is being

used in mask making, small volume LSI production, and R&D to develop the

technological nodes ahead of mass production.

1.1 Advanced Lithography Challenges

Challenges for new patterning technique: The key challenge of

MPL is the new design problem, called layout decomposition, where input lay-

out is divided into three masks. When the distance between two input features

is less than minimum coloring distance mins, they need to be assigned to dif-

ferent masks to avoid a coloring conflict. Sometimes coloring conflict can be

also resolved by inserting stitch to split a pattern into two touching parts.

However, this introduces stitches, which lead to yield loss because of overlay
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Figure 1.3: An example of triple patterning layout decomposition. (a) Input
layout; (b) Features with different colors mean that they are assigned into
different masks; (c) Features on each mask.

error. Therefore, two of the main objectives in layout decomposition are con-

flict minimization and stitch minimization. An example of triple patterning

layout decomposition is shown in Fig. 1.3, where all features in input layout

are divided into three masks (colors).

Chanllenges for new design methodology: With widening manu-

facturing gap, even the most advanced resolution enhancement techniques still

cannot guarantee lithography-friendly design. Therefore, increasing coopera-

tion of physical design is a must.

Challenges for EBL illumination system: The conventional type

of EBL system is variable shaped beam (VSB). As illustrated in Fig. 1.2 (b), in

VSB mode the layout is decomposed into a set of rectangles, and each rectangle

would be shot into resist by dose of electron sequentially. The whole processing

time of EBL system increases with number of beam shots. Even with decades

of development, the key limitation of the EBL system has been and still is

the low throughput [113]. Therefore, how to improve the throughput of EBL
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system is an open question.

Note that although other advanced lithography techniques are not dis-

cussed in this dissertation, all of them suffer from different technical barriers.

For instance, extreme ultra violet (EUV) is challenged by issues like lack of

power sources, resists, and defect-free masks [11, 95]. Directed self-assembly

(DSA) technique is to phase block copolymers to construct nanostructure, but

currently it has only the potential to generate contact or via layer [18].

1.2 Overview of this Dissertation

Std-Cell & Logic Synthesis

Placement & Routing

Timing Closure

RTL

Mask Optimization

*Optimization for EBL

Final Layout

Cell Compliance & Detailed Placement for 
Triple Patterning

Layout Decomposition for Triple Patterning

Layout Decomposition for Triple Patterning w. 
End-Cutting

Layout Decomposition for Quadruple Patterning

L-Shape based Layout Fracturing

Stencil Planning for MCC System

Figure 1.4: The proposed DFM techniques in their corresponding design
stages.

In this dissertation, we present our research results on design for man-
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ufacturing (DFM) for MPL and EBL [102–109]. Fig. 1.4 shows the typi-

cal design flow and our proposed research works in the corresponding design

stages. The goal of this dissertation is to resolve three DFM challenges in ad-

vanced lithography: new patterning technique, new design methodology, and

new EBL system.

In Chapter 2 we discuss our solutions to the challenges of patterning

techniques. We focus on four research topics: (1) layout decomposition for

triple patterning; (2) density balanced layout decomposition for triple pat-

terning; (3) layout decomposition for triple patterning with end-cutting; (4)

layout decomposition for quadruple patterning and beyond. We present the

proof that triple patterning layout decomposition is NP-hard. Besides, we pro-

pose a number of CAD optimization and integration techniques to solve each

of these problems including: (a) integer linear programming (ILP) formulation

to search optimal solution; (b) effective graph based simplification techniques

to reduce the problem size; (c) novel semidefinite programming (SDP) based

algorithms to achieve further balance in terms of runtime and solution quality;

(d) linear runtime heuristic algorithms for extremely fast CPU run-time.

In Chapter 3 we resolve a coherent solution to overcome the challenges

in new design methodology. We will show the limitation of traditional design

flow. That is, ignoring triple patterning lithography (TPL) in early stages

may limit the potential to resolve all the TPL conflicts. We propose a coher-

ent framework, including standard cell compliance and detailed placement, to

enable TPL friendly design. Considering TPL constraints during early design
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stages, such as standard cell compliance, improves the layout decomposabil-

ity. With the pre-coloring solutions of standard cells, we present a TPL aware

detailed placement where the layout decomposition and placement can be re-

solved simultaneously. In addition, we propose a linear dynamic programming

to solve TPL aware detailed placement with maximum displacement, which

can achieve good trade-off in terms of runtime and performance.

In Chapter 4 we focus on two topics to improve the throughput of the

EBL system: (1) overlapping aware stencil planning under multi-column cell

(MCC) system; (2) L-shape based layout fracturing for mask preparation.

We will summarize and conclude this dissertation in Chapter 5.
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Chapter 2

Layout Decomposition for Triple/Multiple

Patterning

2.1 Introduction

Layout decomposition is a key challenge for multiple patterning lithog-

raphy (MPL). When the distance between two input features is less than

minimum coloring distance mins, they need to be assigned to different masks

to avoid a coloring conflict. Sometimes coloring conflict can be also resolved

by inserting stitch to split a pattern into two touching parts. However this in-

troduces stitches, which lead to yield loss because of overlay error. Therefore,

two of the main objectives in layout decomposition are conflict minimization

and stitch minimization.

In double patterning lithography, layout decomposition is generally re-

garded as a 2-coloring problem [49,89,98–100,112]. A complete flow was pro-

posed in [49] to optimize splitting locations with integer linear programming

(ILP). Xu et al. [98] provided an efficient graph reduction-based algorithm for

stitch minimization. [89, 100] proposed min-cut based approaches to reduce

stitch number. To enable simultaneous conflict and stitch minimization, ILP

was adopted [49] [112] with different feature pre-slicing techniques. A match-
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Figure 2.1: (a) In double patterning, even stitch insertion can not avoid the
native conflicts. (b) Native conflict in double patterning might be resolved by
triple patterning.

ing based decomposer was proposed to minimize both the conflict number and

the stitch number [99].

It shall be noted that for double patterning, even with stitch insertion,

there may be some native conflicts [9]. Fig. 2.1 (a) illustrates a three-way

conflict cycle between features a, b and c, where any two of them are within the

minimum coloring distance. As a consequence, there is no chance to produce

a conflict-free solution with double patterning. However, in triple patterning

we can easily resolve this conflict, as shown in Fig. 2.1 (b). Yet this does

not mean layout decomposition in triple patterning becomes easier. Actually

since the features can be packed closer, the problem turns out to be more

difficult [109].

There are investigations on triple patterning aware design [62, 65, 107]

and triple patterning layout decomposition [21,23,31,32,56,91,92,105,109,115].

Cork et al. [23] proposed a three coloring algorithm adopting SAT formulation.

[38] reused the double patterning techniques. [21,31,56,115] proposed different

heuristic methods for the TPLD problem. For row based layout design, [91,92]

presented polynomial time decomposition algorithms.
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2.2 Layout Decomposition for Triple Patterning

2.2.1 Preliminaries and Problem Formulation

In this subsection we provide some preliminaries on triple patterning

layout decomposition, including some definitions, problem formulation, and

the introduction to our decomposition flow.

2.2.1.1 Layout Graph and Decomposition Graph

Given an input layout which is specified by features in polygonal shapes,

at first a layout graph [49] is constructed by Definition 1.

Definition 1 (Layout Graph). A layout graph (LG) is an undirected graph

whose vertex set represents polygonal shapes and edge set represents the con-

nection if and only if two corresponding polygonal shapes are within minimum

coloring distance mins.

f
b
a
c d

e

(a)

b
f

e
a

c d

(b)

d1
a

b
f

c

e1

d2

e2

(c)

Figure 2.2: Layout graph construction and decomposition graph construction.
(a) Layout graph for given input, where all edges are conflict edges; (b) The
vertex projection; (c) Corresponding decomposition graph, where dash edges
are stitch edges.

One example of layout graph is illustrated in Fig. 2.2 (a). All the edges

in a layout graph are called conflict edges. A conflict exists if and only if two

11



vertices are connected by a conflict edge and are in the same mask. In other

words, each conflict edge is a conflict candidate. On the layout graph, vertex

projection [49] is performed, where projected segments are highlighted by bold

lines in Fig. 2.2 (b). Based on the projection result, all the legal splitting

locations are computed. Then a decomposition graph [110] is constructed by

Definition 2.

Definition 2 (Decomposition Graph). A decomposition graph (DG) is an

undirected graph with a single set of vertices V , and two sets of edges, CE and

SE, which contain the conflict edges and stitch edges (SE), respectively. V

has one or more vertices for each polygonal shape and each vertex is associated

with a polygonal shape. An edge is in CE iff the two corresponding vertices

are within minimum coloring distance mins. An edge is in SE iff there is a

stitch between the two vertices which are associated with the same polygonal

shape.

An example of decomposition graph (DG) is shown in Fig. 2.2 (c).

Note that the conflict edges are marked as black edges, while stitch edges are

marked as dash edges. Here each stitch edge is a stitch candidate.

2.2.1.2 Stitch Candidate Generation

Stitch candidate generation is one of the most important steps to parse

a layout, as it not only determines the vertex number in the decomposition

graph, but also affects the decomposition result. We use DP candidates to

represent the stitch candidates generated by all previous double patterning
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research. [49, 98] propose different methodologies to generate the DP candi-

dates. In this section, we show that DP candidates may be redundant or lose

some useful candidates, and they cannot be directly applied in TPLD problem.

Therefore, we provide a procedure to generate appropriate stitch candidates

for triple patterning lithography.

b c

a

(a)

c

a

d

Stitch1

b

(b)

Figure 2.3: Examples of (a) Redundant stitch; (b) Lost stitch.

We provide two examples to demonstrate that DP candidates are not

appropriate for triple patterning. First, because of an extra color choice, some

DP candidates may be redundant. As shown in Fig. 2.3 (a), the stitch can

be removed because no matter what color is assigned to features b and c,

the feature a can always be assigned a legal color. We denote this kind of

stitch as a redundant stitch. After removing these redundant stitches, some

extra vertices in the decomposition graph can be merged. In this way, we can

reduce the problem size. Besides, DP candidates may cause the stitch loss

problem, i.e., some useful stitch candidates cannot be detected and inserted in

layout decomposition. In DPL, the stitch candidate has one precondition: it

cannot intersect with any projection. For example, as shown in Fig. 2.3 (b),

because this stitch intersects with the projection of feature b, it cannot belong
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to the DP candidates. However, if features b, c and d are assigned with three

different colors, only introducing this stitch can resolve the conflict. In other

words, the precondition in DPL limits the ability of stitches to resolve the

triple patterning conflicts and may result in unnoticed conflicts. We denote

the useful stitches forbidden by the DPL precondition as a lost stitch.

Given the projection results, we propose a new stitch candidate gener-

ation. Compared with the DP candidates, our methodology can remove some

redundant stitches and systematically solve the stitch loss problem. For a

better explanation, we define the projection sequence as follows.

Definition 3 (Projection Sequence). After the projection, the feature is di-

vided into several segments each of which is labeled with a number representing

how many other features are projected onto it. The sequence of numbers on

these segments is the projection sequence.

c

0

d

b

1 2 1 2 10

e

1 0

f

1

e

1 0

Figure 2.4: The projection sequence of the feature is 01212101010, and the
last 0 is a default terminal zero.

Instead of analyzing each feature and all its neighboring features, we

can directly carry out stitch candidate generation based on the projection se-

quence. For convenience, we provide a terminal zero rule, i.e., the beginning

and the end of the projection sequence must be 0. To maintain this rule, some-

times a default 0 needs to be added. An example of projection sequence is
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shown in Fig. 2.4, where the middle feature has five conflict features, b, c, d, e

and f . Based on the projection results, the feature is divided into ten seg-

ments. Through labeling each segment, we can get its projection sequence:

01212101010. Here a default 0 is added at the end of the feature.

Based on the definition of projection sequence, we summarize the rules

for redundant stitches and lost stitches. First, motivated by the case in Fig.

2.3 (a), we can summarize the redundant stitches as follows: if the projection

sequence begins with “01010”, then the first stitch in DP candidates is redun-

dant. Since the projection of a feature can be symmetric, if the projection

sequence ends with “01010”, then the last stitch candidate is also redundant.

Besides, the rule for lost stitches is as follows, if a projection sequence contains

the sub-sequence “xyz”, where x, y, z > 0 and x > y, z > y, then there is one

lost stitch at the segment labeled as y. For example, the stitch candidate in

Fig. 2.3 (b) is contained in the sub-sequence “212”, so it is a lost stitch.

The details of stitch candidate generation for TPL are shown in Al-

gorithm 1. If necessary, at first each multiple-pin feature is decomposed into

several two-pin features. Then for each feature, we can calculate its projection

sequence. We remove the redundant stitches by checking if the projection se-

quence begins or ends with “01010”. Next we search for and insert stitches,

including the lost stitches. Here we define a sequence bunch. A sequence bunch

is a sub-sequence of a projection sequence, and contains at least three non-0

segments.

An example of the stitch candidate generation is shown in Fig. 2.5. In
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DPL stitch candidates:

TPL stitch candidates: stitch 1 stitch 2 stitch 3

Figure 2.5: Stitch candidates generated for DPL and TPL.

Algorithm 1 Stitch Candidate Generation for TPL

Require: Projection results on features.
1: Decompose multiple-pin features;
2: for each feature wi do
3: Calculate the projection sequence psi;
4: if psi begins or ends with “01010” then
5: Remove redundant stitch(es);
6: end if
7: for each sequence bunch of psi do
8: Search and insert at most one stitch candidate;
9: end for
10: end for

the DP candidate generation, there are two stitch candidates generated (stitch

2 and stitch 3). Through our stitch candidate generation, stitch 3 is labeled

as a redundant stitch. Besides, stitch 1 is identified as a lost stitch candidate

because it is located in a sub-sequence “212”. Therefore, stitch 1 and stitch 2

are chosen as stitch candidates for TPL.

2.2.1.3 Problem Formulation

We define the triple patterning layout decomposition (TPLD) problem

as follows.

Problem 1 (Triple Patterning Layout Decomposition). Given a layout

which is specified by features in polygonal shapes, the decomposition graph is

16



constructed. Triple patterning layout decomposition (TPLD) assigns all the

vertices of DG into one of three colors (masks) to minimize the costs of the

stitches and the conflicts.

In our work we set the cost for each conflict is 1, and the cost for each

stitch is α.

TPLD problem is an extension of double patterning layout decomposi-

tion (DPLD) problem, and both of them simultaneously minimize the conflict

number and the stitch number. For DPLD problem, Xu et al. [99] showed that

if the decomposition graph is planar, it can be resolved in polynomial time.

At first glance, compared with DPLD, TPLD seems easier as there is now one

more color (mask). However, it turns out to harder. On one hand, since the

goal of triple patterning is to achieve finer pitches, there will actually be more

features to be packed closer to each other which will form a multi-way conflict.

In other words, decomposition graphs for triple patterning will become much

denser than those in double patterning. On the other hand, in double pat-

terning the conflict detection (2-colorable) is equivalent to odd-cycles checking,

which can be resolved in linear time through a breadth-first search. However

in triple patterning the conflict minimization, or even the conflict detection, is

not straightforward. A planar graph 3-coloring (PG3C) problem is to assign

three colors to all vertices of a planar graph. A conflict exists if and only if two

vertices connected by an edge are in the color. The target of PG3C problem

is to minimize the coloring conflict number. We have the following lemma:
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Lemma 1. The PG3C problem is NP-hard.

The correctness of Lemma 1 stems from the conclusion that deciding

whether a planar graph is 3-colorable is NP-complete [37]. For a planar graph,

checking whether it is 3-colorable cannot be finished in ploynominal time;

therefore, 3-coloring a planar graph with minimum cost cannot be finished in

ploynominal time.

Theorem 1. TPLD problem is NP-hard.

Proof. We prove this theorem by showing PG3C ≤P TPLD, i.e., PG3C can be

reduced to TPLD. Given an instance of PG3C, its planar graph G = (V,E) can

be transferred to an Orthogonal Drawing [55], where the drawing plane is

subdivided by horizontal and vertical gridlines of unit spacing λ. The vertices

∈ V are represented by rectangles that the borders of the rectangles overlap the

gridlines by λ/4. The edges ∈ E are mapped to non-overlapping paths in the

gridlines. Please refer to [55] for more details regarding orthogonal drawing.

We construct the corresponding TPLD instance through the following two

steps: (1) The width of each path is extended to λ/4; (2) Break each path in the

middle through gap with length λ/8. If we set mins to λ/8 then we can get a

TPLD instance, whose decomposition graph is isomorphic to the planar graph

of PG3C instance. For example, given a PG3C instance in Fig. 2.6 (a), the

corresponding orthogonal drawing and TPLD instance are illustrated in Fig.

2.6 (b) and Fig. 2.6 (c), respectively. Here no stitch candidate is introduced.

Since an orthogonal drawing can be constructed in polynomial time [88], the
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whole reduction can be finished in polynomial time. Thus minimizing conflict

number in the original PG3C instance is equal to minimizing conflict number

in the constructed TPLD instance, which completes the proof.
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Figure 2.6: Reducing PG3C to TPLD. (a) An instance of PG3C; (b) The
transferred orthogonal drawing; (c) The corresponding TPLD instance.

2.2.2 Algorithms

The overall decomposition flow is illustrated in Fig. 2.7. First, we con-

struct layout graph to translate the original layout into graph representations.

Two graph division techniques are developed to the layout graph: independent

component computation (ICC) and iterative vertex removal (IVR). Second, af-

ter vertex projection, we transform the layout graph into decomposition graph

and propose two other graph division methods: bridge edge detection/removal

and bridge vertex detection/duplication. Third, after these graph based tech-

niques, the decomposition graph is divided into a set of components. To

solve the color assignment on each DG component, two approaches are pro-
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Figure 2.7: Overview of our decomposition flow.

posed. One is based on integer linear programming (ILP), which can resolve

the problem exactly, but it may suffer from runtime overhead. Another one

is semidefinite programming (SDP) based algorithm: instead of using ILP, we

formulate the problem into a vector programming, then its relaxed version

can be resolved through SDP. Followed by a mapping stage, the SDP solution

can be translated into a color assignment solution. At last, we merge all DG

components together to achieve the final TPLD result.

2.2.2.1 ILP Based Color Assignment

On decomposition graph (DG), we carry out color assignment, which

is a critical step in the layout decomposition flow. In color assignment, where

each vertex would be assigned one of three colors (masks). Firstly, we will
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Table 2.1: Notations in ILP Formulation

Notations used in Mathematical formulation

CE set of conflict edges

SE set of stitch edges

V the set of features

ri the ith layout feature

xi variable denoting the coloring of ri

cij 0-1 variable, cij = 1 when a conflict between ri and rj

sij 0-1 variable, sij = 1 when a stitch between ri and rj

Notations used in ILP formulation

xi1, xi2 two 1-bit 0-1 variables to represents 3 colors of ri

cij1, cij2 two 1-bit 0-1 variables to determine cij

sij1, sij2 two 1-bit 0-1 variables to determine sij

give a general mathematical formulation for the color assignment. Then we

will show that it can solved through an integer linear programming (ILP),

which is commonly used before for double patterning layout decomposition

(DPLD) problem [49] [112].

For convenience, some notations used in this section are listed in Table

2.1. The general mathematical formulation for the TPLD problem is shown in

(2.1). The objective is to simultaneously minimize the cost of both the conflict

number and the stitch number. The parameter α is a user-defined parameter

for assigning relative importance between the conflict and the stitch.

In Eq. (2.1), xi is a variable for the three colors of rectangles ri, cij is

a binary variable for conflict edge eij ∈ CE and sij is a binary variable for

stitch edge eij ∈ SE. Constraint (2.1a) is used to evaluate the conflict number
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min
∑

eij∈CE

cij + α
∑

eij∈SE

sij (2.1)

s.t. cij ← (xi = xj) ∀eij ∈ CE (2.1a)

sij ← xi ⊕ xj ∀eij ∈ SE (2.1b)

xi ∈ {0, 1, 2} ∀i ∈ V (2.1c)

when touch vertices ri and rj are assigned the same color (mask). Constraint

(2.1b) is used to calculate the stitch number. If vertices ri and rj are assigned

different colors (masks), stitch sij is introduced.

We will now show how to implement (2.1) with ILP. Note that eqs.

(1a) and (1b) can be linearized only when xi is a 0-1 variable [49], which is

hard to represent three different colors. To handle this problem, we represent

the color of each vertex using two 1-bit 0-1 variables xi1 and xi2. In order to

limit the number of colors for each vertex to 3, for each pair (xi1, xi2) the value

(1, 1) is not permitted. In other words, only values (0, 0), (0, 1) and (1, 0) are

allowed. Thus, (2.1) can be formulated in (2.2).

The objective function is the same as that in (2.1), which minimizes the

weighted summation of the conflict number and the stitch number. Constraint

(2.2a) is used to limit the number of colors for each vertex to 3. In other words,

only three bit-pairs (0, 0), (0, 1), (1, 0) are legal.

Constraints (2.2b) to (2.2f) are equivalent to constraint (2.1a), where

0-1 variable cij1 demonstrates whether xi1 equals to xj1, and cij2 demonstrates

whether xi2 equals to xj2. 0-1 variable cij is true only if two vertices connected
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min
∑

eij∈CE

cij + α
∑

eij∈SE

sij (2.2)

s.t. xi1 + xi2 ≤ 1 (2.2a)

xi1 + xj1 ≤ 1 + cij1 ∀eij ∈ CE (2.2b)

(1− xi1) + (1− xj1) ≤ 1 + cij1 ∀eij ∈ CE (2.2c)

xi2 + xj2 ≤ 1 + cij2 ∀eij ∈ CE (2.2d)

(1− xi2) + (1− xj2) ≤ 1 + cij2 ∀eij ∈ CE (2.2e)

cij1 + cij2 ≤ 1 + cij ∀eij ∈ CE (2.2f)

xi1 − xj1 ≤ sij1 ∀eij ∈ SE (2.2g)

xj1 − xi1 ≤ sij1 ∀eij ∈ SE (2.2h)

xi2 − xj2 ≤ sij2 ∀eij ∈ SE (2.2i)

xj2 − xi2 ≤ sij2 ∀eij ∈ SE (2.2j)

sij ≥ sij1, sij ≥ sij2 ∀eij ∈ SE (2.2k)

xijis binary (2.2l)

by conflict edge eij are in the same color, e.g. both cij1 and cij2 are true.

Constraints (2.2g) to (2.2k) are equivalent to constraint (2.1b). 0-1

variable sij1 demonstrates whether xi1 is different from xj1, and sij2 demon-

strates whether xi2 is different from xj2. Stitch sij is true if either sij1 or sij2

is true.

2.2.2.2 SDP Based Color Assignment

Although ILP formulation (2.2) can optimally solve the color assign-

ment problem theoretically, for practical design it may suffer from runtime

overhead problem. In this section we show that instead of expensive ILP, the

color assignment can be also formulated as a vector programming, with three
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unit vectors to represent three different colors. Then the vector programming

is relaxed and solved through semidefinite programming (SDP). Given the

solutions of SDP, we develop a mapping process to obtain the final color as-

signment solutions. Note that our algorithm is fast that both SDP formulation

and mapping process can be finished in polynomial time.

In color assignment, there are three possible colors. We set a unit vector

~vi for every vertex i. If eij is a conflict edge, we want vertices ~vi and ~vj to be

far apart. If eij is a stitch edge, we hope vertices ~vi and ~vj to be the same.

As shown in Fig. 2.8, we associate all the vertices with three different unit

vectors: (1, 0), (−1
2
,
√
3
2

) and (−1
2
,−
√
3
2

). Note that the angle between any two

vectors of the same color is 0, while the angle between vectors with different

colors is 2π/3.

Additionally, we define the inner product of two m-dimension vectors

~vi and ~vj as follows:

~vi · ~vj =
m∑
k=1

vikvjk

where each vector ~vi can be represented as (vi1, vi2, . . . vim). Then for the
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vectors ~vi, ~vj ∈ {(1, 0), (−1
2
,
√
3
2

), (−1
2
,−
√
3
2

)}, we have the following property:

~vi · ~vj =

{
1, ~vi = ~vj
−1

2
~vi 6= ~vj

Based on the above property, we can formulate the color assignment as

the following vector program [96]:

min
∑

eij∈CE

2

3
(~vi · ~vj +

1

2
) +

2α

3

∑
eij∈SE

(1− ~vi · ~vj) (2.3)

s.t. ~vi ∈ {(1, 0), (−1

2
,

√
3

2
), (−1

2
,−
√

3

2
)} (2.3a)

Formula (2.3) is equivalent to mathematical formula (2.1): the left

part is the cost of all conflicts, and the right part gives the total cost of the

stitches. Since the TPLD problem is NP-hard, this vector programming is also

NP-hard. In the next part, we will relax (2.3) to a semidefinite programming

(SDP), which can be solved in polynomial time.

Constraint (2.3a) requires solutions of (2.3) be discrete. After removing

this constraint, we generate formula (2.4) as follows:

min
∑

eij∈CE

2

3
(~yi · ~yj +

1

2
) +

2α

3

∑
eij∈SE

(1− ~yi · ~yj) (2.4)

s.t. ~yi · ~yi = 1, ∀i ∈ V (2.4a)

~yi · ~yj ≥ −
1

2
, ∀eij ∈ CE (2.4b)
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This formula is a relaxation of (2.3) since we can take any feasible

solution ~vi = (vi1, vi2) to produce a feasible solution of (2.4) by setting ~yi =

(vi1, vi2, 0, 0, · · · , 0), i.e., ~yi · ~yj = 1 and ~yi · ~yj = ~vi · ~vj in this solution. Here

the dimension of vector ~yi is |V |, that is, the vertex number in current DG

component. If ZR is the value of an optimal solution of formula (2.4) and

OPT is an optimal value of formula (2.3), it must satisfy: ZR ≤ OPT . In

other words, solution of (2.4) provides a lower bound approximation to that

in (2.3). After removing the constant in objective function, we redraw the

following vector programming.

min
∑

eij∈CE

(~yi · ~yj)− α
∑

eij∈SE

(~yi · ~yj) (2.5)

s.t. (2.4a)− (2.4b)

Without discrete constraint (2.3a), programs (2.4) and (2.5) are not

NP-hard now. To solve (2.5) in polynomial time, we will show that it is

equivalent to a semidefinite programming (SDP). SDP is similar to LP that has

a linear objective function and linear constraints. However, a square symmetric

matrix of variables can be constrained to be positive semidefinite. Although

semidefinite programs are more general than linear programs, both of them

can be solved in polynomial time. Besides, the relaxation based on SDP has

better theoretical results than those based on LP [93].
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Consider the following standard SDP:

SDP: min A •X (2.6)

xii = 1, ∀i ∈ V (2.6a)

xij ≥ −
1

2
, ∀eij ∈ CE (2.6b)

X � 0 (2.6c)

whereA•X is the inner product between two matricesA andX, i.e.
∑

i

∑
j aijxij.

Here aij is the entry that lies in the i-th row and the j-th column of matrix A.

aij =


1, ∀eij ∈ CE
−α, ∀eij ∈ SE
0, otherwise

(2.7)

Constraint (2.6c) means matrix X should be positive semidefinite. Similarly,

xij is the i-th row and the j-th column entry of X. Note that the solution

of SDP is represented as a positive semidefinite matrix X, while solutions of

relaxed vector programming are stored in a list of vectors. However, we can

show that they are equivalent.

Lemma 2. A symmetric matrix X is positive semidefinite if and only if X =

V V T for some matrix V .

Given a positive semidefinite matrix X, using the Cholesky decompo-

sition we can find corresponding matrix V in O(n3) time.

Theorem 2. The semidefinite program (2.6) and the vector program

(2.5) are equivalent.
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Proof. Given solutions {~y1, ~y2, · · · ~ym} of (2.5), the corresponding matrix X is

defined as xij = ~yi · ~yj. In the other direction, based on Lemma 2, given a

matrix X from (2.6), we can find a matrix V satisfying X = V V T by using

the Cholesky decomposition. The rows of V are vectors {vi} that form the

solutions of (2.5).

After solving the SDP formulation (2.6), we get a set of continuous

solutions in matrix X. Since each value xij in matrix X corresponds to ~yi · ~yj,

and ~yi · ~yj is an approximative solution of ~vi · ~vj in (2.3), we can draw the

conclusion that xij is an approximation to ~vi · ~vj. Instead of trying to calculate

all ~vi through Cholesky decomposition, we pay attention to xij value itself.

Essentially, if xij is close to 1, then vertices i and j tend to be in the same

color; if xij is close to −0.5, vertices i and j tend to be in different colors.

2

3

5

1

4
(a)

2

3

5

1

4
(b)

Figure 2.9: A simple example of SDP. (a) Input DG component; (b) Color
assignment result with 0 conflict and 0 stitch.

For most of cases, SDP can provide reasonable solutions that each xij is

either close to 1 or close to −0.5. A decomposition graph example is illustrated

in Fig. 2.9. It contains seven conflict edges and one stitch edge. Moreover,
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the graph is not 2-colorable since it contains several odd cycles. To solve

the corresponding color assignment through SDP formulation, we construct

matrix A as equation (2.7) as follows:

A =


0 1 1 −0.1 1
1 0 1 0 1
1 1 0 1 0
−0.1 0 1 0 1

1 1 0 1 0


Note that here we set α as 0.1. After solving the SDP (2.6), we can get a

matrix X as follows:

X =


1.0 −0.5 −0.5 1.0 −0.5

1.0 −0.5 −0.5 −0.5
1.0 −0.5 1.0

. . . 1.0 −0.5
1.0


Here we only list the upper part of the matrix X. Because X14 is 1.0, vertices

1 and 4 should be in the same color. Similarly, vertices 3 and 5 should also be

in the same color. In addition, because of all other −0.5 values, we know that

no more vertices can be in same color. Thus the final color assignment result

for this example is shown in Fig. 2.9 (b).

The matrix X generated from Fig. 2.9 is an ideal case, that is, all values

are either 1 or −0.5. Therefore from X we can derive the final color assignment

easily. Our preliminary results show that with reasonable threshold such as

0.9 < xij ≤ 1 for same mask, and −0.5 ≤ xij < −0.4 for different mask, more

than 80% of vertices can be decided by the global SDP optimization. However,

for practical layout, especially those essentially contain conflicts and stitches,

some values in the matrix X are not so clear.

29



2

3

5

1

4
(a)

2

3

5

1

4

conflict

(b)

Figure 2.10: A complex example. (a) Input DG component; (b) Color assign-
ment result with 1 conflict.

We use Fig. 2.10 for illustration. The decomposition graph in Fig.

2.10 (a) contains a 4-clique structure {1, 3, 4, 5}, therefore at least one conflict

would be reported. Through solving the SDP formulation (2.6), we can achieve

matrix X as in (2.8).

X =


1.0 −0.5 −0.13 −0.5 −0.13

1.0 −0.5 1.0 −0.5
1.0 −0.5 −0.13

. . . 1.0 −0.5
1.0

 (2.8)

From X we can see that x24 = 1.0, therefore vertices 2 and 4 should be in the

same color. x13, x15 and x35 are not so clear (−0.13). For those vague values,

we propose a mapping process to find the final color assignment solutions. In

the following we will explain the mapping algorithm. All xij values in matrix

X are divided into two types: clear and vague. If xij is close to 1 or −0.5, it

is denoted as a clear value; otherwise it is a vague value. The mapping uses

all the xij values as the guideline to generate the final decomposition results,

even when some xijs are vague.
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The details of the mapping are shown in Algorithm 2. Given the so-

lutions from program (2.6), some triplets are constructed and sorted to store

all xij information (lines 1–2). Then our mapping can be divided into two

steps. In the first stage (lines 3–8), if xij is close to 1 or −0.5, the relationship

between vertices ri and rj can be directly determined. Here thunn and thsp are

user-defined threshold values, where thunn should be close to 1, or thsp should

be close to −0.5. If xij > thunn, which means that xij is close to 1, then we

apply operation Union(i, j) to merge vertices ri and rj in a large vertex (i.e.,

they are in the same color). Similarly, if xij < thsp, which means that xij is

close to −0.5, then operation Separate(i, j) is used to label that vertices ri

and rj are incompatible. If ri and rj are incompatible, or ri is imcompatible

with any vertex that is in rj’s group, vertices ri and rj cannot be assigned

into the same color and function Compatible(i, j) will return false. In the

second step (lines 9–12), we continue to union the vertices i and j with largest

xij until all vertices are assigned into three colors.

We use the disjoint-set data structure to group vertices into three col-

ors. Implemented with union by rank and path compression, the running time

per operation of disjoint-set is almost constant [24]. Let n be the number of

vertices, then the number of triplets is O(n2). Sorting all the triplets requires

O(n2logn). Since all triplets are sorted, each of them can be visited at most

once. Because the runtime of each operation can be finished almost in con-

stant time, the complexity of Algorithm 2 is O(n2logn). Applying Algorithm

2 to the matrix in (2.8), we can get the final color assignment (see Fig. 2.10
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Algorithm 2 Mapping Algorithm

Require: Solution matrix X of the program (2.6).
1: Label each non-zero entry Xi,j as a triplet (xij, i, j);
2: Sort all (xij, i, j) by xij;
3: for all triples with xij > thunn do
4: Union(i, j);
5: end for
6: for all triples with xij < thsp do
7: Separate(i, j);
8: end for
9: while number of groups > 3 do
10: Pick triple with maximum xij and Compatible(i, j);
11: Union (i, j);
12: end while

(b)), where one conflict between vertices 3 and 5 is reported.

2.2.2.3 Graph Division

To further achieve some speedup, instead of solving color assignment

in one decomposition graph (DG), we propose several techniques to divide the

graph into a bunch of components. Then each component can be solved color

assignment independently.

Given input layout, layout graph (LG) is constructed first. We propose

two methods to divide/simplify the LG in order to reduce the problem size.

The first division technique is called independent component computa-

tion (ICC). In a layout graph of real design, we observe many isolated clusters.

By breaking down the whole layout graph into several independent compo-

nents, we partition the initial layout graph into several small ones. After
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Figure 2.11: An example of iterative vertex removal (IVR), where the TPLD
problem can be solved in linear time: (a) Layout graph; (b)(c)(d)(e) Iteratively
remove and push in vertices with degree less than three; (f)(g)(h) After color
assignment for the remanent vertices, iteratively pop up and recover vertices,
and assign any legal color; (i) TPLD can be finished after the iterative vertex
recover.

solving the TPLD problem for each isolated component, the overall solution

can be taken as the union of all the components without affecting the global

optimality. It shall be noted that ICC is a well-known technique which has
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been applied in many previous studies.

We can further simplify the layout graph by iteratively removing all

vertices with degree less than or equal to two. This technique is called iterative

vertex removal (IVR), as described in Algorithm 3. At the beginning, all

vertices with degree no more than two are detected and removed temporarily

from the layout graph. After each vertex removal, we need to update the

degrees of other vertices. This removing process will continue until all the

vertices are at least degree-three. All the vertices that are temporarily removed

are stored in stack S. Then decomposition graph are constructed for the

remanent vertices. After solving the color assignment on each DG component,

the removed vertices are recovered one by one.

Algorithm 3 IVR and Color Assignment

Require: Layout graph G, stack S.
1: while ∃n ∈ G s.t. degree(n) ≤ 2 do
2: S.push(n);
3: G.delete(n);
4: end while
5: Construct DG for the remanent vertices;
6: for each component in DG do
7: Apply color assignment;
8: end for
9: while !S.empty() do
10: n = S.pop();
11: G.add(n);
12: Assign n a legal color;
13: end while

If all the vertices in one layout graph can be temporarily removed

(pushed onto the stack S), TPLD problem is solved optimally in linear time.
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Figure 2.12: Bridge edge detection and removal. (a) Initial decomposition
graph. (b) After bridge edge detection, remove edge eab. (c) In two components
we carry out layout decomposition. (d) Rotate colors in the lower component
to add bridge.

An example is illustrated in Fig.2.11, where all the vertices can finally be

pushed onto stack. Even there are still some vertices remained, our iterative

vertex removal technique can minimize problem size dramatically. Addition-

ally, we observe that this technique can further partition the layout graph into

several independent components.

On the layout graph simplified by ICC and IVR, projection is carried

out to calculate all the potential stitch positions. Then we construct the

decomposition graph, which include the conflict edges in the layout graph and

the stitch edges. Here the stitch edges are based on the projection result.

Note that ICC can be still applied here to partition a decomposition graph

into several smaller ones. We further propose two new techniques to reduce

the size of each decomposition graph. The first one is bridge edge detection

and removal, and the second one is bridge vertex detection and duplication.
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Figure 2.13: Bridge vertex detection and duplication. (a) Initial decomposition
graph. (b) After bridge vertex detection, duplicate vertex a. (c) Rotate the
colors in lower sub-graph to merge vertices a1 and a2.

A bridge edge of a graph is an edge whose removal disconnects the

graph into two components. Removing the bridge edge can divide the whole

problem into two independent sub-problems.

An example of the bridge edge detection is shown in Fig. 2.12. Conflict

edge eab is found to be a bridge edge. Removing the bridge divides the decom-

position graph into two sides. After layout decomposition for each component,

if vertices a and b are assigned the same color, without loss of generality, we can

rotate colors of all vertices in the lower side. Similar method can be adopted

when bridge is a stitch edge. We adopt an O(|V | + |E|) algorithm [90] to

detect all bridge edges in decomposition graph.

A bridge vertex of a graph is a vertex whose removal disconnects the

graph into two or more components. Similar to bridge edge detection, we can

further simplify the decomposition graph by removing all the bridge vertices.
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An example of bridge vertex computation is illustrated in Fig. 2.13. This

simplification method is effective because for standard cell layouts, usually we

can choose the power and ground lines as the bridge vertices. By this way

we can significantly partition the layouts by rows. All bridge vertices can be

detected using an O(|V |+ |E|) search algorithm.

2.2.2.4 Post Refinement

Although the graph division techniques can dramatically reduce the

computational time to solve the TPLD problem, Kuang et al. [56] pointed out

that for some cases iterative vertex removal (IVR) may loss some optimality.

One example is illustrated in Fig. 2.14. The simplified layout graph (Fig.

2.14(b)) can be inserted stitch candidates and assigned legal colors (see Fig.

2.14(b)). However, when recover removed vertices, the vertex degree of a is

increased to 3, and there is no available color for it (see Fig. 2.14(c)). The

reason for this conflict is that during stitch candidate generation, vertex a is

not considered.

We propose a post refinement to resolve the conflicts caused by iter-

ative vertex removal. First we check whether the conflict can be cleared by

splitting a, if yes, one or more stitches would be introduced to a, then stop.

Otherwise, we re-calculate the color assignment on this portion, as illustrated

in Fig. 2.15. The initial layout graph would be extended to include vertex

a (Fig. 2.15(a)), thus the position of vertex a would be considered during

stitch candidate generation. As shown in Fig. 2.15 (c), no additional conflict
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Figure 2.14: Iterative vertex removal may introduce additional conflicts. (a)
Layout graph after iterative vertex removal; (b) Stitch generation and color
assignment on the graph; (c) After adding back the simplified vertices, one
additional conflict is introduced to vertex a.

would be introduced after recovering all vertices from stack. It shall be noted

although re-solving color assignment requires more computational time, our

initial results show that only small part of DG components need to apply the

post-stage.

a

(a)

a

(b)

a

(c)

Figure 2.15: An example of post refinement. (a) Extend layout graph to
include a; (b) Stitch generation and color assignment on the new graph; (c)
No additional conflict at final solution.
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2.2.3 Experimental Results

We implement our algorithm in C++ and test it on an Intel Core

2.9GHz Linux machine. We choose GUROBI [43] as the ILP solver, while

CSDP [15] as the SDP solver. ISCAS benchmarks from [100, 112] are scaled

down and modified as our test cases. The metal one layer is used for experi-

mental purposes, because it is one of the most complex layers in terms of layout

decomposition. The minimum coloring spacing mins is set as 120 for the first

ten cases and as 100 for the last five cases, as in [31, 32, 109]. Parameter α is

set as 0.1, thus the decomposition cost is calculated by cn# + 0.1 · st#, where

cn# and st# denote the conflict number and the stitch number, respectively.

(a) (b)

Figure 2.16: Part of S1488 decomposition result.

Fig. 2.16 illustrates part of the decomposition result for case S1488,

which can be decomposed in 0.1 second.

First we demonstrate the effectiveness of our stitch candidate genera-
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Table 2.2: DP Stitch v.s. TP Stitch
Circuit ILP w/o. TP Stitch ILP w. TP Stitch

st# cn# cost CPU(s) st# cn# cost CPU(s)
C432 1 3 3.1 0.47 4 1 1.4 0.62
C499 0 0 0 0.05 0 0 0 0.24
C880 5 3 3.5 0.33 8 1 1.8 0.49
C1355 3 0 0.3 0.09 3 0 0.3 0.14
C1908 1 0 0.1 0.25 1 0 0.1 0.31
C2670 3 4 4.3 0.45 7 1 1.7 0.5
C3540 6 5 5.6 0.81 8 2 2.8 1.31
C5315 5 4 4.5 0.76 9 1 1.9 0.94
C6288 87 149 157.7 13.9 217 18 39.7 16.2
C7552 20 8 10 1.28 27 2 4.7 2.37
S1488 2 0 0.2 0.12 2 0 0.2 0.09
S38417 63 25 31.3 4.03 76 19 26.6 5.14
S35932 83 59 67.3 9.36 99 47 56.9 13.15
S38584 135 49 62.5 8.6 157 43 58.7 11.6
S15850 121 54 66.1 8.56 130 40 53 10.7

avg. 35.7 24.2 27.8 3.27 49.9 11.7 16.7 4.25
ratio 1.0 1.0 1.0 1.0 1.40 0.48 0.60 1.30

tion. Table 2.2 compares the performance and runtime of ILP on two different

stitch candidates, i.e., DP stitch and TP stitch. “ILP w/o. TP stitch” and

“ILP w. TP stitch” apply DP stitch and TP stitch, respectively. Note that

here all graph division techniques are applied here. The columns “st#” and

“cn#” denote the sttich number and the conflict number. Column “CPU(s)”

is computational time in seconds. As discussed in Section 2.2.1.2, through ap-

plying TP stitch more stitch candidates would be generated, therefore we can

see from Table 2.2 that 30% more runtime would be introduced. However, TP

stitch overcomes the lost stitch problem in DP stitch, thus the decomposition
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cost is reduced by 40%. In other words, compared with DP stitch, TP stitch

can provide higher performance in terms of the conflict number and the stitch

number.

Secondly we show the effectiveness of the graph division, which consists

of a set of techniques: independent component computation (ICC), iterative

vertex removal (IVR) and other two bridge detection. Through applying these

division techniques, the decomposition graph size can be reduced. Generally

speaking, smaller size of decomposition graph, less runtime the ILP needs.

Table 2.3 compares the performance and runtime of ILP on two different de-

composition graphs. Here “ILP w. ICC” means the decomposition graphs

are only simplified by the ICC, while “ILP w. 4SPD” means all the division

techniques are used. Columns “TSE#” and “TCE#” denote the total stitch

edge number and total conflict edge number, respectively. From Table 2.3 we

can see that compared with only using ICC technique, further applying iter-

ative vertex removal and bridges detection is more effective: the stitch edge

number can be reduced by 92%, while the conflict number can be reduced by

93%. The columns “st#” and “cn#” show the stitch number and the conflict

number in the final decomposition results. “CPU(s)” is computational time in

seconds. Compared with the “ILP w. ICC”, the “ILP w. 4SPD” can achieve

the same results with much less of the runtime for some smaller cases. For

some big circuits, the runtimes of “ILP w. ICC” are unacceptable, i.e., longer

than two hours. Note that if no ICC technique is used, even for small circuits

like C432, the runtime for ILP is unacceptable.
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Figure 2.17: Value distribution in matrix X for cases C499 and C6288.

Here we show some more details of solutions in SDP. As discussed

before, if the value Xij is close to 1 or -0.5, it can be directly rounded to an

integer value. Otherwise, we have to rely on some mapping methods. Fig.

2.17 illustrates the Xij value distributions in circuit C499 and C6288. As we

can see that all for C499, the values are either in the range of [0.9, 1.0] or

in [−0.5,−0.4]. In other words, here SDP is effective and its results can be

directly used as final decomposition results. For the case C6288, since its result

consists of several stitches and conflicts, some Xij values are vague. But most

of the values are still distinguishable.

We further demonstrate the effectiveness of the post-refinement. Table

2.4 lists the decomposition results of two SDP based algorithm, and columns

“SDP w/o. Refinement” and “SDP w. Refinement” mean SDP without

and with post-refinemnt, respectively. As shown in Table 2.4, by additional
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Table 2.4: Effectiveness of Post-Refinement
Circuit SDP w/o. Refinement SDP w. Refinement

st# cn# cost CPU(s) st# cn# cost CPU(s)
C432 4 1 1.4 0.25 4 0 0.4 0.25
C499 0 0 0 0.12 0 0 0 0.12
C880 8 1 1.8 0.14 8 0 0.8 0.15
C1355 3 0 0.3 0.11 3 0 0.3 0.11
C1908 1 0 0.1 0.17 1 0 0.1 0.18
C2670 7 1 1.7 0.26 8 1 1.8 0.26
C3540 9 3 3.9 0.45 9 1 1.9 0.51
C5315 9 1 1.9 0.52 9 0 0.9 0.57
C6288 213 18 39.3 3.26 210 6 27 3.42
C7552 26 1 3.6 0.93 26 0 2.6 1.04
S1488 2 0 0.2 0.1 2 0 0.2 0.11
S38417 71 19 26.1 2.32 71 19 26.1 2.38
S35932 85 46 54.5 6.3 79 45 52.9 6.6
S38584 144 43 57.4 6.36 146 36 50.6 6.52
S15850 123 43 55.3 5.77 120 36 48 6.36

avg. 47 11.8 16.5 1.804 46.4 9.6 14.24 1.91
ratio 1.0 1.0 1.0 1.0 0.99 0.81 0.86 1.06

post-refinement stage, the decomposition costs can be reduced by 14%, while

only 6% of computational time is introduced.

Finally we compare our decomposition algorithms with the state-of-

the-art layout decomposers [31, 32], as shown in Table 2.5. Columns “ILP

w. All” and “SDP w. All” denote ILP based algorithm and SDP based

algorithm, respectively. Here “w. All” means all other techniques, e.g., TP

stitch, graph division, and post-refinement, are all applied. From Table 2.5 we

can see that compared with SDP based methods, the decomposers [31,32] are

faster, they introduce 35% more and 18% more decomposition costs. Although
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ILP based algorithm has performance in terms of conflict number, it introduces

the worst runtime. Compared with ILP, SDP based algorithm provides much

better tradeoff between runtime and performance, i.e., it can achieve very

comparable results (1% of conflict difference), but more than 3× speed-up.

In order to further evaluate the scalability of all the decomposers, we

create six additional benchmarks (“c5 total” - “c10 total”) to compare differ-

ent algorithms on very dense layouts. Table 2.6 lists the comparison results.

As we can see, compared with SDP based method, although ILP can achieve

the best decomposition results, its high runtime complexity makes it impos-

sible to solve one large dense layout, even all the graph division techniques

are adopted. On the other hand, although the decomposers [31, 32] are faster

that all the cases can be finished in one second, they introduce 92% more

and 87% more decomposition costs. It can be observed that for some cases

hundreds of additional conflicts would be reported. Each conflict may require

manual layout modification or high ECO efforts, which are very time consum-

ing. Therefore, we can see that for these dense layouts, SDP based algorithm

can achieve good tradeoff in terms of runtime and performance.

2.2.4 Summary

We have shown that triple patterning layout decomposition (TPLD)

problem is NP-hard, and runtime required to solve it exactly increases dra-

matically with the problem size. To reduce the problem size, we presented a

set of graph division techniques. Then we proposed a general integer linear
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programming (ILP) formulation to simultaneously minimize the conflicts and

stitches. Furthermore, we proposed a novel vector program, and its semidefi-

nite programming (SDP) relaxation to improve scalability for very dense lay-

outs. Experimental results showed that our methods are very effective.

2.3 Density Balanced Layout Decomposition for Triple
Patterning

In this section, we propose a high performance layout decomposer for

TPL. Compared with previous works, our decomposer provides not only less

conflict and stitch number, but also more balanced density. We focus on

the coloring algorithms and leave other layout related optimizations to post-

coloring stages, such as compensation for various mask overlay errors intro-

duced by scanner and mask write control processes. However, we do explicitly

consider balancing density during coloring, since it is known that mask write

overlay control generally benefits from improved density balance.

Our key contributions include the following. (1) Accurately integrate

density balance into the mathematical formulation; (2) Develop a three-way

partition based mapping, which not only achieves less conflicts, but also more

balanced density; (3) Propose several techniques to speedup the layout decom-

position; (4) Our experiments show the best results in solution quality while

maintaining better balanced density (i.e., less EPE).

48



2.3.1 Preliminaries and Problem Formulation

2.3.1.1 Why Balanced Density?

In layout decomposition, especially for TPL, density balance should

also be considered, along with the conflict and stitch minimization. A good

pattern density balance is also expected to be a consideration in mask CD and

registration control [64], while unbalanced density would cause lithography

hotspots as well as lowered CD uniformity due to irregular pitches [100]. How-

ever, from the algorithmic perspective, achieving a balanced density in TPL

could be harder than that in DPL. (1) In DPL, two colors can be more im-

plicitly balanced; while in TPL, often times existing/previous strategies may

try to do DPL first, and then do some “patch” with the third mask, which

causes a big challenge to “explicitly” consider the density balance. (2) Due

to the one more color, the solution space is much larger [23]. (3) Instead of

global density balance, local density balance should be considered to reduce

the potential hotspots, since neighboring patterns are one of the main sources

of hotspots. As shown in Fig. 2.18 (a)(b), when only global density balance

is considered, feature a is assigned white color. Since two black features are

close to each other, hotspot may be introduced. To consider the local density

balance, the layout is partitioned into four bins {b1, b2, b3, b4} (see Fig. 2.18

(c)). Feature a is covered by bins b1 and b2, therefore it is colored as blue to

maintain the local density balances for both bins (see Fig. 2.18 (d)).
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b1
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b4b3

b2b1
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Figure 2.18: Decomposed layout with (a) (b) global balanced density. (c) (d)
local balanced density in all bins.

2.3.1.2 Problem Formulation

Given input layout which is specified by features in polygonal shapes,

we partition the layout into n bins B = {b1, . . . , bn}. Note that neighboring

bins may share some overlapping. For each polygonal feature ri, we denote its

area as deni, and its area covered by bin bk as denki. Clearly deni ≥ denki for

any bin bk. During layout decomposition, all polygonal features are divided

into three masks. For each bin bk, we define three densities (dk1, dk2, dk3),

where dkc =
∑
denki, for any feature ri assigned to color c. Therefore, we can

define the local density uniformity as follows:

Definition 4 (Local Density Uniformity). For the bin bk ∈ S, the local density

uniformity is max{dkc}/min{dkc} given three densities dk1, dk2 and dk3 for three

masks and is used to measure the ratio difference of the densities. A lower value

50



means better local density balance. The local density uniformity is denoted by

DUk.

For convenience, we use the term density uniformity to refer to local

density uniformity in the rest of this section. It is easy to see that DUk is

always larger than or equal to 1. To keep a more balanced density in bin bk,

we expect DUk as small as possible, i.e., close to 1.

Problem 2 (Density Balanced Layout Decomposition). Given a layout

which is specified by features in polygonal shapes, the layout graphs and the

decomposition graphs are constructed. Our goal is to assign all vertices in the

decomposition graph into three colors (masks) to minimize the stitch number

and the conflict number, while keeping all density uniformities DUk as small

as possible.

2.3.2 Algorithms

The overall flow of our density balanced TPL decomposer is illustrated

in Fig. 2.19. It consists of two stages: graph construction / simplification,

and color assignment. Given input layout, layout graphs and decomposition

graphs are constructed, then graph simplifications [109] [32] are applied to

reduce the problem size. Two additional graph simplification techniques are

introduced. During stitch candidate generation, the methods described in [56]

are applied to search all stitch candidates for TPL. In second stage, for each

decomposition graph, color assignment is proposed to assign each vertex one
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Figure 2.19: Overall flow of proposed density balanced decomposer.

color. Before calling SDP formulation, fast color assignment trial is proposed

to achieve better speedup (see Section 2.3.2.4).

Stitch candidate generation is one important step to parse a layout.

[32] [38] pointed out that the stitch candidates generated by previous DPL

works cannot be directly applied in TPL layout decomposition. Therefore, we

provide a procedure to generate appropriate stitch candidates for TPL. The

main idea is that after projection, each feature is divided into several segments

each of which is labeled with a number representing how many other features

are projected onto it. If one segment is projected by less than two features,

then a stitch can be introduced. Note that to reduce the problem size, we

restrict the maximum stitch candidate number on each feature.
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Figure 2.20: An example of the layout decomposition flow.

Fig. 2.20 illustrates an example to show the decomposition process step

by step. Given the input layout as in Fig. 2.20(a), we partition it into a set

of bins {b1, b2, b3, b4} (see Fig. 2.20(b)). Then the layout graph is constructed
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(see Fig. 2.20(c)), where the ten vertices representing the ten features in the

input layout, and each vertex represents a polygonal feature (shape) where

there is an edge (conflict edge) between two vertices if and only if those two

vertices are within the minimum coloring distance mins. During the layout

graph simplification, the vertices whose degree equal or smaller than two are

iteratively removed from the graph. The simplified layout graph, shown in Fig.

2.20(d), only contains vertices a, b, c and d. Fig. 2.20(d) shows the projection

results. Followed by stitch candidate generation [56], there are two stitch

candidates for TPL (see Fig. 2.20(e)). Based on the two stitch candidates,

vertices a and d are divided into two vertices, respectively. The constructed

decomposition graph is given in Fig. 2.20(f). It maintains all the information

about conflict edges and stitch candidates, where the solid edges are the con-

flict edges while the dashed edges are the stitch edges and function as stitch

candidates. In each decomposition graph, a color assignment, which contains

semidefinite programming (SDP) formulation and partition based mapping, is

carried out. During color assignment, the six vertices in the decomposition

graph are assigned into three groups: {a1, c}, {b} and {a2, d1, d2} (see Fig.

2.20(g) and Fig. 2.20(h)). Here one stitch on feature a is introduced. After

iteratively recover the removed vertices, the final decomposed layout is shown

in Fig. 2.20(i). Our last process should be decomposition graphs merging,

which combines the results on all decomposition graphs. Since this example

has only one decomposition graph, this process is skipped.

Density balance, especially local density balance, is seamlessly inte-
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Table 2.7: Notations used
CE the set of conflict edges
SE the set of stitch edges
V the set of features
B the set of local bins

grated into each step of our decomposition flow. In this section, we first elab-

orate how to integrate the density balance into the mathematical formulation

and corresponding SDP formulation. Followed by some discussion for density

balance in all other steps.

2.3.2.1 Density Balanced SDP Algorithm

For each decomposition graph, density balanced color assignment is

carried out. Some notations used are listed in Table 2.7.

The mathematical formulation for the general density balanced layout

decomposition is shown in (2.9), where the objective is to simultaneously min-

imize the conflict number, the stitch number and the density uniformity of

all bins. Here α and β are user-defined parameters for assigning the relative

weights among the three values.

Here xi is a variable representing the color (mask) of feature ri, cij is a

binary variable for the conflict edge eij ∈ CE, and sij is a binary variable for

the stitch edge eij ∈ SE. The constraints (2.9a) and (2.9b) are used to evaluate

the conflict number and stitch number, respectively. The constraint (2.9e) is

nonlinear, which makes the program (2.9) hard to be formulated into integer

55



min
∑

eij∈CE

cij + α
∑

eij∈SE

sij + β ·
∑
bk∈B

DUk (2.9)

s.t. cij = (xi == xj) ∀eij ∈ CE (2.9a)

sij = xi ⊕ xj ∀eij ∈ SE (2.9b)

xi ∈ {1, 2, 3} ∀ri ∈ V (2.9c)

dkc =
∑
xi=c

denki ∀ri ∈ V, bk ∈ B (2.9d)

DUk = max{dkc}/min{dkc} ∀bk ∈ B (2.9e)

linear programming (ILP) as in [109]. Similar nonlinear constraints occur in

the floorplanning problem [19], where Tayor expansion is used to linearize the

constraint into ILP. However, Tayor expansion will introduce the penalty of

accuracy. Compared with the traditional time consuming ILP, semidefinite

programming (SDP) has been shown to be a better approach in terms of

runtime and solution quality tradeoffs [109]. However, how to integrate the

density balance into the SDP formulation is still an open question. In the

following we will show that instead of using the painful Tayor expansion, this

nonlinear constraint can be integrated into SDP without losing any accuracy.

In SDP formulation, the objective function is the representation of vec-

tor inner products, i.e., ~vi · ~vj. At the first glance, the constraint (2.9e) cannot

be formulated into an inner product format. However, we will show that

density uniformity DUk can be optimized through considering another form

DU∗k = dk1 ·dk2+dk1 ·dk3+dk2 ·dk3. This is based on the following observation:

maximizing DU∗k is equivalent to minimizing DUk.
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Lemma 3. DU∗k = 2/3 ·∑i,j∈V denki · denkj · (1− ~vi · ~vj), where denki is the

density of feature ri in bin bk.

Proof. First of all, let us calculate d1 · d2. For all vectors ~vi = (1, 0) and all

vectors ~vj = (−1
2
,
√
3
2

), we can see that∑
i

∑
j

leni · lenj · (1− ~vi · ~vj) =
∑
i

∑
j

leni · lenj · 3/2

=3/2 ·
∑
i

leni

∑
j

lenj = 3/2 · d1 · d2

So d1·d2 = 2/3·∑i

∑
j leni·lenj ·(1−~vi·~vj), where ~vi = (1, 0) and ~vj = (−1

2
,
√
3
2

).

We can also calculate d1 · d3 and d2 · d3 using similar methods. Therefore,

DU2 = d1 · d2 + d1 · d3 + d2 · d3

= 2/3 ·
∑
i,j∈V

leni · lenj · (1− ~vi · ~vj)

Because of Lemma 3, the DU∗k can be represented as a vector inner

product, then we have achieved the following theorem.

Theorem 3. Maximizing DU∗k can achieve better density balance in bin bk.

Note that we can remove the constant
∑

i,j∈V denki · denkj · 1 in DU∗k

expression. Similarly, we can eliminate the constants in the calculation of the

conflict and stitch numbers. The simplified vector program is as follows:

Formulation (2.10) is equivalent to the mathematical formulation (2.9),

and it is still NP-hard to be solved exactly. Constraint (2.10b) requires the
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min
∑

eij∈CE

(~vi · ~vj)− α
∑

eij∈SE

(~vi · ~vj)− β ·
∑
bk∈B

DU∗k (2.10)

s.t. DU∗k = −
∑
i,j∈V

denki · denkj · (~vi · ~vj) ∀bk ∈ B (2.10a)

~vi ∈ {(1, 0), (−1

2
,

√
3

2
), (−1

2
,−
√

3

2
)} (2.10b)

solutions to be discrete. To achieve a good tradeoff between runtime and

accuracy, we can relax (2.10) into a SDP formulation, as shown in Theorem 4.

Theorem 4. Relaxing vector program (2.10) can get the SDP formulation

(2.11).

SDP: min A •X (2.11)

Xii = 1, ∀i ∈ V (2.11a)

Xij ≥ −
1

2
, ∀eij ∈ CE (2.11b)

X � 0 (2.11c)

where Aij is the entry that lies in the i-th row and the j-th column of

matrix A:

Aij =


1 + β ·∑k denki · denkj, ∀bk ∈ B, eij ∈ CE
−α + β ·∑k denki · denkj, ∀bk ∈ B, eij ∈ SE

β ·∑k denki · denkj, otherwise

Due to space limit, the detailed proof is omitted. The solution of (2.11)

is continuous instead of discrete, and provides a lower bound of vector program

(2.10). en other words, (2.11) provides an approximated solution to (2.10).
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2.3.2.2 Density Balanced Mapping

Each Xij in solution of (2.11) corresponds to a feature pair (ri, rj). The

value of Xij provides a guideline, i.e., whether two features ri and rj should

be in same color. If Xij is close to 1, features ri and rj tend to be in the same

color (mask); while if it is close to −0.5, ri and rj tend to be in different colors

(masks). With these guidelines a mapping procedure is adopted to finally

assign all input features into three colors (masks).

In [109], a greedy approach was applied for the final color assignment.

The idea is straightforward: all Xij values are sorted, and vertices ri and rj

with larger Xij value tend to be in the same color. The Xij can be classified

into two types: clear and vague. If most of the Xijs in matrix X are clear

(close to 1 or -0.5), this greedy method may achieve good result. However,

if the decomposition graph is not 3-colorable, some values in matrix X are

vague. For the vague Xij, e.g., 0.5, the greedy method may not be so effective.

Contrary to the previous greedy approach, we propose a partition based

mapping, which can solve the assignment problem for the vague Xijs in a

more effective way. The new mapping is based on a three-way maximum-cut

partitioning. The main ideas are as follows. If a Xij is vague, instead of

only relying on the SDP solution, we also take advantage of the information

in decomposition graph. The information is captured through constructing

a graph, denoted by GM . Through formulating the mapping as a three-way

partitioning on the graph GM , our mapping can provide a global view to search

better solutions.
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Algorithm 4 Partition based Mapping

Require: Solution matrix X of the program (2.11).
1: Label each non-zero entry Xi,j as a triplet (Xij, i, j);
2: Sort all (Xij, i, j) by Xij;
3: for all triples with Xij > thunn do
4: Union(i, j);
5: end for
6: for all triples with Xij < thsp do
7: Separate(i, j);
8: end for
9: Construct graph GM ;
10: if graph size ≤ 3 then
11: return;
12: else if graph size ≤ 7 then
13: Backtracking based three-way partitioning;
14: else
15: FM based three-way partitioning;
16: end if

Algorithm 4 shows our partition based mapping procedure. Given the

solutions from program (2.11), some triplets are constructed and sorted to

maintain all non-zero Xij values (lines 1–2). The mapping incorporates two

stages to deal with the two different types. The first stage (lines 3–8) is similar

to that in [109]. If Xij is clear then the relationship between vertices ri and

rj can be directly determined. Here thunn and thsp are user-defined threshold

values. For example, if Xij > thunn, which means that ri and rj should be in

the same color, then function Union(i, j) is applied to merge them into a large

vertex. Similarly, if Xij < thsp, then function Separate(i, j) is used to label

ri and rj as incompatible. In the second stage (lines 9–16) we deal with the

vague Xij values. During the previous stage some vertices have been merged,
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Figure 2.21: Density Balanced Mapping. (a) Decomposition graph. (b) Con-
struct graph GM . (c) Mapping result with cut value 8.1 and density uni-
formities 24. (d) A better mapping with cut 8.1 and density uniformities
23.

therefore the total vertex number is not large. Here we construct a graph GM

to represent the relationships among all the remanent vertices (line 9). Each

edge eij in this graph has a weight representing the cost if vertices i and j

are assigned into same color. Therefore, the color assignment problem can be

formulated as a maximum-cut partitioning problem on GM (line 10–16).

Through assigning a weight to each vertex representing its density,

graph GM is able to balance density among different bins. Based on the
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GM , a partitioning is performed to simultaneously achieve a maximum-cut

and balanced weight among different parts. Note that we need to modify the

gain function, then in each move, we try to achieve a more balanced and larger

cut partitions.

An example of the density balanced mapping is shown in Fig. 2.21.

Based on the decomposition graph (see Fig. 2.21 (a)), SDP is formulated.

Given the solutions of SDP, after the first stage of mapping, vertices a2 and

d2 are merged in to a large vertex. As shown in Fig. 2.21(b), the graph GM

is constructed, where each vertex is associated with a weight. There are two

partition results with the same cut value 8.1 (see Fig. 2.21 (c) and Fig. 2.21

(d)). However, their density uniformities are 24 and 23, respectively. To keep

a more balanced density result, the second partitioning in Fig. 2.21 (c) is

adopted as color assignment result.

It is well known that the maximum-cut problem, even for a 2-way

partition, is NP-hard. However, we observe that in many cases, after the

global SDP optimization, the graph size of GM could be quite small, i.e., less

than 7. For these small cases, we develop a backtracking based method to

search the entire solution space. Note that here backtracking can quickly find

the optimal solution even through three-way partitioning is NP-hard. If the

graph size is larger, we propose a heuristic method, motivated by the classic

FM partitioning algorithm [33] [82]. Different from the classic FM algorithm,

we make the following modifications. (1) In the first stage of mapping, some

vertices are labeled as incomparable, therefore before moving a vertex from
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one partition to another, we should check whether it is legal. (2) Classical FM

algorithm is for min-cut problem, we need to modify the gain function of each

move to achieve a maximum cut.

The runtime complexity of graph construction is O(m), where m is the

vertex number in GM . The runtime of three-way maximum-cut partitioning

algorithm is O(mlogm). Besides, the first stage of mapping needs O(n2logn)

[109]. Since m is much smaller than n, the complexity of density balanced

mapping is O(n2logn).

2.3.2.3 Density Balanced Graph Division

Here we show that the layout graph simplification, which was proposed

in [109], can consider the local density balance as well. During layout graph

simplification, we iteratively remove and push all vertices with degree less

than or equal to two. After the color assignment on the remained vertices, we

iteratively recover all the removed vertices and assign legal colors. Instead of

randomly picking one, we search a legal color which is good for the density

uniformities.

2.3.2.4 Speedup Techniques

Our layout decomposer applies a set of graph simplification techniques

proposed by recent works:

• Independent Component Computation [109] [32] [56];
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• Vertex with Degree Less than 3 Removal [109] [32] [56];

• 2-Edge-Connected Component Computation [109] [32] [56];

• 2-Vertex-Connected Component Computation [32] [56].

Apart from the above graph simplifications, our decomposer proposes a set of

novel speedup techniques, which would be introduced in the following.
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Figure 2.22: Layout graph cut vertex stitch forbiddance.

Our first technique is called LG Cut Vertex Stitch Forbiddance.

A vertex of a graph is called a cut vertex if its removal decomposes the graph

into two or more connected components. Cut vertices can be identified through

the process of bridge computation [109]. During stitch candidate generation,

forbidding any stitch candidate on cut vertices can be helpful for later de-

composition graph simplification. Fig. 2.22 (a) shows a layout graph, where

feature a is a cut vertex, since its removal can partition the layout graph into

two parts: {b, c, d} and {e, f, g}. If stitch candidates are introduced within a,

the corresponding decomposition graph is illustrated in Fig. 2.22 (b), which is
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Figure 2.23: DG vertex clustering to reduce the decomposition graph size.

hard to be further simplified. If we forbid the stitch candidate on a, the cor-

responding decomposition graph is shown in Fig. 2.22 (c), where a is still cut

vertex in decomposition graph. Therefore we can apply 2-connected compo-

nent computation [32] to simplify the problem size, and apply color assignment

separately (see Fig. 2.22 (d)).

Our second technique, Decomposition graph vertex clustering, is

a speedup technique to further reduce the decomposition graph size. As shown

in Fig. 2.23 (a), vertices a and d1 share the same conflict relationships against

b and c. Besides, there is no conflict edges between a and d1. If no conflict

is introduced, vertices a and d1 should be assigned the same color, therefore

we can cluster them together, as shown in Fig. 2.23 (b). Note that the

stitch and conflict relationships are also merged. Applying vertex clustering

in decomposition graph can further reduce the problem size.

Our third technique is called Fast Color Assignment Trial. Al-

though the SDP and the partition based mapping can provide high perfor-
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mance for color assignment, it is still expensive to be applied to all the decom-

position graphs. We derive a fast color assignment trial before calling SDP

based method. If no conflict or stitch is introduced, our trial solves the color

assignment problem in linear time. Note that SDP method is skipped only

when decomposition graph can be colored without stitch or conflict, our fast

trial does not lose any solution quality. Besides, our preliminary results show

that more than half of the decomposition graphs can be decomposed using

this fast method. Therefore, the runtime can be dramatically reduced.

Algorithm 5 Fast Color Assignment Trial

Require: Decomposition graph G, stack S.
1: while ∃n ∈ G s.t. dconf (n) < 3 & dstit(n) < 2 do
2: S.push(n); G.delete(n);
3: end while
4: if G is not empty then
5: Recover all vertices in S; return FALSE;
6: else
7: while !S.empty() do
8: n = S.pop(); G.add(n);
9: Assign n a legal color;
10: end whilereturn TRUE;
11: end if

The fast color assignment trial is shown in Algorithm 5. First, we

iteratively remove the vertex with conflict degree (dconf ) less than 3 and stitch

degree (dstit) less than 2 (lines 1–3). If some vertices cannot be removed, we

recover all the vertices in stack S, then return false; Otherwise, the vertices in

S are iteratively popped (recovered) (lines 8–12). For each vertex n popped,

since it is connected with at most one stitch edge, we can always assign one
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color without introducing conflict or stitch.

2.3.3 Experimental Results

We implement our decomposer in C++ and test it on an Intel Xeon

3.0GHz Linux machine with 32G RAM. ISCAS 85&89 benchmarks from [109]

are used, where the minimum coloring spacing dism was set the same with

previous studies [109] [32]. Besides, to perform a comprehensive comparison,

we also test on other two benchmark suites. The first suite is with six dense

benchmarks (“c9 total”-“s5 total”), while the second suite is two synthesized

OpenSPARC T1 designs “mul top” and “exu ecc” with Nangate 45nm stan-

dard cell library [3]. When processing these two benchmark suites we set the

minimum coloring distance dism = 2 · wmin + 3 · smin, where wmin and smin

denote the minimum wire width and the minimum spacing, respectively. The

parameter α is set as 0.1. The size of each bin is set as 10 · dism × 10 · dism.

We use CSDP [15] as the solver for the semidefinite programming (SDP).

In the first experiment, we compare our decomposer with the state-of-

the-art layout decomposers which are not balanced density aware [109] [32] [56].

We obtain the binary files from [109] and [32]. Since currently we cannot

obtain the binary for decomposer in [56], we directly use the results listed

in [56]. Here our decomposer is denoted as “SDP+PM”, where “PM” means

the partition based mapping. The β is set as 0. In other words, SDP+PM

only optimizes for stitch and conflict number. Table 2.8 shows the comparison

1The results of DAC’13 decomposition are from [56].
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in terms of runtime and performance. For each decomposer we list its stitch

number, conflict number, cost and runtime. The columns “cn#” and “st#”

denote the conflict number and the stitch number, respectively. “cost” is the

cost function, which is set as cn# +0.1× st#. “CPU(s)” is computational

time in seconds.

First, we compare SDP+PM with the decomposer in [109], which is

based on SDP formulation as well. From Table 2.8 we can see that the new

stitch candidate generation (see [56] for more details) and partition-based map-

ping can achieve better performance (reducing the cost by around 55%). Be-

sides, SDP+PM can get nearly 4× speed-up. The reason is that, compared

with [109], a set of speedup techniques, i.e., 2-vertex-connected component

computation, layout graph cut vertex stitch forbiddance, decomposition graph

vertex clustering, and fast color assignment trial, are proposed. Second, we

compare SDP+PM with the decomposer in [32], which applies several graph

based simplifications and maximum independent set (MIS) based heuristic.

From Table 2.8 we can see that although the decomposer in [32] is faster,

MIS based heuristic has worse solution qualities (around 33% cost penalty

compared to SDP+PM). Compared with the decomposer in [56], although

SDP+PM is slower, it can reduce the cost by around 6%.

In addition, we compare SDP-PM with other two decomposers [109] [32]

for some very dense layouts, as shown in Table 2.9. We can see that for some

cases the decomposer in [109] cannot finish in 1000 seconds. Compared with

[32] work, SDP+PM can reduce cost by 65%. It is observed that compared
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Table 2.10: Balanced density impact on EPE

Circuit
SDP+PM SDP+PM+DB

cost CPU(s) EPE# cost CPU(s) EPE#
C432 0.4 0.2 0 0.4 0.2 0
C499 0 0.2 0 0 0.2 0
C880 0.7 0.3 10 0.7 0.3 7
C1355 0.3 0.3 18 0.3 0.3 15
C1908 0.1 0.3 130 0.1 0.3 58
C2670 0.6 0.4 168 0.6 0.4 105
C3540 1.8 0.5 164 1.8 0.5 79
C5315 0.9 0.7 225 1.0 0.7 115
C6288 22.3 2.7 31 32.0 2.8 15
C7552 2.2 1.1 273 2.5 1.1 184
S1488 0.2 0.3 72 0.2 0.3 44
S38417 24.5 7.9 420 24.5 8.5 412
S35932 48.8 21.4 1342 49.8 24 1247
S38584 48.8 22.2 1332 49.1 23.7 1290
S15850 44.1 20 1149 47.3 21.3 1030

avg. 13.0 5.23 355.6 14.0 5.64 306.7
ratio 1.0 1.0 1.0 1.07 1.08 0.86

with other decomposers, SDP+PM demonstrates much better performance

when the input layout is dense. The reason may be that when the input layout

is dense, through graph simplification, each independent problem size may still

be quite large, then SDP based approximation can achieve better results than

heuristic. It can be observed that for the last three cases our decomposer

could reduce thousands of conflicts. Each conflict may require manual layout

modification or high ECO efforts, which are very time consuming. Therefore,

even our runtime is more than [32], it is still acceptable (less than 6 minutes

for the largest benchmark).
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In the second experiment, we test our decomposer for the density bal-

ancing. We analyze edge placement error (EPE) using Calibre-Workbench [2]

and industry-strength setup. For analyzing the EPE in our test cases, we use

systematic lithography process variation, such as focus ±50nm and dose ±5%.

In Table 2.10, we compare SDP+PM with “SDP+PM+DB”, which is our

density balanced decomposer. Here β is set as 0.04 (we have tested different β

values, we found that bigger β does not help much any more; meanwhile, we

still want to give conflict and stitch higher weights). Column “cost” also lists

the weighted cost of conflict and stitch, i.e., cost = cn#+0.1×st#.

From Table 2.10 we can see that by integrating density balance into

our decomposition flow, our decomposer (SDP+PM+DB) can reduce EPE

hotspot number by 14%. Besides, density balanced SDP based algorithm can

maintain similar performance to the baseline SDP implementation: only 7%

more cost of conflict and stitch, and only 8% more runtime. In other words,

our decomposer can achieve a good density balance while keeping comparable

conflicts/stitches.

We further compare the density balance, especially EPE distributions

for very dense layouts. As shown in Table 2.11, our density balanced decom-

poser (SDP+PM+DB) can reduce EPE distribution number by 7%. Besides,

for very dense layouts, density balanced SDP approximation can maintain

similar performance with plain SDP implementation: only 4% more runtime.

In addition, we demonstrate the scalability of our decomposer, espe-

cially the SDP formulation. Penrose benchmarks from [23] are used to explore
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Table 2.11: Additional Comparison for Density Balance

Circuit
SDP+PM SDP+PM+DB

cost CPU(s) EPE# cost CPU(s) EPE#
mul top 145.1 57.6 632 147.5 63.8 630
exu ecc 28.4 4.3 140 33.9 4.8 138
c9 total 217.9 7.7 60 218.6 8.3 60
c10 total 435.6 19 77 431.3 19.6 76
s2 total 1225.6 70.7 482 1179.3 75 433
s3 total 2015.2 254.5 1563 1937.5 274.5 1421
s4 total 2260.1 306 1476 2176.3 310 1373
s5 total 2759.3 350.4 1270 2673.9 352 1171

avg. 1135.9 134 712.5 1099.8 138.5 662.8
ratio 1.0 1.0 1.0 0.97 1.04 0.93

the scalability of SDP runtime. No graph simplification is applied, therefore

all runtime is consumed by solving SDP formulation. Fig. 2.24 illustrates

the relationship between graph (problem) size against SDP runtime. Here the

X axis denotes the number of nodes (e.g., the problem size), and the Y axis

shows the runtime. We can see that the runtime complexity of SDP is less

than O(n2.2).

2.3.4 Summary

We have proposed a high performance TPL layout decomposer with

balanced density. Density balancing was integrated into all the key steps of

our decomposition flow. In addition, we proposed a set of speedup techniques,

such as layout graph cut vertex stitch forbiddance, decomposition graph vertex

clustering, and fast color assignment trial. Compared with state-of-the-art

frameworks, our decomposer demonstrates the best performance in minimizing
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Figure 2.24: Scalability of SDP Formulation.

the cost of conflicts and stitches. Furthermore, our balanced decomposer can

obtain less EPE while maintaining very comparable conflict and stitch results.

As TPL may be adopted by industry for 14nm/11nm nodes, we believe more

research will be needed to enable TPL-friendly design and mask synthesis.

2.4 Layout Decomposition for Triple Patterning with
End-Cutting

So far we have discussed the conventional process of TPL, called LELELE,

which is with the same principle of litho-etch-litho-etch (LELE) type double

patterning lithography (DPL). Here “L” and “E” represent one lithography

process and one etch process, respectively. Although LELELE process has

been widely studied by industry and academia, there are twofold issues de-
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Target/ Final 1st Mask 2nd Mask 3rd Mask

a b

c d

(a) (b)

Figure 2.25: Process of LELELE type triple patterning lithography (a) Target
features; (b) Layout decomposition with one conflict introduced.

Target/ Final 1st Mask 2nd Mask Trim Mask

(a) (b) (c)

Figure 2.26: Process of LELE-EC type triple patterning lithography (a) Tar-
get features; (b) First and second mask patterns; (c) Trim mask, and final
decomposition without conflict.

rived. On one side, even with stitch insertion, there are some native conflicts

in LELELE, like 4-clique conflict [109]. For example, Fig. 2.25 illustrates a

4-clique conflict among features a, b, c, and d. No matter how to assign the

colors, there is at least one conflict. Since this 4-clique structure is common

in advanced standard cell design, LELELE type TPL still suffers from the

native conflict problem. On the other side, compared with LELE type double

patterning, there are more serious overlapping problem in LELELE [12].

To overcome all these limitations from LELELE, recently Lin [61] pro-

posed a new TPL manufacturing process, called LELE-end-cutting (LELE-
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EC). As a TPL, this new manufacturing process contains three mask steps,

namely first mask, second mask, and trim mask. Fig. 2.26 illustrates an ex-

ample of the LELE-EC process. To generate target features in Fig. 2.26(a),

the first and second masks are used for pitch splitting, which is similar to

LELE type DPL process. These two masks are shown in Fig. 2.26(b). Fi-

nally, a trim mask is applied to trim out the desired region as in Fig. 2.26(c).

In other words, the trim mask is used to generate some end-cuts to further

split feature patterns. Although the target features are not LELELE-friendly,

they are LELE-EC process friendly that with LELE-EC the features can be

decomposed without any conflict. In addition, if all cuts are properly designed

or distributed, LELE-EC can introduce better printability then conventional

LELELE process [61].

For a design with four short features, Fig. 2.27 and Fig. 2.28 present

its simulated images through LELELE and LELE-EC processes, respectively.

The lithography simulations are computed based on the partially coherent

imaging system, where the 193nm illumination source is modeled as a kernel

matrix given by [13]. To model the photoresist effect with the exposed light

intensity, we use the constant threshold model with threshold 0.225. We can

make several observations from these simulated images. First, there are some

round-offs around the line ends (see Fig. 2.27 (c)). Second, to reduce the

round-off issues, as illustrated in Fig. 2.28 (b), in LELE-EC process the short

lines can be merged into longer lines, then the trim mask is used to cut off

some spaces. It shall be noted that there might be some corner roundings due
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(a) (b) (c)

Figure 2.27: LELELE process example. (a) Decomposed result; (b) Simulated
images for different masks; (c) Combined simulated image as the final printed
patterns.

(a) (b) (c)

Figure 2.28: LELE-EC process example. (a) Decomposed result; (b) Simulated
images for different masks, where orange pattern is trim mask; (c) Combined
simulated image as the final printed patterns.

to the edge shorting of trim mask patterns. However, since the line shortening

or rounding is a strong function of the line width [67], and we observe that

usually trim mask patterns can be much longer than line-end width, thus we

assume the rounding caused by the trim mask is insignificant. This assumption

is demonstrated as in Fig. 2.28 (c).

Many research have been carried out to solve the corresponding design

problems for LELELE type TPL. The layout decomposition problem has been

well studied [23,32,56,92,105,106,109,115]. In addition, the related constraints
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have been considered in early physical design stages, like routing [62, 65],

standard cell design [91, 107], and detailed placement [107]. However, only

few attempts have been made to address the LELE-EC layout decomposition

problem. It shall be noted that although trim mask can bring about bet-

ter printability, it does introduce more design challenge, especially in layout

decomposition stage. In this section, we propose a comprehensive study for

LELE-EC layout decomposition. Given a layout which is specified by features

in polygonal shapes, we extract the geometrical relationships and construct

the conflict graphs. Furthermore, the compatibility of all end-cuts candidates

are also modeled in the conflict graphs. Based on the conflict graphs, integer

linear programming (ILP) is formulated to assign each vertex into one layer.

Our goal in the layout decomposition is to minimize the conflict number, and

at the same time minimize the overlapping errors.

2.4.1 Preliminaries and Problem Formulation

2.4.1.1 Layout Graph

1 2

3 4

5 6

7

1 2
3 4
5 6

7
(a) (b)

Figure 2.29: Layout graph construction. (a) Input layout; (b) Layout graph
with conflict edges;

Given a layout which is specified by features in polygonal shapes, lay-
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out graph [109] is constructed. As shown in Fig. 2.29, the layout graph is

an undirected graph with a set of vertices V and a set of conflict edges CE.

Each vertex in V represents one input feature. There is an edge in CE if and

only if the two features are within minimum coloring distance dism of each

other. In other words, each edge in CE is a conflict candidate. Fig. 2.29(a)

shows one input layout, and the corresponding layout graph is in Fig. 2.29(b).

Here the vertex set V = {1, 2, 3, 4, 5, 6, 7}, while the conflict edge set CE =

{(1, 2), (1, 3), (1, 4), (2, 4), (3, 4), (3, 5), (3, 6), (4, 5), (4, 6), (5, 6), (5, 7), (6, 7)}. For

each edge (conflict candidate), we check whether there is an end-cut candidate.

For each end-cut candidate i − j, if it is applied, then features i and j will

be merged into one feature. By this way the corresponding conflict edge can

be removed. If stitch is considered in layout decomposition, some vertices in

layout graph can be split into several segments. The segments in one lay-

out graph vertex are connected through stitch edges. All these stitch edges

are included in a set, called SE. Please refer to [48] for the details of stitch

candidate generation.

2.4.1.2 End-Cut Graph

Since all the end-cuts are manufactured through one single exposure

process, they should be distributed far away from each other. That is, two

end-cuts have conflict if they are within minimum end-cut distance disc of

each other. Note that these conflict relationships among end-cuts are not

available in layout graph, therefore we construct end-cut graph to store the
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(a) (b)

1 2
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5 6

7

1-2

3-4

5-6

5-7

ec12 and ec34 have conflict

ec34 and ec56 can be 
merged into one endcut

(c)

Figure 2.30: End-cut graph construction. (a) Input layout; (b) Generated
end-cut candidates. (c) End-cut graph.

relationships. Fig. 2.30(a) gives an input layout example, with all end-cut

candidates pointed out in Fig. 2.30 (b); and the corresponding end-cut graph

is shown in Fig. 2.30 (c). Each vertex in the end-cut graph represents one

end-cut. There is an solid edge if and only if the two end-cuts conflict to each

other. There is an dash edge if and only if they are close to each other, and

they can be merged into one larger end-cut.

2.4.1.3 Problem Formulation

Here we give the problem formulation of layout decomposition for triple

patterning with End-Cutting (LELE-EC).

Problem 3 (LELE-EC Layout Decomposition). Given a layout which

is specified by features in polygonal shapes, the layout graph and the end-cut

graph are constructed. The LELE-EC layout decomposition assigns all vertices

in layout graph into one of two colors, and select a set of end-cuts in end-cut

graph. The objectives is to minimize the number of conflict and/or stitch.

With the end-cut candidates generated, the LELE-EC layout decom-
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position is more complicated since more constraints are derived. Even there is

no end-cut candidate, LELE-EC layout decomposition is similar to the LELE

type DPL layout decomposition. Sun et al. in Ref. [85] showed that LELE

layout decomposition with minimum conflict and minimum stitch is NP-hard,

thus it is not hard to see that LELE-EC layout decomposition is NP-hard as

well. NP-hard problem is a set of computational search problems that are

difficult to solve [24]. No NP-hard problem can be solved in polynomial time

in the worst case under the assumption that P 6= NP .

2.4.2 Algorithms

End-cut Candidate 
Generation

Layout Graph and End-cut 
Graph

Decomposition on Graph

Output Masks

ILP Formulation

Graph Simplification

Layout

Decomposition 
Rules

Figure 2.31: Overall flow of our layout decomposer.

The overall flow of our layout decomposer is illustrated in Fig. 2.31.

First we generate all end-cut candidates to find out all possible end-cuts. Then

we construct the layout graph and the end-cut graph to transform the origi-

nal geometric problem into a graph problem, and thus the LELE-EC layout
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decomposition can be modeled as a coloring problem in layout graph and the

end-cut selection problem in end-cut graph. Both the coloring problem and the

end-cut selection problem can be solved through one ILP formulation. Since

the ILP formulation may suffer from runtime overhead problem, we propose a

set of graph simplification techniques. Besides, to further reduce the problem

size, some end-cut candidates are pre-selected before ILP formulation. All the

steps in the flow are detailed in the following sections.

2.4.2.1 End-Cut Candidate Generation

In this section we will explain the details of our algorithm to generate all

end-cut candidates. An end-cut candidate is generated between two conflict-

ing polygonal shapes. It should be stressed that compared with the end-cut

generation in Ref. [104], our methodology has the following two differences.

S1 S2S2S1

ecb1

ecb2

(a) (b)

Figure 2.32: An end-cut can have multiple end-cut boxes.

• An end-cut can be a collection of multiple end-cut boxes depending on

the corresponding shapes. For instance, two end-cut boxes (ecb1 and

ecb2) need to be generated between shapes S1 and S2 as shown in Fig
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2.32. We propose a shape-edge dependent algorithm to generate the

end-cuts with multiple end-cut boxes.

• We consider the overlapping and variations caused by end-cuts. Two

lithography simulations are illustrated in Fig. 2.33 and Fig. 2.34, re-

spectively. In Fig. 2.33 we find some bad patterns or hotspots, due to

the cuts between two long edges. In Fig. 2.34 we can see that the final

patterns are in better shape. Therefore, to reduce the manufacturing

hotspot from trim mask, during end-cut candidate generation we avoid

the cuts along two long edges.

(a) (b) (c)

Figure 2.33: (a) Decomposition example where cuts are along long edges; (b)
Simulated images for different masks; (c) Combined simulated image with
some hotspots.

Algorithm 6 presents the key steps of generating end-cut between two

polygonal shapes S1 and S2. A polygonal shape consists of multiple edges. For

each of the shape-edge-pair, one taken from S1 and another from S2, the pos-

sibility of generation of end-cut box (ecBox) is explored and we store all such

end-cut boxes in ecBoxSet (Lines 2-9). The function ‘generateEndCutBox(se1,

se2)’ generates an end-cut box ecBox between the shape-edges se1 and se2.
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(a) (b) (c)

Figure 2.34: (a) Decomposition example where cuts are between line ends;
(b) Simulated images for different masks; (c) Combined simulated image with
good printability.

Fig. 2.35 shows how end-cut boxes are generated between two shape-

edges under different situations. In Fig. 2.35(a), the end-cut box is between

two shape-edges which are oriented in same direction and overlap in its x-

coordinates. This type of end-cut box is called as edge-edge end-cut box. For

Fig. 2.35(b) the shape edges are in same direction but they do not overlap,

and in Fig. 2.35(c), the shape-edges are oriented in different directions. The

end-cut boxes generated in these two cases are called corner-corner end-cut

boxes. No end-cut box is generated in case of Fig. 2.35(d). In addition,

end-cut boxes are not generated for the following cases: (i) the end-cut box

is overlapping with any existing polygonal shape in the layout, (ii) the height

(h) or width (w) of the box is not within some specified range, i.e., when h, w

do not obey the following constraints hlow ≤ h ≤ hhigh and wlow ≤ w ≤ whigh.

Then all generated end-cut boxes between two shapes are divided into

independent components IC (Line 10) based on finding connected components

of a graphG = (V,E) with V = {vi} = set of all end-cut boxes and (vi, vj) ∈ E,

if vi overlaps with vj. The overlap between two end-cut boxes is classified into
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Algorithm 6 Shape-edge dependent end-cut generation algorithm between
two shapes S1 and S2

1: Procedure generateEndCut (S1, S2);
2: for all se1 ∈ edges(S1) do
3: for all se2 ∈ edges(S2) do
4: ecBox = generateEndCutBox (se1, se2);
5: if ecBox 6= NULL then
6: Store ecBox in ecBoxSet;
7: end if
8: end for
9: end for
10: Divide ecBoxSet into independent components (IC);
11: if |ecBoxSet| = |V | then
12: Print all boxes;
13: return true;
14: end if
15: for all ic ∈ IC do
16: Remove corner-corner end-cut boxes overlapping with edge-edge end-

cut box;
17: if ∃ set of type2 overlaps then
18: Generate minimum area box;
19: else
20: Generate all end-cut boxes
21: end if
22: end for
23: return true;
24: end Procedure

type1 and type2 overlaps. When two boxes overlap only in an edge or in a point

but not in space, we call this type1 overlap, where as the overlap in space is

termed as type2 overlap as shown in Fig. 2.36. Each of the ic ∈ IC may

contain multiple end-cut boxes. If the total number of end-cut-boxes (|V |) is

equal to |IC|, that implies there is no overlap between the end-cut boxes and
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Edge-edge end-cut box Corner-corner end-cut box No end-cut box

(a) (b) (c)
(d)

Figure 2.35: End-cut box generation between any two shape-edges

we generate all of them (Lines 11-14).

overlaptype1 type2 overlap

(a) (b) (c)

Figure 2.36: Types of overlaps between end-cut boxes

For multiple boxes in each ic, if there is an overlap between corner-

corner and edge-edge end-cut boxes, the corner-corner end-cut box is removed

(Line 16). After doing this, either there will be a set of type1 overlaps or a set

of type2 overlaps in each ic. In case of type2 overlaps, the end-cut box with

the minimum area is chosen as shown in Fig. 2.37. For type1 overlaps in each

ic, all end-cut boxes are generated (Line 20).

2.4.2.2 ILP Formulations

After the construction of layout graph and end-cut graph, LELE-EC

layout decomposition problem can be transferred into a coloring problem on
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S1

S2

Min-area end-cut box

(a) (b) (c) (d)

Figure 2.37: Minimum area end-cut box is chosen for type2 overlaps

layout graph and a selection problem on end-cut graph. At the first glance the

coloring problem is similar to that in LELE layout decomposition. However,

since the conflict graph can not be guaranteed to be plannar, the face graph

based methodology [99] cannot be applied here. Therefore, we formulate in-

teger linear programming (ILP) to solve both coloring problem and selection

problem simultaneously. For convenience, some notations in the ILP formula-

tion are listed in Table 2.12.

Table 2.12: Notations in LELE-EC Layout Decomposition

CE set of conflict edges
EE set of end-cut conflict edges
SE set of stitch edges.
n number of input layout features.
ri the ith layout feature
xi variable denoting the coloring of ri
ecij 0-1 variable, ecij = 1 when a end-cut between ri and rj
cij 0-1 variable, cij = 1 when a conflict between ri and rj
sij 0-1 variable, sij = 1 when a stitch between ri and rj

First we discuss the ILP formulation when no stitch candidate is gen-

erated in layout graph. Given a set of input layout features {r1, . . . , rn}, we

construct layout graph, and end-cut graph. Every conflict edge eij is in CE,
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while each end-cut candidate ecij is in SE. xi is a binary variable representing

the color of ri. cij is a binary variable for conflict edge eij ∈ CE. To minimize

the conflict number, our objective function to minimize
∑

eij∈CE cij.

To evaluate the conflict number, we provide the following constraints:
xi + xj ≤ 1 + cij + ecij if ∃ ecij ∈ EE

(1− xi) + (1− xj) ≤ 1 + cij + ecij if ∃ ecij ∈ EE
xi + xj ≤ 1 + cij if 6 ∃ ecij ∈ EE

(1− xi) + (1− xj) ≤ 1 + cij if 6 ∃ ecij ∈ EE
(2.12)

Here ecij is a binary variable for end-cut candidate. If there is no end-cut

candidate between adjacent features ri and rj, if xi 6= xj then one conflict

would be reported (cij = 1). Otherwise, we will try to enable the end-cut

candidate ecij first. If the end-cut candidate ecij cannot be applied (ecij = 0),

then one conflict will be also reported.

If end-cuts ecij and ecpq are conflict with each other, at most one of

them will be applied. To enable this, we introduce the following constraint.

ecij + ecpq ≤ 1, ∀eijpq ∈ EE (2.13)

To forbid useless end-cut, we introduce the following constraints. That

is, if features xi and xj are in different colors, ecij = 0.{
ecij + xi − xj ≤ 1 ∀eij ∈ CE
ecij + xj − xi ≤ 1 ∀eij ∈ CE (2.14)

Therefore, without the stitch candidate, the LELE-EC layout decom-
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position can be formulated as shown in Eq. (2.15).

min
∑

eij∈CE

cij (2.15)

s.t. (2.12), (2.13), (2.14)

If the stitch insertion is considered, the ILP formulation is as in Eq.

(2.16). Here the objective is to simultaneously minimize both the conflict

number and the stitch number. The parameter α is a user-defined parameter

for assigning relative importance between the conflict number and the stitch

number. The constraints (2.16a) - (2.16b) are used to calculate the stitch

number.

min
∑

eij∈CE

cij + α×
∑

eij∈SE

sij (2.16)

s.t. xi − xj ≤ sij ∀eij ∈ SE (2.16a)

xj − xi ≤ sij ∀eij ∈ SE (2.16b)

(2.12), (2.13), (2.14)

2.4.2.3 Graph Simplification Techniques

ILP is a classical NP-hard problem, i.e., there is no polynomial time

optimal algorithm to solve it [24]. Therefore, for large layout cases, solving ILP

may suffer from long runtime penalty to achieve the results. In this section,

we provide a set of speed-up techniques. Note that these techniques can keep

optimality. In other words, with these speed-up techniques, ILP formulation

can achieve the same results comparing with those not applying speed-up.
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The first speedup technique is called independent component com-

putation. By breaking down the whole layout graph into several independent

components, we partition the initial layout graph into several small ones. Then

each component can be resolved through ILP formulation independently. At

last, the overall solution can be taken as the union of all the components with-

out affecting the global optimality. Note that this is a well-known technique

which has been applied in many previous studies ( e.g., Ref. [48,100,111]).

Our second technique is called Bridge Computation. A bridge of a

graph is an edge whose removal disconnects the graph into two components.

If the two components are independent, removing the bridge can divide the

whole problem into two independent sub-problems. We search all bridge edges

in layout graph, then divide the whole layout graph through these bridges.

Note that all bridges can be found in O(|V | + |E|), where |V | is the vertex

number, and |E| is the edge number in the layout graph.

Our third technique is called End-Cut Pre-Selection. Some end-cut

candidates have no conflict end-cuts. For the end-cut candidate ecij that has

no conflict end-cut, it would be pre-selected in final decomposition results.

That is, the features ri and rj are merged into one feature. By this way, the

problem size of ILP formulation can be further reduced. End-cut pre-selection

can be finished in linear time.
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2.4.3 Experimental Results

We implement our algorithms in C++ and test on an Intel Xeon 3.0GHz

Linux machine with 32G RAM. 15 benchmark circuits from Ref. [109] are used.

GUROBI [43] is chosen as the ILP solver. The minimum coloring spacing

mins is set as 120 for the first ten cases and as 100 for the last five cases, as

in Ref. [109] and Ref. [32]. The width threshold wth, which is used in end-cut

candidate generation, is set as dism.

In the first experiment, we show the decomposition results of the ILP

formulation. Table 2.13 compares two ILP formulations “ILP w/o. stitch”

and “ILP w. stitch”. Here “ILP w/o. stitch” is the ILP formulation based

on the graph without stitch edges, while “ILP w. stitch” considers the stitch

insertion in the ILP. Note that all speed-up techniques are applied to both.

Columns “Wire#” and “Comp#” reports the total feature number, and the

divided component number, respectively. For each method we report the con-

flict number, stitch number, and computational time in seconds(“CPU(s)”).

“Cost” is the cost function, which is set as conflict# +0.1× stitch#.

From Table 2.13 we can see that compared with “ILP w/o. stitch”,

when stitch candidates are considered in the ILP formulation, the cost can

be reduced by 2%, while the runtime is increased by 5%. It shall be noted

that stitch insertion has been shown to be an effective method to reduce the

cost for both LELE layout decomposition and LELELE layout decomposition.

However, we can see that for LELE-EC layout decomposition, stitch insertion

is not that effective. In addition, due to the overlap variation derived from
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stitch, stitch insertion for LELE-EC may not be an effective method.

In the second experiment, we analyze the effectiveness of the proposed

speed-up techniques. Fig. 2.38 compares two ILP formulations “w/o. stitch

w/o. speedup” and “w/o. stitch w. speedup”, where “w/o. stitch

w/o. speedup” only applies independent component computation, while “w.

speedup” involves all three speed-up techniques. Besides, none of them con-

sider the stitch in layout graph. From Fig. 2.38 we can see that with speed-up

techniques (bridge computation and end-cut pre-selection), the runtime can

be reduced by around 60%.
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Figure 2.38: Effectiveness of Speed-up techniques when no stitch is introduced.

Fig. 2.39 demonstrates the similar effectiveness of speed-up techniques

between “w. stitch w. speedup” and “w/o. stitch w. speedup”. Here

stitch candidates are introduced in layout graph. We can see that for these

two ILP formulation the bridge computation and the end-cut pre-selection can

reduce runtime by around 56%.
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Figure 2.39: Effectiveness of Speed-up techniques when stitch is introduced.

Fig. 2.40 shows four conflict examples in decomposed layout, where

conflict pairs are labeled with red arrows. We can observe that some con-

flicts (see Fig. 2.40 (a) and (c)) are introduced due to the end-cuts existing

in neighboring. For these two cases, the possible reason is the patterns are

irregular, therefore some end-cuts that close to each other cannot be merged

into a larger one. We can also observe some conflicts (see Fig. 2.40 (b) and

(d)) come from via shapes. For these two cases, one possible reason is that it

is hard to find end-cut candidates around via, comparing with long wires.

2.4.4 Summary

In this section we have proposed an improved framework and algorithms

to solve the LELE-EC layout decomposition problem. New end-cut candidates

are generated considering potential hotspots. The layout decomposition is

formulated as an integer linear programming (ILP). The experimental results
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(a) (b)

(c) (d)

Figure 2.40: Conflict examples in decomposed results. (a)(c) Conflicts because
no additional end-cut can be inserted due to the existing neighboring end-cuts.
(b)(d) Conflicts because no end-cut candidates between irregular vias.

show the effectiveness of our algorithms. It shall be noted that our framework

is very generic that it can provide high quality solutions to both uni-directional

and bi-directional layout patterns. However, if all the layout patterns are uni-

directional, there might be some faster solutions. Since end-cutting can provide

better printability than traditional LELELE process, we expect to see more

works on the LELE-EC layout decomposition and LELE-EC aware design.

95



2.5 Layout Decomposition for Quadruple Patterning and
Beyound

The process of QPL brings up several critical yet open design chal-

lenges, such as layout decomposition, where the original layout is divided into

four masks (colors). However, how to effectively solve the quadruple pattern-

ing, or even general multiple patterning problems, is still an open question.

In this section, we deal with the quadruple patterning layout decomposition

(QPLD) problem. Our contributions are highlighted as follows. (1) To our best

knowledge, this is the first layout decomposition research for QPLD problem.

We believe this work will invoke more future research into this field thereby

promoting the scaling of technology node. (2) Our framework consists of

holistic algorithmic processes, such as semidefinite programming based algo-

rithm, linear color assignment, and novel GH-tree based graph division. (3) We

demonstrate the viability of our algorithm to suit with general K-patterning

(K≥4) layout decomposition, which could be advanced guidelines for future

technology.

2.5.1 Preliminaries and Problem Formulation

2.5.1.1 Why Quadruple Patterning

Quadruple patterning lithography (QPL) is a natural extension along

the paradigm of double/triple patterning. In the QPL manufacturing, there

are four exposure/etching processes, through which the initial layout can be

produced. Compared with triple patterning lithography, QPL introduces one

96



more mask. Although increasing the number of processing steps by 33% over

triple patterning, there are several reasons/advantages for QPL. Firstly, due

to the delay or uncertainty of other lithography techniques, such as EUV,

semiconductor industry needs CAD tools to be prepared and understand the

complexity/implication of QPL. Even from theoretical perspective, studying

the general multiple patterning is valuable. Secondly, it is observed that for

triple patterning lithography, even with stitch insertion, there are several com-

mon native conflict patterns. As shown in Fig. 2.41 (a), contact layout within

the standard cell may generate some 4-clique patterns, which are indecompos-

able. This conflict can be easily resolved if four masks are available (see Fig.

2.41 (b)). Thirdly, with one more mask, some stitches may be avoided during

manufacturing. By this way it is potential to resolve the overlapping and yield

issues derived from the stitches.

mask 1

mask 2

mask 3

mask 4

a b

c d

a b

c d
(a) (b)

Figure 2.41: (a) A common native conflict from triple patterning lithogra-
phy; (b) The conflict can be resolved through quadruple patterning lithogra-
phy.

2.5.1.2 Problem Formulation

Given input layout which is specified by features in polygonal shapes,

a decomposition graphs [109,111] is constructed by Definition 2.
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Now we give the problem formulation of quadruple patterning layout

decomposition (QPLD).

Problem 4 (QPLD). Given an input layout which is specified by features

in polygonal shapes and minimum coloring distance mins, the decomposition

graph is constructed. Quadruple patterning layout decomposition (QPLD) as-

signs all the vertices into one of four colors (masks) to minimize conflict num-

ber and stitch number.

The QPLD problem can be extended to general K-patterning layout

decomposition problem as follows.

Problem 5 (K-Patterning Layout Decomposition).

Given an input layout, the decomposition graph is constructed. Each vertex

in graph would be assigned into one of K colors (masks) to minimize conflict

number and stitch number.

2.5.2 Algorithms

The overall flow of our layout decomposition is summarized in Fig.

2.42. We first construct decomposition graph to transform the original geo-

metric patterns into a graph model. By this way, the QPLD problem can be

formulated as 4 coloring on the decomposition graph. To reduce the problem

size, graph division techniques (see Section 2.5.2.3) are applied to partition the

graph into a set of components. Then the color assignment problem can be

solved independently for each component, to minimize both the conflict num-

ber and the stitch number. In this following, we propose two color assignment
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Figure 2.42: Proposed layout decomposition flow.

algorithms, i.e., semidefinite programming (SDP) based algorithm, and linear

color assignment.

2.5.2.1 SDP Based Color Assignment
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Figure 2.43: Four vectors correspond to four colors.

Semidefinite programming (SDP) has been successfully applied to triple

patterning layout decomposition [105, 109]. Here we will show that SDP for-

mulation can be extended to solve QPLD problem. To represent four different
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colors (masks), as illustrated in Fig. 2.43, four unit vectors are introduced [54]:

(0, 0, 1), (0, 2
√
2

3
,−1

3
), (

√
6
3
,−
√
2
3
,−1

3
) and (−

√
6
3
,−
√
2
3
,−1

3
). We construct the

vectors in such a way that inner product for any two vectors ~vi, ~vj satisfying:

~vi · ~vj = 1 if ~vi = ~vj; ~vi · ~vj = −1
3

if ~vi 6= ~vj.

Based on the vector definition, the QPLD problem can be formulated

as the following vector programming:

min
∑

eij∈CE

3

4
(~vi · ~vj +

1

3
) +

3α

4
·
∑

eij∈SE

(1− ~vi · ~vj) (2.17)

s.t. ~vi ∈ {(0, 0, 1), (0,
2
√

2

3
,−1

3
), (

√
6

3
,−
√

2

3
,−1

3
),

(−
√

6

3
,−
√

2

3
,−1

3
)}

where the objective function is to minimize the conflict number and the stitch

number. α is a user-defined parameter, which is set as 0.1 in this work. Af-

ter relaxing the discrete constraints in (2.17) and removing the constant in

objective function, we redraw the following semidefinite programming (SDP)

formulation.

min
∑

eij∈CE

~vi · ~vj − α
∑

eij∈SE

~vi · ~vj (2.18)

s.t. ~vi · ~vi = 1, ∀i ∈ V

~vi · ~vj ≥ −
1

3
, ∀eij ∈ CE

After solving the SDP, we get a set of continuous solutions in matrix

X, where each value xij in matrix X corresponds to vi · vj. If xij is close to
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1, vertices vi, vj are tend to be in the same mask (color). A greedy mapping

algorithm [109] can be directly applied here to get color assignment solution.

However, the performance of greedy method may not be good.

Algorithm 7 SDP + Backtrack

Require: SDP solution xij, threshold value tth;
1: for all xij ≥ tth do
2: Combine vertices vi, vj into one larger vertex;
3: end for
4: Construct merged graph G′ = {V ′, CE ′, SE ′};
5: BACKTRACK(0, G′);
6: return color assignment result in G′;

7: function BACKTRACK(t, G′)
8: if t ≥ size[G′] then
9: if Find a better color assignment then
10: Store current color assignment;
11: end if
12: else
13: for all legal color c do;
14: G′[t]← c;
15: BACKTRACK(t+ 1, G′);
16: G′[t]← −1;
17: end for
18: end if
19: end function

To overcome the limitation of the greedy method, in our framework

a backtrack based algorithm (see Algorithm 7) is proposed to consider both

SDP results and graph information. The backtrack based method accepts two

arguments of the SDP solution {xij} and a threshold value tth. In our work tth

is set as 0.9. As discussed above, if xij is close to be 1, two vertices vi and vj

tend to be in the same color (mask). Therefore, we scan all pairs, and combine

101



some vertices into one larger vertex (lines 1 − 3). After the combination,

the vertex number can be reduced, thus the graph has be simplified (line

4). The simplified graph is called merged graph [105]. On the merged graph,

BACKTRACK algorithm is presented to search an optimal color assignment

(lines 7− 19).

2.5.2.2 Linear Color Assignment

Backtrack based method may still involve runtime overhead, especially

for complex case where SDP solution cannot provide enough merging candi-

dates. Therefore, an efficient color assignment is required. At first glance, the

color assignment for quadruple patterning can be solved through four color

map theorem [10] that every planar graph is 4-colorable. However, in emerg-

ing technology node, the designs are so complex that we observe many K5 or

K3,3 structures, where K5 is the complete graph on five vertices, while K3,3

is the complete bipartite graph on six vertices. Due to Kuratowski’s theo-

rem [58], the decomposition graph is not planar, thus classical four coloring

technique [80] is hard to be applied.

Here we propose an efficient color assignment algorithm. Note that our

method is targeting general graph, not just planar graph. In addition, different

from classical four coloring method that needs quadratic runtime [80], our color

assignment is a linear runtime algorithm.

The details of linear color assignment are summarized in Algorithm 8,

which involves three stages. The first stage is iteratively vertex removal. For
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Algorithm 8 Linear Color Assignment

Require: Decomposition graph G = {V,CE, SE}, Stack S;
1: while ∃vi ∈ V s.t. dconf (vi) < 4 & dstit(vi) < 2 do
2: S.push(vi);
3: G.delete(vi);
4: end while
5: Construct vector vec;
6: C1 = SEQUENCE-COLORING(vec);
7: C2 = DEGREE-COLORING(vec);
8: C3 = 3ROUND-COLORING(vec);
9: C = best coloring solution among {C1, C2, C3};
10: POST-REFINEMENT(vec);
11: while !S.empty() do
12: vi = S.pop();
13: G.add(vi);
14: c(vi)← a legal color;
15: end while

each vertex vi, we denote its conflict degree dconf (vi) as number of conflict edges

incident to vi, while its stitch degree dstit(vi) as number of stitch edges. The

main idea is that the vertices with conflict degree less than 4 and stitch degree

less than 2 are identified as non-critical, thus can be temporarily removed and

pushed into stack S (lines 1-4). After coloring remaining vertices, each vertex

in stack S would be pop up one by one and assigned one legal color (lines

11-15). This strategy is safe in terms of conflict number. In other words,

when a vertex is pop up from S, there is always one color available without

introducing new conflict.

In the second stage (lines 5-9), all remaining vertices would be assigned

colors one by one. However, color assignment through one specific order may

be stuck at local optimum which stems from the greedy nature. For example,
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Figure 2.44: (a) Decomposition graph; (b) Greedy coloring with one conflict;
(c) a is detected as color-friendly to d; (d) Coloring considering color-friendly
rules.

given a decomposition graph in Fig. 2.44 (a), if the coloring order is a-b-c-d-e,

when vertex d is greedily selected grey color, the following vertex e cannot find

any color without conflict (see Fig. 2.44 (b)). In other words, vertex ordering

significantly impacts the coloring result.

To alleviate the impact of vertex ordering, two strategies are proposed.

The first strategy is called color-friendly rules, as in Definition 5. In Fig.

2.44 (c), all conflict neighbors of pattern d are labeled inside a grey box. Since

the distance between a and d is within the range of (mins,mins + hp), a is

color-friendly to d. Interestingly, we discover a rule that for a complex/dense

layout, color-friendly patterns tend to be with the same color. Based on these

rules, during linear color assignment, to determine one vertex color, instead

of just comparing its conflict/stitch neighbors, the colors of its color-friendly
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vertices would also be considered. Detecting color-friendly vertices is similar

to the conflict neighbor detection, thus it can be finished during decomposition

graph construction without much additional efforts.

Definition 5 (Color-Friendly). A pattern a is color-friendly to pattern b, iff

their distance is larger than mins, but smaller than mins + hp. Here hp is the

half pitch.

Our second strategy is called peer selection, where three different

vertex orders would be processed simultaneously, and the best one would be

selected as the final coloring solution (lines 6-8). Although color assignment

is solved thrice, since for each order the coloring is in linear time, the total

computational time is still linear.

In the third stage (line 10), post-refinement greedily checks each vertex

to see whether the solution can be further improved.

1. SEQUENCE-COLORING: Vertices are assigned colors based on the

initial order.

2. DEGREE-COLORING: Vertices are assigned colors based on a nearly

conflict degree descending order.

3. 3ROUND-COLORING: Vertices are solved through conflict degree

descending order. In addition, the vertex with only one legal possible

color would be assigned first.
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Vector vec is constructed to provide the vertices with conflict degree de-

scending order. Instead of completely sorting all vertices which needsO(nlogn),

vector vec contains vec[1], vec[2], and vec[3], successively. The vector vec[i],

1 ≤ i ≤ 3, contains vertices with special conflict degree, defined as follows:

vec[1] ={vi|∀vi ∈ V, dconf (vi) > 6}

vec[2] ={vi|∀vi ∈ V, 4 < dconf (vi) <= 6}

vec[3] ={vi|∀vi ∈ V, dconf (vi) <= 4}

The main idea is that the vertices in vec are nearly conflict degree descending

order, but the construction is in linear time.

The details of the method 3ROUND-COLORING are shown in Algo-

rithm 9, where the vertex with less coloring choices tends to be resolved first.

In other words, we prefer to assign color to a vertex with “less flexibility”. At

the beginning, all vertices are labeled as UNSOLVED (line 1), then the vector

vec is scanned thrice. In the first round scanning, for each vertex vi ∈ vec, a

greedy color with minimum cost would be assigned (lines 2-4). When all four

colors have been applied at least once, the first round is stopped. In the second

round scanning, only those vertex with only one legal color would be assigned

color. By this way, we prefer to assign colors to those vertices with “less flex-

ibility”. When a vertex is assigned one color, it is labeled as SOLVED. In the

third scanning, we greedily assign colors to those UNSOLVED vertices.

For a decomposition graph with color-friendly information and n ver-

tices, in the first stage vertex removal/pop up can be finished in O(n). In the

106



Algorithm 9 3ROUND-COLORING(vec)

Require: Vector vec containing all vertices;
1: Label each vi ∈ vec as UNSOLVED;
2: for all vertex vi ∈ vec do . 1st round
3: c(vi)← a minimum cost color;
4: Label vi as SOLVED;
5: if All four colors have been applied at least once then
6: Break; . End 1st round
7: end if
8: end for
9: for all UNSOLVED vertex vi ∈ vec do . 2nd round
10: if vi has only one legal color c then
11: c(vi)← c;
12: Label vi as SOLVED;
13: end if
14: end for
15: for all UNSOLVED vertex vi ∈ vec do . 3rd round
16: c(vi)← a minimum cost color;
17: Label vi as SOLVED;
18: end for
19: return c(vi),∀vi ∈ vec;

second stage, as mentioned above the coloring needs O(n). In post-refinement

stage, all vertices are traveled once, which requires O(n) time. Therefore, the

total complexity is O(n).

2.5.2.3 GH-Tree based 3-Cut Removal

Graph division is a technique that partitions the whole decomposition

graph into a set of components, then the color assignment on each compo-

nent can be solved independently. In our framework, the techniques extended

from previous work are summarized as follows, (1) Independent Component
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Computation [32,56,89,92,99,105,109,111]; (2) Vertex with Degree Less than

3 Removal [32, 56, 105, 109] 2; (3) 2-Vertex-Connected Component Computa-

tion [32,56,105].

Another technique, cut removal, has been proven powerful in dou-

ble/patterning layout decomposition [32,89,109]. A cut of a graph is an edge

whose removal disconnects the graph into two components. The definition

of cut can be extended to 2-cur (3-cut), which is a double (triplet) of edges

whose removal would disconnect the graph. However, different from the 1-cut

and 2-cut detection that can be finished in linear time [32], 3-cut detection is

much more complicated. Here we propose an effective 3-cut detection method.

Besides, our method can be easily extended to detect any K-cut (K ≥ 3).

component 2

component 1

a b c

d e f

(a)

component 2

component 1

a b c

d e f

component 2

component 1

a b c

d e f

(b) (c)
rotated by 1

color 0 color 1 color 2 color 3

Figure 2.45: An example of 3-cut detection and removal.

Fig . 2.45 (a) shows a graph with a 3-cut (a− d, b− e, c− f), and two

2In QPLD problem, the vertices with degree less than 4 would be detected and removed
temporally.
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components can be derived by removing this 3-cut. After color assignment

on two components, for each cut edge, if the colors of the two endpoints are

different, the two components can be merged directly. Otherwise, a color

rotation operation is required to one component. For vertex v in graph, we

denote c(v) as its color, where c(v) ∈ {0, 1, 2, 3}. Vertex v is said to be rotated

by i, if c(v) is changed to (c(v) + i)%4. It is easy to see that all vertices in one

component should be rotated by the same value, so no additional conflict is

introduced within the component. An example of such color rotation operation

is illustrated in Fig. 2.45 (b)-(c), where conflict between vertices c, f would

be removed to interconnect two components together. Here all the vertices

in component 2 are rotated by 1 (see Fig. 2.45 (c)). We have the following

Lemma:

Lemma 4. In QPLD problem, color rotation after interconnecting 3-cut does

not increase the conflict number.

Proof. We denote the three edges in a 3-cut as (a1−b1, a2−b2, a3−b3). Without

loss of generality, we rotate the colors of b1, b2, b3 to remove any conflict derived

on the edges. Since all vertices should be rotated by the same value, there are

four rotation options for the whole component. For one edge {a1 − b1}, one

option is infeasible that would causes one conflict. At most three options are

infeasible on the 3-cut. Therefore, at least one option left is feasible without

any conflict introduced on the 3-cut.

In addition, to detect all 3-cuts, we have the following Lemma:
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Figure 2.46: (a) Decomposition graph; (b) Corresponding GH-tree; (c) Com-
ponents after 3-cut removal.

Lemma 5. If the minimum cut between two vertices vi and vj is less than 4,

then vi, vj belong to different components that divided by a 3-cut.

Based on Lemma 5, we can see that if the cut between vertices vi, vj is

larger or equal to 4 edges, vi, vj should belong to the same component. One

straightforward 3-cut detection method is to compute the minimum cuts for

all the {s−t} pairs. However, for a decomposition graph with n vertices, there

are n(n− 1)/2 pairs of vertices. Computing all these cut pairs may spend too

long runtime, which is impractical for complex layout design.

Gomory and Hu [40] showed that the cut values between all the pairs

of vertices can be computed by solving only n − 1 network flow problems on

graph G. Furthermore, they showed that the flow values can be represented by

a weighted tree T on the n vertices, where for any pair of vertices (vi, vj), if e

is the minimum weight edge on the path from vi to vj in T , then the minimum

cut value from vi to vj in G is exactly the weight of e. Such a weighted tree

T is called Gomory-Hu tree (GH-tree). For example, given the decomposition

graph in Fig. 2.46 (a), the corresponding GH-tree is shown in Fig. 2.46 (b),
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where the value on edge eij is the minimum cut number between vertices vi and

vj. Because of Lemma 5, to divide the graph through 3-cut removal, all the

edges with value less than 4 would be removed. The final three components

are in Fig. 2.46 (c).

Algorithm 10 GH-tree based 3-Cut Removal

Require: Decomposition graph G = {V,CE, SE};
1: Construct GH-tree as in [44];
2: Remove the edges with weight < 4;
3: Compute connected components on remaining GH-tree;
4: for each component do
5: Color assignment on this component;
6: end for
7: Color rotation to interconnect all components;

The procedure of the 3-cut removal is shown in Algorithm 10. Firstly

we construct GH-tree based on the algorithm by [44] (line 1). Dinic’s blocking

flow algorithm [27] is applied to help GH-tree construction. Then all edges in

the GH-tree with weights less than four are removed (line 2). After solving the

connected component problem (line 3), we can assign colors to each component

separately (lines 4 − 5). At last color rotation is applied to interconnect all

3-cuts back (line 6).

2.5.3 Experimental Results

We implemented the proposed layout decomposition algorithms in C++,

and tested on a Linux machine with 2.9GHz CPU. We choose GUROBI [43]

as the integer linear programming (ILP) solver, and CSDP [15] as the SDP

solver. The benchmarks in [32,109] are used as our test cases. We scale down
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the Metal1 layer to 20nm half pitch. Both the minimum feature width wm

and the minimum spacing between features sm are 20nm. From Fig. 2.47 we

can see that when minimum coloring distance mins = 2 · sm + wm = 60nm,

even one dimension regular patterns can be a K5 structure, which is not 4-

colorable or planar [58]. In our experiments, for quadruple patterning mins

is set as 2 · sm + 2 · wm = 80nm, while for pentuple patterning mins is set

as 3 · sm + 2.5 · wm = 110nm. When larger mins is applied, there are too

many native conflicts in layouts, as the benchmarks are not multiple pattern-

ing friendly.

(a)

2 · sm + wm

wm

sm

(b)

Figure 2.47: mins = 2 · sm + wm may cause K5 structure.

First we compare different color assignment algorithms for quadruple

patterning, and the results are listed in Table 2.14. “ILP”, “SDP+Backtrack”,

“SDP+Greedy” and “Linear” denote ILP formulation, SDP followed by

backtrack mapping (Section 2.5.2.1), SDP followed by greedy mapping, and

linear color assignment (Section 2.5.2.2), respectively. Here we implement an

ILP formulation extended from the triple patterning work [109]. In SDP+Greedy,

a greedy mapping from [109] is applied. All the graph division techniques, in-
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Table 2.15: Comparison for Pentuple Patterning

Circuit
SDP+Backtrack SDP+Greedy Linear

cn# st# CPU(s) cn# st# CPU(s) cn# st# CPU(s)
C6288 19 2 2.4 19 2 0.49 19 5 0.005
C7552 1 1 0.3 1 1 0.05 1 4 0.001
S38417 0 4 1.45 0 4 0.21 0 4 0.001
S35932 5 20 8.11 5 20 0.62 5 25 0.009
S38584 3 4 1.66 7 3 0.3 3 6 0.008
S15850 6 5 2.7 7 5 0.4 5 15 0.007

avg. 5.7 6.0 2.77 6.5 5.83 0.35 5.5 9.8 0.005
ratio 1.0 1.0 1.0 1.15 0.97 0.12 0.97 1.64 0.002

cluding GH-tree based division, are applied. The columns “cn#” and “st#”

denote the conflict number and the stitch number, respectively. Column

“CPU(s)” is color assignment time in seconds.

From Table 2.14 we can see that for small cases the ILP formulation

can achieve best performance in terms of conflict number and stitch num-

ber. However, for large cases (S38417, S35932, S38584, S15850) ILP suffers

from long runtime problem that none of them can be finished in one hour.

Compared with ILP, SDP+Backtrack can achieve near-optimal solutions, i.e.,

in every case the conflict number is optimal, while only in one case 2 more

stitches are introduced. SDP+Greedy method can achieve 2× speedup against

SDP+Backtrack. But the performance of SDP+Greedy is not good that for

complex designs hundreds of additional conflicts are reported. The linear color

assignment can achieve around 200× speedup against SDP+Backtrack, while

only 15% more conflicts and 8% more stitches are reported.

We further compare the algorithms for pentuple patterning, that is,
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K = 5. To our best knowledge there is no exact ILP formulation for pen-

tuple patterning in literature. Therefore we consider three baselines, i.e.,

SDP+Backtrack, SDP+Greedy, and Linear. All the graph division techniques

are applied. Table 2.15 evaluates six most dense cases. We can see that com-

pared with SDP+Backtrack, SDP+Greedy can achieve around 8× speedup,

but 15% more conflicts are reported. In terms of runtime, linear color as-

signment can achieve 500× and 60× speedup, against SDP+Backtrack and

SDP+Greedy, respectively. In terms of performance, linear color assignment

reports the best conflict number minimization, but more stitches may be in-

troduced.

Interestingly, we observe that when a layout is multiple patterning

friendly, color-friendly rules can provide a good guideline, thus linear color

assignment can achieve high performance in terms of conflict number. How-

ever, when a layout is very complex or involving many native conflicts, linear

color assignment reports more conflicts than SDP+Backtrack. One possible

reason is that the color-friendly rules are not good in modeling global conflict

minimization, but both SDP and backtrack provide a global view.

At last, Fig. 2.48 and Fig. 2.49 compare the performance of dif-

ferent vertex orders, in terms of the conflict number and the stitch num-

ber. Here SEQUENCE-COLORING, DEGREE-COLORING, and 3ROUND-

COLORING denote the coloring through three different orders, respectively.

Peer-Selection is the method proposed in our linear color assignment. From

Fig. 2.48 we can clearly see that peer selection can achieve less conflict num-
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ber than any single vertex order. The reason is that, for each test case, the

whole decomposition graph would be divided into several components. For

each component one specific order may be dominant, then this order would

be adopted by peer selection scheme. Therefore, for the whole layout, peer

selection would be better than any single vertex ordering rule.

Figure 2.48: Comparison on conflict number.

Figure 2.49: Comparison on stitch number.
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2.5.4 Summary

In this section we have proposed the layout decomposition framework

for quadruple patterning and beyond. Experimental evaluations have demon-

strated that our algorithm is effective and efficient to obtain high quality so-

lution. As continuing scaling of technology node to sub-10nm, MPL may be a

promising manufacturing solution. We believe this work will stimulate more

future research into this field, thereby facilitating the advancement of MPL

technology.
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Chapter 3

Standard Cell Compliance and Placement

Co-Optimization with Triple Patterning

3.1 Introduction

The TPL layout decomposition problem with conflict and stitch min-

imization has been well studied in the past few years [23, 32, 38, 56, 92, 104,

105,109,115], including the early work presented in Chapter 2. However, most

existing work suffers from one or more of the following drawbacks. (1) Because

TPL layout decomposition problem is NP-hard [109], most of the decomposers

are based on approximation or heuristic methods. Thus some extra conflicts

may be reported. (2) For each design, since the library only contains fixed

number of standard cells, layout decomposition would contain lots of redun-

dant works. For example, if one cell is applied hundreds of times in a single

design, it would be decomposed hundreds of times during layout decompo-

sition. (3) Successfully carrying out these decomposition techniques requires

the input layouts to be TPL friendly. However, since all these decomposition

techniques are applied at post-place/route stage, where all the design patterns

are already fixed, they lack the ability to resolve some native TPL conflict

patterns, e.g., four-clique conflicts.
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(a) (b)

Figure 3.1: Two native conflicts (in read boxes) from (a) contact layer within
a standard cell; (b) M1 layer between adjacent standard cells.

It is observed that the most hard-to-decompose patterns originate from

contact and M1 layers. Fig. 3.1 shows two common native TPL conflicts in

contact layer and M1 layer, respectively. As shown in Fig. 3.1(a), contact

layout within the standard cell may generate some four-clique patterns, which

is indecomposable. Meanwhile, if placement techniques are not TPL friendly,

some boundary metals may introduce native conflicts (see Fig. 3.1(b)). Since

redesigning indecomposable patterns in the final layout requires high ECO

efforts, generating TPL-friendly layouts, especially in the early design stage,

becomes urgent and pivotal. Through these two examples, we can see that TPL

constraints should be considered in both standard cell design and placement

stages, so that we can avoid indecomposable patterns in final layout.

There exist several placement studies toward different manufacturing

process targets [20, 36, 42, 45, 59, 87]. Liebmann et al. [59] proposed some

guidelines to enable DPL friendly standard cell design and placement, Taghavi
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et al. [87] presented a set of algorithms to disperse local congestion. Recently,

[62, 65] proposed TPL aware detailed routing schemes. However, to our best

knowledge, no previous work has addressed TPL compliance at standard cell

or placement level.

In this section, we present a systematic framework to seamlessly in-

tegrate TPL constraints in early design stages, comprehending standard cell

conflict removal, standard cell pre-coloring, and detailed placement together.

Note that our framework is layout decomposition free, i.e., the TPL aware

detailed placement can generate optimized positions and color assignment so-

lutions for all cells simultaneously. Therefore, our framework does not require

conventional and time consuming chip level layout decomposition. Our main

contributions are summarized as follows:

• We propose systematic standard cell compliance techniques for TPL and

coloring solution generation.

• We study the standard cell pre-coloring problem, and propose effective

methods.

• We present the first systematic study for the TPL aware ordered single

row placement, where cell placement and color assignment can be solved

simultaneously.

• We propose linear dynamic programming algorithm to solve TPL aware

single row placement with maximum displacement, and achieve a good

trade-off in terms of runtime and solution quality.
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• Our framework seamlessly integrates decomposition in each key step,

therefore no additional layout decomposition is required.

• Experimental results show that our framework can achieve zero conflict,

meanwhile can effectively reduce the stitch number.

3.2 Preliminaries

3.2.1 Row Structure Layout

Our framework assumes a row-structure layout where cells in each row

are with the same height, and power/ground rails are going from the very

left to the very right (see Fig. 3.2(a)). A similar assumption was applied in

row based TPL layout decomposition [92] as well. The minimum width of

metal feature and the minimum spacing between neighboring metal features

are denoted as wmin and smin, respectively. We define the minimum spacing

between metal features among different rows to be drow. If we further analyze

layout patterns in the library, it can be observed the width of a power/ground

rail is twice the width of a metal wire within standard cells [3]. Under the row

structure layout, we have the following lemma.

Lemma 6. There is no coloring conflict between two M1 wires or contacts

that are from different rows.

Proof. For TPL, the layout will be decomposed into three masks, which means

layout features within minimum coloring distance will be assigned three colors

to increase the pitch between neighboring features. Then, we can see from Fig.
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(a)

(b)

dmin = 2 · wmin + 3 · smin

drow = 4 · wmin + 2 · smin

2 · wmin > smin $ drow > dmin

drow
Ground� Ground� Ground�

Power� Power� Power�

Ground� Ground� Ground�

Power� Power� Power�

dmin

wmin smin

Figure 3.2: (a) Minimum spacing between M1 wires among different rows.
(b) Minimum spacing between M1 wires with the same color.

3.2, the minimum spacing between M1 features with the same color in TPL is

dmin = 2 · wmin + 3 · smin. We assume the worst case for drow, which means

the standard cell rows are placed as mirrored cells and allow for no routing

channel. Thus, drow = 4 · wmin + 2 · smin. We should have drow > dmin, which

equals 2 ·wmin > smin. This condition can easily be satisfied for M1 layer. For

the same reason, we can achieve a similar conclusion for the contact layer.

Based on the row-structure assumption, the whole layout can be di-

vided into rows, and layout decomposition or coloring assignment can be car-

ried out for each row separately. Without loss of generality, for each row the

power/ground rails are assigned the color 1 (default color). Then the decom-

posed results for each row will not induce coloring conflicts among different
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rows. In other words, the coloring assignment results in each row being able

to be merged together, without losing optimality.

3.2.2 Overall Design Flow

Methodology for Std-Cell Compliance

TPL aware Detailed Placement

Decomposed Placement

Std-Cell Library
1. Std-Cell Conflict Removal

2. Std-Cell Analysis

3. Std-Cell Pre-Coloring

4. Look-Up Table Construction

Global Moving

Placement and Color Assignment
Co-optimizationInitial Placement

Figure 3.3: Overall flow of the methodologies for standard cell compliance
and detailed placement.

The overall flow of our proposed framework is illustrated in Fig. 3.3,

which consists of two stages: (1) Methodologies for standard cell compliance,

and (2) TPL aware detailed placement. In the first stage, standard cell com-

pliance, we carry out standard cell conflict removal, timing analysis, standard

cell pre-coloring, and lookup table generation. After the first stage we can

ensure that, for each cell, TPL friendly cell layout and a set of pre-coloring

solutions will be provided. In the second stage, TPL aware detailed placement,

we will discuss how to consider TPL constraints in the single row placement
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problem (see Section 3.4.1 and Section 3.4.2) and global moving (see Section

3.4.3).

Note that since triple patterning lithography constraints are seamlessly

integrated into our coherent design flow, we do not need a separate additional

step of layout decomposition. In other words, the output of our framework

is decomposed layouts that have resolved cell placement and color assignment

simultaneously.

3.3 Standard Cell Compliance

It is observed that without considering TPL in standard cell design, the

cell library may involve several cells with native TPL conflict (see Fig. 3.1 (a)

for one example). The inner native TPL conflict cannot be resolved through

either cell shift or layout decomposition. In addition, one cell may be applied

many times in one single design, thus each inner native conflict may cause

hundreds of coloring conflicts in the final layout. To achieve TPL friendly

layout after the physical design flow, we should first ensure the standard cell

layout compliance for TPL. Specifically, we will manually remove all four-

clique conflicts through standard cell modification. Then, parasitic extraction

and SPICE simulation are applied to analyze the timing impact for the cell

modification.
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(a)

(b)

Figure 3.4: Contact layout modification to hexagonal packing. (a) The princi-
ple for contact shifting; (b) Demonstration of two options for contact shifting,
with original layout in the middle, case 1 on the left and case 2 on the right.

3.3.1 Native TPL Conflict Removal

An example of native TPL conflict is illustrated in Fig. 3.4, where

four contacts introduce an indecomposable four-clique conflict structure. For

such cases we modify the contact layout into hexagonal close packing, which

allows for the most aggressive cell area shrinkage for TPL friendly layout [64].

Note that after modification, the layout still needs to satisfy the design rules.

From the layout analysis of different cells, we have various ways to remove

such four-clique conflict. As shown in Fig. 3.4, with slight modification to the

original layout, we can either choose to move contacts connected with power

or ground rails or shift contacts on the signal paths of the cell. We call these
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Figure 3.5: The timing impact from layout modification for different types of
gates, including case 1 and case 2

two options case 1 and case 2, respectively, both of which will lead to TPL

friendly standard cell layout. It shall be noted that although conventional

cell migration techniques [30, 39, 110] might be able to automatically shift

layout patterns to avoid four-clique patterns, it is hard to guarantee that the

modified layout can maintain good timing performance. Therefore, in this

work we manually modify the standard cell layout and verify timing after each

shift operation.

3.3.2 Timing Characterization

Generally, the cell layout design flexibility is beneficial for resolving

conflicts between cells when they are placed next to each other. However,

from a circuit designer’s perspective, we want to achieve little timing variation

among various layout styles of a single cell. Therefore, we need simulation

results to demonstrate negligible timing impact from layout modification.

A Nangate 45nm Open Cell Library [3] has been scaled to 16nm tech-

nology node. After native TPL conflict detection and layout modification, we
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carry out the standard cell level timing analysis. Calibre xRC [2] is used to

extract parasitic information of the cell layout. For each cell, we have original

and modified layouts with case 1 and case 2 options. From the extraction re-

sults, we can see that the source/drain parasitic resistance of transistors varies

with the position of contacts, which is the direct impact from layout mod-

ification. We use SPICE simulation to characterize different types of gates,

which is based on the 16nm PTM model [5]. Then, we can get the propagation

delay of each gate, which is the average of rising and falling delay. We pick up

six most commonly used cells to measure the relative changes of propagation

delay due to layout modification (see Fig. 3.5). It is clearly observed that, for

both case 1 and case 2, the timing impact will be within 0.5% of the original

propagation delay of gates, which is assumed to be insignificant timing vari-

ation. Based on case 1 or case 2 options, we will remove all conflicts among

cells of the library with negligible timing impact. Then, we can ensure the

standard cell compliance for triple patterning lithography.

3.3.3 Standard Cell Pre-Coloring

For each type of standard cell, after removing the native TPL conflicts,

we seek a set of pre-coloring solutions. These cell solutions are prepared as a

supplement to the library. In this section, we first describe the cell pre-coloring

problem formulation; then, we introduce our algorithms to solve this problem.
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3.3.3.1 Problem Formulation

Given the input standard cell layout, all the stitch candidates are cap-

tured through wire projection [56]. One feature in the layout is divided into

two touching parts, if one stitch candidate is introduced. Then a constraint

graph (CG) is constructed to represent all input features and all the stitch

candidates. A CG is an undirected graph, where each vertex is associated with

one input layout feature. In a CG, there is a conflict edge iff the two corre-

sponding touching vertices are connected through one stitch candidate, while

there is a stitch edge iff two untouched vertices are within minimum coloring

distance dmin. For example, given an input layout shown in Fig. 3.6 (a), five

stitch candidates are generated through wire projection. The constraint graph

is illustrated in Fig. 3.6 (b), where the conflict edges and the stitch edges are

shown as solid edges and dash edges, respectively. Note that we forbid stitch

on small features, e.g., contact, due to printability issue. Different from previ-

ous stitch candidate generation, we forbid the stitch on boundary metal wires

due to the observation that boundary stitches tend to cause indecomposable

patterns between two cells.

Based on the constraint graph, the standard cell pre-coloring problem is

to search all possible coloring solutions. At first glance, this problem is similar

to cell level layout decomposition. However, different from the conventional

layout decomposition, for each cell pre-coloring could have more than one

solution. It is observed that for some complex cell structures, if we exhaustively

enumerate all possible colorings, it would have thousands of solutions. Large

128



Stitch Candidate

Boundary Wire
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Figure 3.6: Constraint graph construction and simplification. (a) Input layout
and all stitch candidates. (b) Constraint graph (CG) where solid edges are
conflict edges and dash edges are stitch edges. (c) The simplified constraint
graph (SCG) after removing immune features.

solution size would impact the performance of our whole flow. Therefore, to

provide high quality pre-coloring solutions, meanwhile keeping the solution

size as small as possible, we define immune feature and redundant coloring

solutions as follows.

Definition 6 (Immune feature). In one standard cell, an inside feature that

does not conflict with any outside feature is defined as an immune feature.

It is easy to see that for one feature, if its distances to both vertical

boundaries are larger than dmin, its color would not conflict with any other

cells. Then, this feature is an immune feature.

Definition 7 (Redundant coloring solutions). If two coloring solutions are

only different at the immune features, these two solutions are redundant to

each other.
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Problem 6 (Standard Cell Pre-Coloring). Given the input standard cell

layout and the maximum allowed stitch number, maxS, the CG is constructed.

Standard cell pre-coloring problem searches all coloring solutions on CG such

that the stitch number is no more than maxS. Meanwhile, no two solutions

are redundant with each other.

Since in CG some vertices represent the immune features, to avoid re-

dundant coloring solutions, these features are temporarily removed. We denote

the remaining graph as a simplified constraint graph (SCG). For example, for

the constraint graph in Fig. 3.6 (b), the corresponding simplified constraint

graph is shown in Fig. 3.6 (c). Our standard cell pre-coloring algorithm consist

of two stages: coloring solution enumeration on SCG, and solution verification

on CG.

3.3.3.2 SCG Solution Enumeration

In the first step, given a SCG, we enumerate all possible coloring solu-

tions. Our enumeration is based on backtracking algorithm [75], which usually

explores implicit directed graphs to carry out a systematic search of all solu-

tions.

The details of SCG solution enumeration are shown in Algorithm 11.

Given a SCG, G, a backtracking function, BACKTRACK(0, G) is called to

search the whole graph (line 1). The backtracking is a modified depth-first

search of the solution space (lines 3-13). In line 7, a color c is denoted as

legal, if when vertex G[t] is assigned color c, no conflict is introduced, and the
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Algorithm 11 SCG Solution Enumeration

Require: SCG G = {V,CE, SE};
1: BACKTRACK(0, G);
2: return All color solutions in G;

3: function BACKTRACK(t, G)
4: if t ≥ size[G] then
5: Store current color solution;
6: else
7: for all legal color c do;
8: G[t]← c;
9: BACKTRACK(t+ 1, G);
10: G[t]← −1;
11: end for
12: end if
13: end function

total stitch number does not exceed maxS. It should be mentioned that since

all power/ground rails are assigned default color, the colors of corresponding

vertices are assigned before the backtracking process. For example, given the

SCG shown in Fig. 3.6(c), if no stitch is allowed, there are 8 solutions (see

Fig. 3.7).

3.3.3.3 CG Solution Verification

Until now we have enumerated all coloring solutions for simplified con-

straint graph (SCG). However, not all the SCG solutions can achieve legal

layout decomposition in the initial constraint graph (CG). Therefore, in the

second step, CG solution verification is proposed to each generated solution.

Since SCG is a sub-set of CG, the verification can be viewed as layout de-

131



Figure 3.7: AND2X1 cell example: 8 enumerated solutions for SCG.

composition with pre-colored features on SCG. If a coloring solution for whole

CG can be found with stitch number less than maxS, it would be stored

as one pre-coloring solution. The CG solution verification is based on the

branch-and-bound algorithm [75], which is very similar to backtracking in

that a state space tree is used to solve a problem. However, the differences

are twofold. (1) The branch-and-bound method is used only for optimization

problem, i.e., only one solution is generated. (2) The branch-and-bound al-

gorithm introduces bounding function to prune sub-optimal nodes in search

space. That is, at each node of search space, we calculate a bound on the

possible solution. If the bound is worse than the best solution we have found

so far, then we do not need to go to the sub-space.

The details of the CG solution verification are shown in Algorithm
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Algorithm 12 CG Solution Verification

Require: Set of initial coloring solutions S ′ for SCG;
1: Generate corresponding coloring solutions S for CG;
2: for each coloring solution si ∈ S do
3: minCost←∞;
4: BRANCH-AND-BOUND(0, si);
5: if minCost < maxS then
6: Output si as legal pre-coloring solution;
7: end if
8: end for

9: function BRANCH-AND-BOUND(t, si)
10: if t ≥ size[si] then
11: if GET-COST( ) < minCost then
12: minCost← GET-COST();
13: end if
14: else if LOWER-BOUND( ) > minCost then
15: Return;
16: else if si[t] 6= −1 then
17: BRANCH-AND-BOUND(t+ 1, si);
18: else . si[t] = −1
19: for each available color c do;
20: si[t]← c;
21: BRANCH-AND-BOUND(t+ 1, si);
22: si[t]← −1;
23: end for
24: end if
25: end function

12. Given a SCG coloring solutions S ′ = {s′1, s′2 . . . s′n}, at the beginning the

corresponding CG coloring solutions S = {s1, s2, . . . , sn} are generated (line

1). Then we iteratively check each coloring solution si (lines 2 − 6). For one

coloring solution si, if vertex t belongs to SCG, si[t] should be already assigned

one legal color. If t does not belong to SCG, si[t]← −1. The BRANCH-AND-
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Figure 3.8: AND2X1 cell example: In CG 4 verified solutions are stored as
final coloring solutions.

BOUND() algorithm traverses the decision tree with a depth first search (DFS)

method (lines 7 − 19). For each vertex t, if si[t] has been assigned one legal

color in SCG, we skip t and travel to the next vertex. Otherwise, every legal

color would be assigned to t before traveling to the next vertex. Different from

exhaustive search, search space can be effectively reduced through the pruning

process (lines 11 − 12). The function LOWER-BOUND() is to get the lower

bound by calculating the current stitch number. Note that if one conflict is

found, then the function returns a large value. Before checking any legal color

of vertex t, we calculate its lower bound first. If LOWER-BOUND() is larger

than minCost, we shall not branch from t, since all the children solutions will

be of higher cost than minCost. Through the travel, all vertices have been

assigned legal colors, stored in si. After the travel, if minCost ≤ maxS, then

si is one of the pre-coloring solutions (lines 5− 6).

It shall be noted that although other layout decomposition techniques,

like integer linear programming (ILP), may be modified as the verification

engine, our branch-and-bound based method is easy to implement and effective
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for standard cell level problem size. Even for the most complex cell, SCG

solution enumeration and CG solution verification can be finished in 5 seconds.

For the SCG solutions in Fig. 3.7, four solutions are verified and assigned final

colors (see Fig. 3.8). These four solutions would be the final coloring solutions

for this standard cell, and are provided as supplement to the library.

3.3.4 Look-Up Table Construction

For each cell ci in the library, we have generated a set of pre-coloring

solutions Si = {si1, si2, . . . , siv}. We further pre-compute the decomposability

of each cell pair and store them in a lookup table. For example, if two cells, ci

and cj, are assigned with the p−th and q−th coloring solutions, respectively,

then in lookup table a value LUT(i, p, j, q) would be stored, which is the min-

imum distance required when ci is to the left of cj. If two colored cells can be

legally abutted to each other, the corresponding value would be 0. Otherwise,

the value would be the site number required to keep two cells decomposable.

Meanwhile, for each cell, the stitch numbers in different coloring solutions are

also stored. It shall be noted that during the lookup table construction, the

cell flipping is considered and related values are stored as well.

3.4 TPL aware Detailed Placement

3.4.1 TPL aware Ordered Single Row Placement

We first solve a single row placement, where the orders of all cells on

the row are determined. When the TPL process is not considered this row
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Table 3.1: Notations used in TPL-OSR problem

m site number
n cell number
C a set of cells {c1, c2, . . . , cn}
vi pre-coloring solution number for cell ci
K max{v1, v2, . . . , vn}
(i, p) cell ci is assigned to pth color solution
LUT(i, p, j, q) min distance required between (i, p) & (j, q)
s(i, p) stitch number for (i, p)
x(i) horizontal position of ci
w(i) width of ci
a(i) assigned color for ci

based design problem is called Ordered Single Row (OSR) problem, which has

been well studied [17, 50, 51, 94]. Here we revisit the OSR problem with the

TPL process consideration. For convenience, Table 3.1 lists the notations used

in this section.

3.4.1.1 Problem Formulation

We consider an input single row as m ordered sites R = {r1, r2, . . . , rm},

and an input n movable cells C = {c1, c2, . . . , cn} whose order is determined.

That is, ci is to the left of cj, if i < j. Each cell ci has vi different coloring

solutions. A cell-color pair (i, p) denotes that cell ci is assigned to the pth color

solution, where p ∈ [1, vi]. Meanwhile, s(i, p) gives the corresponding stitch

number for (i, p). The horizontal position of cell ci is given by x(i), and the

cell width is given by w(i). All the cells in other rows are with fixed positions.

A single row placement is legal if and only if any two cells, ci and cj, meet the
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following non-overlap constraint:

x(i) + w(i) + LUT(i, p, j, q) ≤ x(cj), if (i, p)&(j, q)

where LUT(i, p, j, q) is the minimum distance required between (i, p) & (j, q).

Based on all these notations, we define the TPL aware Ordered Single Row

(TPL-OSR) problem as follows.

Problem 7 (TPL aware Ordered Single Row Problem). Given a single

row placement, we seek a legal placement and cell color assignment, so that

the half-perimeter wire-length (HPWL) of all nets and the total stitch number

are minimized.

Compared with the traditional OSR problem, the TPL-OSR problem

faces two special challenges: (1) TPL-OSR not only needs to solve cell place-

ment, but also needs to assign appropriate coloring solutions for cells to min-

imize the stitch number. In other words, cell placement and color assignment

should be solved simultaneously. (2) In conventional OSR problems, if the sum

of all cell widths is less than row capacity, it is guaranteed that there would be

one legal placement solution. However, for TPL-OSR problems, since some ex-

tra sites may be spared to resolve coloring conflicts, before coloring assignment

we cannot calculate the required site number.

In addition, it shall be noted that compared with the conventional color

assignment problem, in TPL-OSR the solution space is much larger. That is,

to resolve the coloring conflict between two abutted cells, ci and cj, apart from
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(a) (b)

Figure 3.9: Two techniques for removing conflicts during placement. (a) Flip
the cell; (b) Shift the cell.

picking up compatible coloring solutions, TPL-OSR can seek to flip cells (see

Fig. 3.9 (a)) or shift cells (see Fig. 3.9 (b)).

3.4.1.2 Unified Graph Model

We propose a graph model that correctly captures the cost of HPWL

and the stitch number. Furthermore, we will show that performing a shortest

path algorithm on the graph model can optimally solve the TPL-OSR problem.

To consider cell placement and cell color assignment simultaneously, a

directed acyclic graph G = (V,E) is constructed. The graph G is with vertex

set V and edge set E. V = {{0, . . . ,m} × {0, . . . , N}, t}, where N =
∑n

i=1 vi.

The vertex in the first row and the first column is defined as vertex s. We

can see that each column corresponds to one site’s start point, and each row is

related to one specified color assignment of one cell. Without loss of generality,

we label each row as r(i, p), if it is related to cell ci with pth coloring solution.

The edge set E is composed of three sets of edges: horizontal edges Eh, ending
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(2, v2)
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Figure 3.10: Graph model for the TPL-OSR problem (only the horizontal
edges and ending edges are showed).

edges Ee, and diagonal edges Ed.

Eh ={(i, j − 1)→ (i, j)|0 ≤ i ≤ N, 1 ≤ j ≤ m}

Ee ={(i,m)→ t|i ∈ [1, N ]}

Ed ={(r(i− 1, p), k)→ (r(i, q), k + w(i)+

LUT (i− 1, p, i, q))|i ∈ [2, n], p ∈ [1, vi−1], q ∈ [1, vi]}

We denote each edge by its start and end point. A legal TPL-OSR solution

corresponds to finding a directed path from the vertex s to vertex t. Sometimes

one row cannot insert all the cells, therefore ending edges are introduced. With

these ending edges, the graph model can guarantee to find out one path from

s to t.

To simultaneously minimize the HPWL and stitch number, we define

the cost on edges as follows. (1) All horizontal edges are with zero cost. (2)

For ending edge {(r(i, p),m)→ t}, it is labeled by the cost (n− i) ·M , where
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Figure 3.11: Example for the TPL-OSR problem. (a) two cells with different
coloring solutions to be placed into a 5 sites row; Graph models with diagonal
edges (b) from s vertex to first cell; (c) from c1 1 to second cell; (d) from c1 2
to second cell.

M is a large number. (3) For diagonal edge {(r(i, p), k)→ (r(j, q), k+w(cj) +

LUT (i, p, j, q))}, it is labelled by the cost as follows:

∆WL+ α · s(i, p) + α · s(j, q)

where ∆WL is the HPWL increment of placing cj in position q−LUT(i, p, j, q).

Here α is a user-defined parameter for assigning relative importance between

the HPWL and the stitch number. In our framework, α is set to 10. The

general structure of G is shown in Fig. 3.10. Note that for clarity, here we do

not show the diagonal edges.
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Figure 3.12: Shortest path solutions on the graph model with (a) 1 stitch; (b)
0 stitch.

One example of the graph model is illustrated in Fig. 3.11, where two

cells, c1 and c2, are to be placed in a row with 5 sites. Each cell has two

different coloring solutions and corresponding required stitch number. For

example, the label (2,1)-0 means c2 is assigned to the first coloring solution,

with no stitch. The graph model is shown in Fig. 3.11(b)(c)(d), where each

figure shows different part of diagonal edges. Cells c1 and c2 are connected

with pin 1 and pin 2, respectively. Therefore, c1 tends to be on the left side

of the row, while c2 tends to be on the right side. Fig. 3.12 gives two shortest

path solutions with the same HPWL. Because the second has a lower stitch

number, it would be selected as the solution for the TPL-OSR problem.

Since G is a directed acyclic graph, the shortest path can be calculated

using topological traversal of G in O(mnK) steps, where K is the maximal

pre-coloring solution number for each cell. To apply topological traversal, a

dynamic programming algorithm is proposed to find the shortest path from

the s vertex to the t vertex.
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Figure 3.13: (a) The first stage to solve color assignment. In this example
edge cost only considers the stitch number minimization. (b) One shortest
path solution corresponds to a color assignment solution.

3.4.1.3 Two Stage Graph Model

Although the unified graph model can be optimally solved through a

shortest path method in O(mnK), for practical design when each cell could

allow many pre-coloring solutions, the proposed graph model may still suffer

from long runtime penalty. Here we present a new two-stage graph model

for the TPL-OSR problem. The main idea is that the previous unified graph

model is decomposed into two smaller graphs, one for color assignment and

another for cell placement. Therefore, solving the new model can provide a

fast solution to the TPL-OSR problem.

To solve the example in Fig. 3.11, the first stage graph model is illus-

trated in Fig. 3.13 (a), where the cost of each edge corresponds to the stitch

number required for each cell-color pair (i, p). Note that in our framework,

relative positions among cells are also considered in the edge cost. A shortest

path on the graph corresponds to a color assignment with minimum stitch

number.
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Figure 3.14: (a) The second stage to solve detailed placement. (b) One shortest
path solution corresponds to a cell placement.

Our second stage is for cell placement and the previous color assignment

solutions are considered here. That is, if in previous color assignment cells,

ci−1 and ci, are assigned its p−th and q−th coloring solutions, then the width

of cell ci is changed from w(i) to w(i) + LUT(i− 1, p, i, q). This way, the extra

sites to resolve coloring conflicts are prepared for cell placement. Based on

the updated cell widths, the graph model in [50] can be directly applied here.

For instance, the second stage graph model for the example in Fig. 3.11 is

illustrated in Fig. 3.14. It shall be noted that all cells have been assigned a

coloring solution, thus the graph size is much smaller than that in Fig. 3.11.

As shown in Fig. 3.14 (b), the shortest path on the graph corresponds to a

cell placement.

The first graph model can be solved in O(nK), while the second graph
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model can be resolved in O(mn). Therefore, although the speed-up technique

can not achieve an optimal solution of the TPL-OSR problem, applying the

two-stage graph model can reduce the complexity from O(mnK) to O(nK +

mn).

3.4.2 TPL-OSR with Maximum Displacement

Here we consider another single row placement problem, which is sim-

ilar to the TPL-OSR, where the initial cell orders are determined. The slight

difference here is that each cell is forbidden from moving more than distance

M from its original location. The new problem is called TPL-OSR with

Maximum Displacement. The motivation to study this new problem is

twofold. First, in the previous TPL-OSR problem, although the two stage

graph model can provide fast solutions due to the nature that the color as-

signment and cell placement are solved separately, its solution qualities may

not be good enough. For the new problem, we are able to propose a fast but

high performance optimization algorithm. Second, from the design perspec-

tive, a detailed placement technique with maximum displacement constraints is

robust and important in practical situations. For example, if the initial place-

ment is optimized toward other design metrics, e.g., pin density or routability,

limiting cell displacements can help to maintain these metrics.
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3.4.2.1 Problem Formulation

The problem we solve is finding new locations for all cells that preserve

their relative order. Meanwhile, each cell has maximum moving distance, M ,

from its original location. In other words, each cell ci has 2M + 1 possible

locations between [x(i) −M,x(i) + M ]. Here x(i) is the original position of

cell ci, while M is a user-defined parameter. Based on these notations, the

TPL-OSR with maximum displacement problem is defined as follows:

Problem 8 (TPL-OSR with Maximum Displacement). Given a single

row placement, we seek cell displacement values d(i), with |d(i)| < M , and

color assignments so that the half-perimeter wire-length (HPWL) of all nets

and the total stitch number are minimized.

3.4.2.2 Linear Dynamic Programming Algorithm

Inspired by [87], our algorithm is based on linear dynamic program-

ming, which means the optimal solution can be searched in linear time. The

main idea is that we process cells starting from c1 and explore cell pair loca-

tions for (c1, c2), followed by (c2, c3), etc. Once the optimal placements and

color assignments for c1, . . . , ci−1 are computed we search the optimal place-

ment and color assignment simultaneously for ci. For convenience, Table 3.2

lists some additional notations used in the linear dynamic programming.

The details of the linear dynamic programming are shown in Algorithm

13. Line 1 initializes the solution costs. The main algorithmic computation

takes place in the loops (lines 2–17). We iteratively explore all cell pairs
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Table 3.2: Notations used in linear dynamic programming

a(i) Color assignment value for ci.

d(i) Displacement value for ci.

t[i][d][a] Best cost for c1, . . . , ci with d(i) = d and a(i) = a.

d[i][d][a] Displacement of ci−1 in an optimal sub-solution

of {c1, . . . , ci} with d(i) = d and a(i) = a.

a[i][d][a] Color assignment of ci−1 in an optimal sub-solution

of {c1, . . . , ci} with d(i) = d and a(i) = a.

r[i][d][a] whether t[i][d][a] is inferior.

(ci−1, ci), with different displacement values and color assignment solutions

(lines 2–4). For cell pair (ci−1, ci) and different combinations of (d1, a1, d2, a2),

the best cost is stored in t[i][d2][a2], while d1 and a1 are stored in d[i][d2][a2]

and a[i][d2][a2], respectively (lines 9–13). Fi−1(d1, a1, d2, a2) is the cost con-

sidering wire-length impact and stitch number, defined as follows:

∆WL+ α · s(i− 1, a1) + α · s(i, a2)

where ∆WL is the HPWL improvement of placing ci−1 and ci in x(i− 1) + d1

and x(i) + d2, respectively. s(i − 1, a1) and s(i, a2) are used to calculate

the stitch numbers. Here α is a user-defined parameter for assigning relative

importance between the HPWL and the stitch number.

Different from the method in [87], we propose pruning techniques to

speed-up the dynamic programming process. For any two solutions t[i][d1][a]

and t[i][d2][a], if t[i][d1][a] >= t[i][d2][a] and d1 >= d2, we can say t[i][d1][a]

is inferior to t[i][d2][a]. Then r[i][d1][a] is assigned 1 to label the inferiority

(line 16). Therefore, one can exit early when checking the r value (lines 5-7).
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Algorithm 13 Linear Dynamic Programming

Require: Cells C in row sites R;
1: Initialize matrices r, t, d, and a; F ←∞;
2: for all i = 2 to n do
3: for all a1 = 1 to vi−1, a2 = 1 to vi do
4: for all d1 = −M to M,d2 = −M to M do
5: if r[i− 1][d1][a1] = 1 then
6: continue;
7: end if
8: y = t[i− 1][d1][a1] + Fi−1(d1, a1, d2, a2);
9: if y < t[i][d2][a2] then
10: t[i][d2][a2]← y;
11: d[i][d2][a2]← d1;
12: a[i][d2][a2]← a1;
13: end if
14: end for
15: end for
16: Mark inferior ones with r[i][d][a]← 1;
17: end for
18: for dn = −M to M,an = 1 to vn do
19: if t[n][dn][an] < F then
20: F ← t[n][dn][an];
21: d(n)← dn;
22: a(n)← an;
23: end if
24: end for
25: for i = n downto 2 do
26: d(i− 1)← d[i][d(i)][a(i)];
27: a(i− 1)← a[i][d(i)][a(i)];
28: end for

Lines 18–24 compute the end case of the last cell in the row, and the solution

is recovered at last (lines 25–28).

Theorem 5. The linear dynamic programming runs in O(nK2M2) time to
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optimally solve the problem,

The complexity analysis results from the for loops (lines 2–17). Since

both K and M are constants, the runtime complexity of Algorithm 13 is linear.

Optimality stems from the fact that t[i][ ][ ] explores all possible displacement

values and color assignment solutions. It shall be noted that the unified graph

model in Section 3.4.1.2 can be also modified to solve the problem here. How-

ever, the runtime complexity using unified graph model is O(nmK). Since

usually m is larger than n, the complexity of a unified graph model is quadratic

and may be slower than linear dynamic programming.

3.4.3 Overall Placement Scheme

In this section, we present our overall scheme for the whole design level

TPL aware detailed placement. Algorithm 14 summarizes the overall flow. At

the beginning, all rows are labeled as FREE, which means additional cells

can be inserted (line 3). In each main loop, rows are sorted such that the row

with more cells occupied would be solved earlier. For each row rowi, we carry

out single row TPL aware detailed placement as introduced in Section 3.4.1

and Section 3.4.2, to solve color assignment and cell placement simultaneously.

Note that sometimes in one row we cannot assign all cells legal positions, due

to extra sites required to resolve coloring conflicts.

If single row problem ends with unsolved cells, Global Moving is applied

to move some cells to other rows (line 7). The basic idea behind the Global

Moving is to find the “optimal row and site” for a cell in the placement region
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Algorithm 14 TPL aware Detailed Placement

Require: Cells to be placed;
1: repeat
2: Sort all rows;
3: Label all rows as FREE;
4: for each row rowi do
5: Solve single row problem for rowi;
6: if exist unsolved cells then
7: Global Moving;
8: Update cell widths considering assigned colors;
9: Solve OSR problem for rowi;
10: end if
11: Label rowi as BUSY ;
12: end for
13: until no significant improvement;

and remove some local triple patterning conflicts. For each cell we define its

“optimal region” as the site to place where the HPWL is optimal [41]. Note

that one cell can be only moved to FREE rows. Since some cells in the middle

of a row may be moved, we need to solve OSR problem to rearrange the cell

positions [50]. Note that since all cells on the row have been assigned colors,

cell widths should be updated to preserve extra space for coloring conflict (line

8− 9) . After solving one rowi, it is labeled as BUSY (line 10).

Since the rows are placed and colored one by one sequentially, the solu-

tion obtained within one single row may not be good enough. Therefore, our

scheme is able to repeatedly call the main loop until no significant improve-

ment is achieved (line 13).
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3.5 Experimental Results

We implement our standard cell pre-coloring and TPL aware detailed

placement in C++, and all the experiments are performed on a Linux ma-

chine with 3.0GHz CPU. Nangate 45nm library [3] is scaled down to 16nm

technology node, as our initial standard cell library. We apply standard cell

compliance and pre-coloring on the scaled the library. During standard cell

pre-coloring, each cell’s maximum allowed stitch number, maxS, is set to 2.

We use Design Compiler [6] to synthesize OpenSPARC T1 designs based on

the modified cell library. For each benchmark, we perform placement with

Cadence SOC Encounter [1] to generate initial placement results. To better

compare the performance of detailed placement under different placement den-

sities, for each circuit, we choose three different core utilization rates 0.7, 0.8,

and 0.85. Generally speaking, the higher utilization rate, the more difficult of

the detailed placement.

The benchmark statistics are listed in Table 3.3. Column “K” is the

maximum cell pre-coloring solution number among all standard cell types,

which is related to the lookup table size. Columns “cell #” and “row #” are

the total cell module number and the total row number for each placement test

case, respectively. Both “cell #” and “row #” reflect the placement problem

size. To demonstrate the problem size of each single row placement, columns

“max cell # per row” and “max m per row” are used. These columns represent

maximum cell module number in one row, and maximum site number in one

row, respectively.
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Table 3.3: Benchmark Statistics
bench K cell # row# max cell # max m

per row per row
alu-70 74 2110 43 67 330
alu-80 74 2110 41 68 302
alu-85 74 2110 39 67 299
byp-70 32 4416 81 75 597
byp-80 32 4416 75 84 564
byp-85 32 4416 73 89 545
div-70 74 3758 65 92 489
div-80 74 3758 61 94 456
div-85 74 3758 59 109 444
ecc-70 32 1322 42 42 322
ecc-80 32 1322 40 47 296
ecc-85 32 1322 38 45 293
efc-70 74 1183 40 45 300
efc-80 74 1183 37 43 283
efc-85 74 1183 36 44 274
ctl-70 74 1694 48 45 363
ctl-80 74 1694 45 54 339
ctl-85 74 1694 44 53 326
top-70 74 14793 123 146 919
top-80 74 14793 115 157 860
top-85 74 14793 112 158 832

In the first experiment we demonstrate the effectiveness of our overall

TPL aware design compared to conventional TPL aware design. Conventional

TPL aware design flow consists of standard cell synthesis, placement, and TPL

layout decomposition at post-stage. Our TPL aware design flow integrates

TPL constraints into standard cell synthesis and detailed placement, and no

layout decomposition is required on the whole chip layout. Table 3.4 compares

both flows for the M1 layer of all the benchmarks. Column “Conventional
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flow” is the conventional TPL design flow. Encounter is chosen as the placer,

and an academic decomposer [32] is used as our layout decomposer. Column

“Our flow” is the proposed TPL aware detailed placement. Layout modifi-

cation and pre-coloring are carried out for each standard cell, and the optimal

graph model is utilized to solve cell placement and color assignment simulta-

neously. Note here for each flow, the standard cell inner native conflicts have

been removed through our compliance techniques (see Section 3.3). In other

words, theoretically the conflicts can only happen on the boundaries between

standard cells.

On the one hand, we can see that in the conventional design flow, even

each standard cell itself is TPL-friendly on average more than 1,000 conflicts

are reported in final decomposed layout. Meanwhile, on average over 20,000

stitches are introduced for each case. Due to the large number of conflicts

and stitches, a lot of efforts may be required to manually modify or migrate

the layout to resolve the conflicts. On the other hand, through considering

TPL constraints in early design stages, our proposed TPL aware design flow

can guarantee zero conflict. Since stitch number optimization is considered in

both cell pre-coloring and TPL aware detailed placement, the stitch number

can be reduced by 92.7% comparing with traditional flow.

In Section 3.4.1 and Section 3.4.2 we have proposed several algorithms

to solve TPL aware single row detailed placement. In the second experiment,

we analyze the performances of the proposed algorithms and related speed-up

techniques in Table 3.5. Column “GREEDY” is a greedy detailed placement
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Table 3.4: Comparisons with Traditional Flow

bench Conventional flow Our flow
CN# ST# CN# ST# ∆ST#

alu-70 461 8476 0 1013 -89.5%
alu-80 428 10862 0 1011 -91.2%
alu-85 493 5559 0 1006 -82.2%
byp-70 1168 43730 0 2743 -96.7%
byp-80 1251 35973 0 2889 -95.6%
byp-85 1342 38576 0 3136 -95.6%
div-70 821 19492 0 2119 -91.9%
div-80 860 18928 0 2090 -90.8%
div-85 982 22070 0 2080 -91.9%
ecc-70 368 7801 0 247 -96.4%
ecc-80 362 10083 0 274 -97.1%
ecc-85 372 9990 0 369 -96.8%
efc-70 222 7589 0 1005 -90.0%
efc-80 225 13006 0 1008 -93.5%
efc-85 258 5260 0 1005 -83.7%
ctl-70 354 15356 0 573 -97.8%
ctl-80 380 15158 0 561 -97.4%
ctl-85 414 14873 0 556 -97.1%
top-70 3708 58953 0 8069 -90.5%
top-80 3976 60736 0 8120 -89.8%
top-85 4265 70316 0 8710 -90.9%

Average 1081 23466 0 1672.5 -92.7%

algorithm [36], which is implemented as our baseline. Although the work in [36]

is targeting the self-aligned double patterning (SADP), the proposed detailed

placement algorithm can be modified to be integrated into our framework.

Columns “TPLPlacer” and “TPLPlacer-2Stage” are detailed placement

algorithms with different TPL-OSR engines. TPLPlacer utilizes the optimal

unified graph model, while TPLPlacer-2Stage uses fast two-stage graph models
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to solve color assignment and cell placement iteratively. In addition, column

“TPLPlacer-MDP” is to apply the linear dynamic programming method

(see Section 3.4.2) to solve the TPL-OSR with maximum displacement prob-

lem. Here the maximum displacement value, M , is set to 8. For each algo-

rithm we list several metrics “ST#”, “∆WL”, and “CPU(s)”. “ST#” is the

stitch number on the final decomposed layout. “∆WL” is the total wire-length

difference before and after our TPL aware placement, where half-perimeter

wire-length (HPWL) is applied to calculate the total wire-length. Column

“CPU(s)” gives the detailed placement process runtime in seconds.

From column “GREEDY” we can see that the greedy method is very

fast, i.e., if a legal solution is found it can be finished in less than 0.01 seconds.

However, in 9 out of 21 cases it cannot find legal placement solutions. For each

illegal result “N/A” is labeled in the table. The main reason for these illegal

solutions is that GREEDY only shifts the cells right. Therefore, due to the

greedy nature, for a benchmark case with high cell utilization it may cause final

placement violation. Meanwhile, since the color assignment is solved through

greedy method as well, it loses the global view to minimize the stitch number.

We can observe that more stitches are reported for those cases where it finds

out legal results.

We further compare two TPL-OSR algorithms: “TPLPlacer” and “TPLPlacer-

2Stage”. Comparing these two columns we can see that both of them can yield

very similar wire-length improvement (around 1% wire-length reduction). In

“TPLPlacer-2Stage” the unified graph is divided into two independent graphs,
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so the graph size can be reduced. Due to the smaller graph size, “TPLPlacer-

2Stage” can get 100x speed-up against “TPLPlacer”. However, “TPLPlacer-

2Stage” introduces 19% more stitch numbers. The possible reason is that

under the 2-stage graph model, placement and color assignment are optimized

separately, and then this speed-up technique may lose some optimality in terms

of stitch number.

From column “TPLPlacer-MDP” we can see that the linear dynamic

programming technique has a better trade-off to optimize wire-length and

stitch number together. That is, “TPLPlacer-MDP” achieves nearly the same

wire-length and stitch number results comparing with “TPLPlacer”. Mean-

while, “TPLPlacer-MDP” is 14× faster than the unified graph model in “TPLPlacer”.

The reason is that “TPLPlacer-MDP” is a linear runtime algorithm, while

“TPLPlacer” has nearly a quadratic runtime complexity.

For test case ctl-70, Fig. 3.15 demonstrates three stitch density maps

through different detailed placement algorithms: TPLPlacer, TPLPlacer-MDP,

and TPLPlacer-2Stage. The final stitch numbers for these three detailed place-

ment techniques are 335, 330 and 491, respectively. We can see that the den-

sity maps in Fig. 3.15 (a) and Fig. 3.15 (b) are very similar, which means

the speed-up technique TPLPlacer-MDP can achieve very comparable result

with TPLPlacer. However, another speed-up technique, TPLPlacer-2Stage,

may involve more final stitches (see Fig. 3.15 (c)).

The “TPLPlacer-MDP” is implemented with M = 8. In other words,

each cell ci has 2M + 1 possible new positions between [x(i)−M,x(i) + M ].
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Since the M value determines the placement solution space, it impacts the per-

formance of detailed placement a lot. Therefore, to demonstrate the robustness

of “TPLPlacer-MDP”, it would be interesting to analyze the performance with

different M settings. Fig. 3.16 gives such analysis for test cases alu 70, alu 80

and alu 85. From Fig. 3.16 (a) and Fig. 3.16 (b) we can see that with dif-

ferent M values, “TPLPlacer-MDP” can achieve similar stitch number and

wire-length improvement. It is not hard to see from Fig. 3.16 (c) that the

runtime is related to the M value, i.e., for each test case the runtime is nearly

a linear function of M . Therefore, we can conclude that “TPLplacer-MDP” is

very robust and insensitive to the M value. In our implementation, M is set

as a small value 8, to maintain both good speed-up and good performance.

3.6 Summary

In this chapter, we propose a coherent framework to seamlessly in-

tegrate the TPL aware optimizations into early design stages. To our best

knowledge, this is the first work for TPL compliance at both standard cell and

placement levels. An optimal graph model to simultaneously solve cell place-

ment and color assignment is proposed, and then a two-stage graph model is

presented to achieve speedup. Our framework is compared with traditional

layout decomposition. The results show that considering TPL constraints in

early design stages can dramatically reduce the conflict number and stitch

number in final layout. As continuing growth of technology node to sub-16

nm, TPL turns out to be a definitely promising lithography solution. A ded-

156



icated design flow integrating TPL constraints is necessary to assist in the

whole process. We believe this work will stimulate more research on TPL

aware design.
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Chapter 4

Design for Manufacturing with E-Beam

Lithography

4.1 Introduction

Conventional EBL system applies variable shaped beam (VSB) tech-

nique. In this mode, the entire layout is decomposed into a set of rectangles,

each being shot into resist by one electron beam. The printing process of VSB

mode is illustrated in Fig. 4.1 (a). At first the electrical gun generates an

initial beam, which becomes uniform through the shaping aperture. Then the

second aperture finalizes the target shape with a limited maximum size. Since

each pattern needs to be fractured into pieces of rectangles and printed one

by one, the VSB mode may suffer from serious throughput problem.

One improved technique is called character projection (CP) [34]. As

shown in Fig. 4.1 (b), in CP mode the second aperture is replaced by a stencil.

Some complex shapes, called characters, are prepared on the stencil. The key

idea is that if a pattern is pre-designed on the stencil, it can be printed in

one electronic shot, otherwise it needs to be fractured into a set of rectangles

and printed one by one through VSB mode. By this way the CP mode can

improve the throughput significantly. In addition, CP exposure has a good
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Electrical Guns

Wafer

2nd Apenture

Shaping Apentures

(a) VSB

Electrical Gun

Wafer

Stencil

Shaping Apenture

(b) CP

Figure 4.1: Printing process of conventional EBL system. (a) VSB mode. (b)
CP mode.

CD control stability compared with VSB [71]. However, the area constraint

of stencil is the bottleneck. For modern design, due to the numerous distinct

circuit patterns, only limited number of patterns can be employed on stencil.

Those patterns not contained by stencil are still required to be written by

VSB. Thus one emerging challenge in CP mode is how to pack the characters

into stencil to effectively improve the throughput.

Even with decades of development, the key limitation of the EBL sys-

tem has been and still is the low throughput. This chapter presents two

methodologies to deal with the throughput problem in EBL system.
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Electrical Guns

Shaping Apentures

w1 w2

w3 w4

4 Regions on Wafer

Stencils

Figure 4.2: Printing process of MCC system, where four CPs are bundled.

4.2 E-BLOW: Overlapping aware Stencil Planning for
MCC System

Even with decades of development, the key limitation of the EBL sys-

tem has been and still is the low throughput. Recently, multi-column cell

(MCC) system is proposed as an extension to CP technique [101] [72]. In

MCC system, several independent character projections (CP) are used to fur-

ther speed-up the writing process. Each CP is applied on one section of wafer,

and all CPs can work parallelly to achieve better throughput. Due to the

design complexity and cost consideration, different CPs share one stencil de-

sign [83]. One example of MCC printing process is illustrated in Fig. 4.2,
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D E
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Figure 4.3: Two types of OSP problem. (a) 1D-OSP. (b) 2D-OSP.

where four CPs are bundled to generate an MCC system. In this example, the

whole wafer is divided into four regions, w1, w2, w3 and w4, and each region is

printed through one CP. Note that the whole writing time of the MCC system

is determined by the maximum one of the four regions. For modern design,

because of the numerous distinct circuit patterns, only limited number of pat-

terns can be employed on stencil. Since the area constraint of stencil is the

bottleneck, the stencil should be carefully designed/manufactured to contain

the most repeated cells or patterns.

As one of the most challenges in CP mode, stencil planning has earned

much attentions [22,57,68,84,113]. When blank overlapping is not considered,

the stencil planning equals to a character selection problem. [84] proposed

an integer linear programming (ILP) formulation to select a group of char-

acters for throughput maximization. When the characters can be overlapped

to save more stencil space, the corresponding stencil planning is referred as

overlapping-aware stencil planning (OSP). [113] [57] investigated on OSP prob-

lem to place more characters onto stencil, Recently, [22] [68] assumed that the
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pattern position in each character can be shifted, and integrated the charac-

ter re-design into OSP problem. As suggested in [113], the OSP problem can

be divided into two types: 1D-OSP and 2D-OSP. In 1D-OSP, the standard

cells with same height are selected into stencil. As shown in Fig. 4.3(a), each

character implements one standard cell, and the enclosed circuit patterns of

all the characters have the same height. Note that here we only show the

horizontal blanks, and the vertical blanks are not represented because they

are identical. In 2D-OSP, the blanking spaces of characters are non-uniform

along both horizontal and vertical directions. By this way, stencil can contain

both complex via patterns and regular wires. Fig. 4.3(b) illustrates a stencil

design example for 2D-OSP.

Compared with conventional EBL system, MCC system introduces two

main challenges in OSP problem. First, the objective is new: in MCC system

the wafer is divided into several regions, and each region is written by one

CP. Therefore the new OSP should minimize the maximal writing times of

all regions. However, in conventional EBL system the objective is simply

minimize the wafer writing time. Besides, the stencil for an MCC system can

contain more than 4000 characters, previous methodologies for EBL system

may suffer from runtime penalty. However, no existing stencil planning work

has been done toward the MCC system.

This section presents E-BLOW, the first study for OSP problem in

MCC system. Our main contributions are summarized as follows.
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• We show that both 1D-OSP and 2D-OSP problems are NP-hard.

• We formulate integer linear programming (ILP) to co-optimizing charac-

ters selection and physical placements on stencil. To our best knowledge,

this is the first mathematical formulation for both 1D-OSP and 2D-OSP.

• We proposes a simplified formulation for 1D-OSP, and proves its round-

ing lower bound theoretically.

• We present a successive relaxation algorithm to find a near optimal so-

lution.

• We design a KD-Tree based clustering algorithm to speedup 2D-OSP

solution.

4.2.1 Preliminaries

During character design, blanking area is usually reserved around its

boundaries. Note that the blanking space here refers to the blank around the

character boundaries. The term “overlapping” means sharing blanks between

adjacent characters. By this way, more characters can be placed on the stencil

[113]. In the beginning of this section the problem formulation will be provided,

then we will show that both 1D-OSP and 2D-OSP are NP-hard.

4.2.1.1 Problem Formulation

In an MCC system with P CPs, the whole wafer is divided into P

regions {r1, r2, . . . , rP}, and each region is written by one particular CP. We
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assume cell extraction [69] has been resolved first. In other words, a set of

character candidates CC = {c1, · · · , cn} has already been given to the MCC

system. For each character candidate ci ∈ CC , its writing time through VSB

mode is denoted as ni, while its writing time through CP mode is 1.

The regions of wafer have different layout patterns, and the throughputs

would be also different. Suppose character candidate ci repeats tic times with

MCC system on region rc. Let ai indicate the selection of character candidate

ci as follows.

ai =

{
1, candidate ci is selected on stencil
0, otherwise

If ci is prepared on stencil, the total writing time of pattern ci on region rc is

tic ·1. Otherwise, ci should be printed through VSB. Since region rc comprises

tic candidate ci, the writing time would be tic · ni. Therefore, for region rc the

total writing time Tc is as follows:

Tc =
n∑

i=1

ai · (tic · 1) +
n∑

i=1

(1− ai) · (tic · ni)

=
n∑

i=1

tic · ni −
n∑

i=1

tic · (ni − 1) · ai

= T V SB
c −

n∑
i=1

Ric · ai

where we denote T V SB
c =

∑n
i=1 tic ·ni, and Ric = tic · (ni− 1). T V SB

c shows the

writing time on rc when only VSB is applied, and Ric represents the writing

time reduction of candidate ci on region rc. In MCC system, for each region

rc both T V SB
c and Ric are constants. Therefore, the total writing time of the

MCC system is formulated as follows:
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Ttotal = max{Tc}

= max{T V SB
c −

n∑
i=1

Ric · ai},∀c ∈ P (4.1)

Problem 9. Overlapping aware Stencil Planning (OSP) for MCC

System: Given a set of character candidate CC, select a subset CCP out of

CC as characters, and place them on the stencil. The objective is to minimize

the system writing time Ttotal expressed by Eqn. (4.1), while the placement of

CCP is bounded by the outline of stencil. The width and height of stencil is W

and H, respectively.

For convenience, we use the term OSP to refer OSP for MCC system

in the rest of this chapter.

4.2.1.2 NP-Hardness

Here we discuss the computational complexity of the OSP problem.

Before the details of proof, we define a Knapsack problem as follows.

Problem 10 (Knapsack). Given a knapsack with capacity C and a set of

items S = {1, . . . , n}, where item i has size si and value vi. We are searching

a subset S ′ ∈ S that maximizes the value of
∑

i∈S′ vi, such that
∑

i∈S′ si ≤ C.

That is, all the items fit in a knapsack of size C.

Knapsack problem is a well known NP-hard problem [70].

Lemma 7. 1D-OSP problem is NP-hard.
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Proof. We prove this lemma by showing Knapsack ≤P 1D-OSP, i.e., Knapsack

can be reduced to 1D-OSP. Given an instance of Knapsack, its items S =

{1, . . . , n}, we construct a special 1D-OSP instance with: (a) Each item i in

Knapsack is transferred to a character candidate ci with size si × 1. (b) Each

character has “zero blank space”, which means there is no blank around the

character boundaries, and there is no overlapping between adjacent characters.

(c) For character ci, its writing time through VSB is set as vi + 1, while the

writing time through CP is set as 0. (d) The stencil area is set as C × 1. (e)

There is only one region, and each character ci repeats one time in the region.

After solving the Knapsack problem, if item i is selected into the knapsack,

character ci is also selected into the stencil. If the maximum value of the

Knapsack problem is V =
∑

i∈S′ vi, the minimum system writing time in the

1D-OSP is
∑
vi − V . Thus maximizing the knapsack value in the Knapsack

problem instance is equal to minimizing system writing time in the 1D-OSP

instance, which completes the proof.

Lemma 8. 2D-OSP problem is NP-hard.

Since 1D-OSP is a special case of 2D-OSP. Due to the NP-hardness of

1D-OSP, the 2D-OSP problem is NP-hard as well.

Combining Lemma 7 and Lemma 8, we can achieve the conclusion that

OSP problem, even for conventional EBL system, is NP-hard.
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4.2.2 E-BLOW for 1D-OSP

When each character implements one standard cell, the enclosed circuit

patterns of all the characters have the same height. The corresponding OSP

problem is called 1D-OSP, which can be viewed as a combination of charac-

ter selection and single row ordering problems [113]. Different from two-step

heuristic proposed in [113], we show that these two problems can be solved si-

multaneously through a unified ILP formulation (4.2). For convenience, Table

4.1 lists the notations used in 1D-OSP problem.

Table 4.1: Notations used in 1D-ILP Formulation
W width constraint of stencil or row
n number of characters
m number of rows
xi x-position of character ci
wi width of character ci
ohij horizontal overlap between ci and cj
pij 0-1 variable, pij = 0 if ci is left of cj
aij 0-1 variable, aij = 1 if ci is on jth row

In formulation (4.2), W is the stencil width, m is the number of rows.

For each character ci, wi and xi are the width and the x-position, respectively.

If and only if ci is assigned to kth row, aik = 1. Otherwise, aik = 0. Constraints

(4.2d) (4.2e) are used to check position relationship between ci and cj. Here

wij = wi−ohij and wji = wj−ohji, where ohij is the overlapping when candidates

ci and cj are packed together. For kth row, it is easy to see that only when

aik = ajk = 1, i.e. both character i and character j are assigned to row k, one

of the two constraints (4.2d) (4.2e) will be active. The number of variables for
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min Ttotal (4.2)

s.t Ttotal ≥ T V SB
c −

n∑
i=1

(
m∑
k=1

Ric · aik), ∀c ∈ P (4.2a)

0 ≤ xi ≤ W − wi, ∀i (4.2b)
m∑
k=1

aik ≤ 1, ∀i (4.2c)

xi + wij − xj ≤ W (2 + pij − aik − ajk) (4.2d)

xj + wji − xi ≤ W (3− pij − aik − ajk) (4.2e)

aik, ajk, pij : 0− 1 variable ∀i, j (4.2f)

(4.2) is O(n2), where n is the number of character candidates.

Since ILP is a well known NP-hard problem, directly solving it may

suffer from long runtime penalty. One straightforward speedup method is

to relax the ILP into the corresponding linear programming (LP) through

replacing constraints (4.2f) by the following:

0 ≤ aik, ajk, pij ≤ 1

It is obvious that the LP solution provides a lower bound to the ILP

solution. However, we observe that the solution of relaxed LP could be like

this: for each i,
∑

j aij = 1 and all the pij are assigned 0.5. Although the

objective function is minimized and all the constraints are satisfied, this LP

relaxation provides no useful information to guide future rounding, i.e., all the

character candidates are selected and no ordering relationship is determined.

To overcome the limitation of above rounding, E-BLOW proposes a
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Figure 4.4: E-BLOW overall flow for 1D-OSP.

novel successive rounding framework to search near-optimal solution in rea-

sonable runtime. The main idea is to modify the ILP formulation, so that the

corresponding LP relaxation can provide good lower bound theoretically.

As shown in Fig. 4.4, the overall flow includes five parts: Simplified ILP

formulation, Successive Rounding, Fast ILP Convergence, Refinement, and

Post-Insertion. In section 4.2.2.1 the simplified formulation will be discussed,

and its LP rounding lower bound will be proved. In section 4.2.2.2 the details

of successive rounding would be introduced. At last, to further improve the

performance, section 4.2.2.3 propose refinement and post-insertion.

4.2.2.1 Simplified ILP Formulation

The simplified formulation in E-BLOW is based on a symmetrical blank

(S-Blank) assumption: the blanks of each character are symmetry, i.e., left
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blank equals to right blank. si is used to denote the blank of character ci.

Note that for different characters ci and cj, their blanks si and sj can be

different.

At first glance the S-Blank assumption may lose optimality. However,

it provides several practical and theoretical benefits. (1) In [113] the single

row ordering problem was transferred into Hamilton Cycle problem, which is

a well known NP-hard problem and even particular solver is quite expensive.

In our work, instead of relying on expensive solver, under this assumption the

problem can be optimally solved in O(n). (2) Under S-Blank assumption, the

ILP formulation can be effectively simplified to provide a reasonable rounding

bound theoretically. Compared with previous heuristic framework [113], the

proved rounding bound provides a better guideline for a global view search.

(3) To compensate the inaccuracy in the asymmetrical blank cases, E-BLOW

provides a refinement (see section 4.2.2.3).

Given p character candidates, single row ordering problem adjusts the

relative locations to minimize the total width. Under S-Blank assumption,

this problem can be optimally solved through the following two-step greedy

approach.

1. All characters are sorted decreasingly by blanks;

2. All characters are inserted one by one. Each one can be inserted at either

left end or right end.
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A B CD

(a)

AD

(b)

A B CD

(c)

AD

(d)

AB CD

(e)

Figure 4.5: Greedy based Single Row Ordering. (a) At first all candidates are
sorted by blanking space. (c) One possible ordering solution where each can-
didate chooses the right end position. (e) Another possible ordering solution.

One example of the greedy approach is illustrated in Fig. 4.5, where

four character candidates A, B, C andD are to be ordered. In Fig. 4.5(a), they

are sorted decreasingly by blanking space. Then all the candidates are inserted

one by one. From the second candidate, each insertion has two options: left

side or right side of the whole packed candidates. For example, if A is inserted

at the right of D, B has two insertion options: one is at the right side of A (Fig.

4.5(b)), another is at the left side of A (Fig. 4.5(d)). Given different choices

of candidate B, Fig. 4.5(c) and Fig. 4.5(e) give corresponding final solutions.

Since from the second candidate each one has two choices, by this greedy

approach n candidates will generate 2n−1 possible solutions. But following

theorem shows that under the symmetry blank assumption, all these solutions

have the same length.
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Theorem 6. Under S-Blank assumption, the greedy approach can get maxi-

mum overlapping space
∑

i si −max{si}.

Proof. It can be proved by recursion. For p candidates, each one ci is with

blank space si. Without loss of generality we set s1 ≥ s2 ≥ · · · ≥ sp. Then

we try to prove the maximum overlapping space is f(p) =
∑p

i=2 si. If p = 2

the theorem is trivial and f(2) = s2. We assume that when p = n − 1, the

maximum overlapping space f(n− 1) =
∑n−1

i=2 si. When p = n, since the last

candidate can only be inserted at either the left end or the right end, and for

any i < n, si ≥ sn, we can find the incremental overlapping space is sn. Then

f(n) = f(n− 1) + sn =
∑n

i=2 si.

In practical, we set si = d(sli + sri)/2e, where sli and sri are ci’s left

blank and right blank, respectively.

In E-BLOW, the original ILP formulation (4.2) is relaxed into formu-

lation (4.3).

max
∑
i

∑
j

aij · profiti (4.3)

s.t.
∑
i

(wi − si) · aij ≤ W −Bj,∀j (4.3a)

Bj ≥ si · aij, ∀i (4.3b)∑
j

aij ≤ 1, ∀ci ∈ CC (4.3c)

aij = 0 or 1 ∀i, j (4.3d)
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In formulation (4.3), (4.3c) implies each character can be assigned into

at most one row. It’s easy to see that the number of variables is O(nm),

where n is the number of characters, and m is the number of rows. Generally

speaking, single character number n is much larger than row number m. Thus

compared with basic ILP formulation (4.2), the variable number in (4.3) can

be reduced dramatically.

The difference between (4.3) and (4.2) is twofold. On the one hand,

due to Theorem 6, constraint (4.3a) and constraint (4.3b) are for row width

calculation, where (4.3b) is to linearize max operation. Here Bj can be viewed

as the maximum blank space of all the characters on row rj. On the other

hand, through assigning each character ci with one profit value profiti, we

can simplify the complex constraint (4.2a). Section 4.2.2.2 will discuss how

to assign profiti to each character ci. Based on these simplifications, we will

show that the LP relaxation of (4.3) has reasonable lower bound. To explain

this, let us first look at a similar formulation (3′) as follows:

max
∑
i

∑
j

aij · profiti (3′)

s.t.
∑
i

(wi − si) · aij ≤ W −maxs (3′a)

(3c)− (3d)

where maxs is the maximum horizontal blank length of every character, i.e.

maxs = max{si|i = 1, 2, . . . , n}. Program (3′) is a multiple knapsack problem

[70]. A multiple knapsack is similar to a knapsack problem, with the difference

that there are multiple knapsacks. In formulation (3′), each profiti can be
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rephrased as (wi− si)× ratioi. If all ratioi are the same, formulation (3′) can

be approximated to a max-flow problem. We have the following lemma:

Lemma 9. If each ratioi is the same, the multiple knapsack problem (3′) can

find a 1/2−approximation algorithm using LP rounding method.

For brevity we omit the proof, detailed explanations can be found in

[25]. The difference between (4.3) and (3′) is twofold. First, the right side

values at (4.3a) and (3′a). Blank spacing is relatively small comparing with

the row length, we can get that W − maxs ≈ W − Bj. Second, the ratioi

values in objective functions. Then we can conclude that program (3′) has a

reasonable rounding bound.

4.2.2.2 Successive Rounding

We propose a successive rounding algorithm to solve program (4.3) iter-

atively. Successive rounding uses a simple iterative scheme in which fractional

variables are rounded one after the other until an integral solution is found [47].

The ILP formulation (4.3) becomes an LP if we relax the discrete constraint

to a continuous constraint as: 0 ≤ aij ≤ 1.

The details of successive rounding is shown in Algorithm 15. At first

we set all aij as unsolved since none of them is assigned to rows. The LP

is updated and solved iteratively. For each new LP solution, we search the

maximal aij, and store in apq (line 6). Then we find all aij that is closest to

the maximum value apq, i.e., aij ≥ apq × thinv. In our implementation, thinv
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Algorithm 15 SuccRounding ( thinv )

Require: ILP Formulation (4.3)
1: Set all aij as unsolved;
2: repeat
3: Update profiti for all unsolved aij;
4: Solve relaxed LP of (4.3);
5: repeat
6: apq ← max{aij};
7: for all aij ≥ apq × thinv do
8: if ci can be assigned to row rj then
9: aij = 1 and set it as solved;
10: Update capacity of row rj;
11: end if
12: end for
13: until cannot find apq
14: until

is set to 0.9. For each selected variables aij, we try to pack ci into row rj,

and set aij as solved. Note that when one character ci is assigned to one row,

all aij would be set as solved. Therefore, the variable number in updated

LP formulation would continue to decrease. This procedure repeats until no

appropriate aij can be found. One key step of Algorithm 15 is the profiti

update (line 3). For each character ci, we set its profiti as follows:

profiti =
∑
c

tc
tmax

· (ni − 1) · tic (4.4)

where tc is current writing time of region rc, and tmax = max {tc,∀c ∈ P}.

Through applying the profiti, the region rc with longer writing time would be

considered more during the LP formulation. If ci is not assigned to any row,

profiti would continue to be updated, so that the total writing time of the

whole MCC system can be minimized.
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Figure 4.6: Unsolved character number along the LP iterations for testcases
1M-1, 1M-2, 1M-3, and 1M-4.

During successive rounding, for each LP iteration, we select some char-

acters into rows, and set these characters as solved. In the next LP iteration,

only unsolved characters would be considered in formulation. Thus the num-

ber of unsolved characters continues to decrease through the iterations. For

four test cases (1M-1 to 1M-4), Fig. 4.6 illustrates the number of unsolved

characters in each iteration. We observe that in early iterations, more charac-

ters would be assigned to rows. However, when the stencil is almost full, fewer

of aij could be close to 1. Thus, in late iterations only few characters would

be assigned into stencil, and the successive rounding requires more iterations.

To overcome this limitation so that the successive rounding iteration

number can be reduced, we present a convergence technique based on fast ILP

formulation. The basic idea is that when we observe only few characters are

assigned into rows in one LP iteration, we stop successive rounding in advance,
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Algorithm 16 Fast ILP Convergence ( Lth, Uth )

Require: Solutions of relaxed LP (4.3);
1: for all aij in relaxed LP solutions do
2: if aij < Lth then
3: Set aij as solved;
4: end if
5: if aij > Uth then
6: Assign ci to row rj;
7: Set aij as solved;
8: end if
9: end for
10: Solve ILP formulation (4.3) for all unsolved aij
11: if aij = 1 then
12: Assign ci to row rj;
13: end if

and call fast ILP convergence to assign all left characters. Note that in [57]

an ILP formulation with similar idea was also applied. The details of the ILP

convergence is shown in Algorithm 16. The input are the solutions of last LP

rounding, and two parameters Lth and Uth. First we check each aij (lines 1-9).

If aij < Lth, then we assume character ci would be not assigned to row rj,

and set aij as solved. Similarly, if aij > Uth, we assign ci to row rj and set aij

as solved. For those unsolved aij we build up ILP formulation (4.3) to assign

final rows (lines 10-13).

At first glance the ILP formulation may be expensive to solve. However,

we observe that in our convergence Algorithm 16, typically the variable number

is small. Fig. 4.7 illustrates the solution distribution in last LP formulation.

We can see that most of the values are close to 0. In our implementation

Lth and Uth are set to 0.1 and 0.9, respectively. For this case, although the
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Figure 4.7: For test case 1M-1, solution distribution in last LP, where most of
values are close to 0.

LP formulation contains more than 2500 variables, our fast ILP formulation

results in only 101 binary variables.

4.2.2.3 Refinement

Simplified formulation, successive relaxation and fast convergence are

all under the symmetrical blank assumption. Although the problem can be

effectively solved, for asymmetrical cases it would lose optimality. Under sym-

metrical blank space assumption, all these orderings in simplified LP formu-

lation get the same length. But for the asymmetrical cases, it does not hold

anymore. To compensate the losing, E-BLOW consists of a refinement stage.

For n characters {c1, . . . , cn}, single row ordering can have n! possible solu-

tions. We avoid enumerating such huge solutions, and take advantage of the

order in symmetrical blank assumption. That is, we pick up one best solution
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from the 2n−1 possible ones. Noted that although considering 2n−1 instead

of n! options cannot guarantee optimal single row packing, our preliminary

results show that the solution quality loss is negligible in practice.

The refinement is based on dynamic programming, and the details are

shown in Algorithm 17. Refine(k) generates all possible order solutions for

the first k characters {c1, . . . , ck}. Each order solution is represented as a

set (w, l, r, O), where w is the total length of the order, l is the left blank of

the left character, r is the right blank of the right character, and O is the

character order. At the beginning, an empty solution set S is initialized (line

1). If k = 1, then an initial solution (w1, sl1, sr1, {c1}) would be generated

(line 2). Here w1, sl1, and sr1 are width of first character c1, left blank of c1,

and right blank of c1. If k > 1, then Refine(k) will recursively call Refine(k-1)

to generate all old partial solutions. All these partial solutions will be updated

by adding candidate ck (lines 5-9).

We propose pruning techniques to speed-up the dynamic programming

process. Let us introduce the concept of inferior solutions. For any two solu-

tions SA = (wa, la, ra, Oa) and SB = (wb, lb, rb, Ob), we say SB is inferior to

SA if and only if wa ≥ wb, la ≤ lb and ra ≤ rb. Those inferior solutions would

be pruned during pruning section (lines 10-12). In our implementation, the

threshold is set to 20.

After refinement, a post-insertion stage is applied to further insert more

characters into stencil. Different from the greedy insertion approach in [113]

that new characters can be only inserted into one row’s right end. We con-
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Algorithm 17 Refine(k)

Require: k characters {c1, . . . , ck};
1: if k = 1 then
2: Add (w1, sl1, sr1, {c1}) into S;
3: else
4: Refine(k-1);
5: for each partial solution (w, l, r, O) do
6: Remove (w, l, r, O) from S;
7: Add (w + wk −min(srk, l), slk, r, {ck, O}) into S;
8: Add (w + wk −min(slk, r), l, srk, {O, ck}) into S;
9: end for
10: if S size ≥ threshold then
11: Prune inferior solutions in S;
12: end if
13: end if

sider to insert characters into the middle part of rows. Generally speaking,

the character with higher profit value (4.4) would have a higher priority to be

inserted into rows. We assume that each row can introduce at most one addi-

tional character, and formulate the insertion as a maximum weighted matching

problem [35].

Fig. 4.8 illustrates one example of the character insertion. As shown in

Fig. 4.8 (a), there are two rows (row 1, row 2) and three additional characters

(a, b, c). Characters a and b can be inserted into either row 1 or row 2, but

character c can only be inserted into row 2. It shall be noted that the insertion

position is labeled by arrows. For example, two arrows from character a mean

that a can be inserted into the middle of each row. We build up a bipartite

graph to represent the relationships among characters and rows (see Fig. 4.8

(b)). Each edge is associated with a cost as character’s profit. By utilizing
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Figure 4.8: Example of maximum weighted matching based post character
insertion. (a) Three additional characters a, b, c and two rows. (b) Corre-
sponding bipartite graph to represent the relationships among characters and
rows.

the bipartite graph, the best character insertion can be solved by finding a

maximum weighted matching.

Given n additional characters, we search the possible insertion position

under each row. The total search time needs O(nmC) time, where m is the

total row number and C is the maximum character number on each row. We

propose two heuristics to speed-up the search process. First, to reduce n, we

only consider those additional characters with high profits. Second, to reduce

m, we skip those rows with very little empty spaces.

4.2.3 E-BLOW for 2D-OSP

Now we consider a more general case: the blanking spaces of characters

are non-uniform along both horizontal and vertical directions. This problem is

referred to 2D-OSP problem. In [113] the 2D-OSP problem was transformed

into a floorplanning problem. However, several key differences between tradi-
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tional floorplanning and OSP were ignored. (1) In OSP there is no wirelength

to be considered, while at floorplanning wirelength is a major optimization

objective. (2) Compared with complex IP cores, lots of characters may have

similar sizes. (3) Traditional floorplanner could not handle the problem size

of modern MCC design.

4.2.3.1 ILP Formulation

Table 4.2: Notations used in 2D-ILP Formulation

W (H) width (height) constraint of stencil
wi(hi) width (height) of candidate ci
ohij(o

v
ij) horizontal (vertical) overlap between ci and cj

wij(hij) wij = wi − ohij, hij = hi − ovij
ai 0-1 variable, ai = 1 if ci is on stencil

Here we will show that 2D-OSP can be formulated as integer linear

programming (ILP) as well. Compared with 1D-OSP, 2D-OSP is more general:

the blanking spaces of characters are non-uniform along both horizontal and

vertical directions. The 2D-OSP problem can be also formulated as an ILP

formulation (4.5). For convenience, Table 4.2 lists some notations used in the

ILP formulation. The formulation is motivated by [86], but the difference is

that our formulation can optimize both placement constraints and character

selection, simultaneously. where ai indicates whether candidate ci is on the

stencil, pij and qij represent the location relationships between ci and cj. The

number of variables is O(n2), where n is number of characters. We can see

that if ai = 0, constraints (4.5b) - (4.5e) are not active. Besides, it is easy to
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min Ttotal (4.5)

s.t. Ttotal ≥ T V SB
c −

n∑
i=1

Ric · ai, ∀c ∈ P (4.5a)

xi + wij ≤ xj +W (2 + pij + qij − ai − aj) (4.5b)

xi − wji ≥ xj −W (3 + pij − qij − ai − aj) (4.5c)

yi + hij ≤ yj +H(3− pij + qij − ai − aj) (4.5d)

yi − hji ≥ yj −H(4− pij − qij − ai − aj) (4.5e)

0 ≤ xi + wi ≤ W, 0 ≤ yi + hi ≤ H (4.5f)

pij, qij, ai : 0-1 variable ∀i, j (4.5g)

see that when ai = aj = 1, for each of the four possible choices of (pij, qij) =

(0, 0), (0, 1), (1, 0), (1, 1), only one of the four inequalities (4.5b) - (4.5e) are

active. For example, with (ai, aj, pij, qij) = (1,1,1,1), only the constraint (4.5e)

applies, which allows character ci to be anywhere above character cj. The other

three constraints (4.5b)-(4.5d) are always satisfied for any permitted values of

(xi, yi) and (xj, yj).

Program (4.5) can be relaxed to linear programming (LP) by replacing

constraint (4.5g) as:

0 ≤ pij, qij, ai ≤ 1

However, similar to the discussion in 1D-OSP, the relaxed LP solution provides

no information or guideline to the packing, i.e., every ai is set as 1, and every pij

is set as 0.5. In other words, this LP relaxation provides no useful information

to guide future rounding: all the character candidates are selected and no

ordering relationship is determined. Therefore we can see that LP rounding

method cannot be effectively applied to program (4.5).
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Figure 4.9: E-BLOW overall flow for 2D-OSP.

4.2.3.2 Clustering based Simulated Annealing

To deal with all these limitations of ILP formulation, an fast packing

framework is proposed (see Fig. 4.9). Given the input character candidates,

the pre-filter process is first applied to remove characters with bad profit (de-

fined in (4.4)). Then the second step is a clustering algorithm to effectively

speed-up the design process. Followed by the final floorplanner to pack all

candidates.

Clustering is a well studied problem, and there are many of works and

applications in VLSI [8] However, previous methodologies cannot be directly

applied here. First, traditional clustering is based on netlist, which provides

the all clustering options. Generally speaking, netlist is sparse, but in OSP

the connection relationships are so complex that any two characters can be

clustered, and totally there are O(n2) clustering options. Second, given two

candidates ci and cj, there are several clustering options. For example, hori-
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zontal clustering and vertical clustering may have different overlapping space.

The details of our clustering procedure are shown in Algorithm 18.

The clustering is repeated until no characters can be further merged. Initially

all the candidates are sorted by profiti, so those candidates with more shot

number reduction are tend to be clustered. Then clustering (lines 3-8) is

carried out, where we iteratively search all character pair (ci, cj) with similar

blank spaces, profits, and sizes. Character ci is said to be similar to cj, if the

following condition is satisfied:
max{|wi − wj|/wj, |hi − hj|/hj} ≤ bound

max{|shi − shj|/shj, |svi − svj|/svj} ≤ bound
|profiti − profitj|/profitj ≤ bound

(4.6)

where wi and hi are the width and height of ci. shi and svi are the horizontal

space and vertical space of ci, respectively. In our implementation, bound is

set as 0.2. We can see that in clustering, all the size, blanks, and profits are

considered.

Algorithm 18 KD-Tree based Clustering

Require: set of candidates CC .
1: repeat
2: Sort all candidates by profiti;
3: Set each candidates ci to unclustered;
4: for all unclustered candidate ci do
5: Search all similar character pairs (ci, cj);
6: Cluster (ci, cj), label them as clustered;
7: end for
8: Update candidate information;
9: until No characters can be merged

For each candidate ci, finding available cj may need O(n), and complex-
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ity of the horizontal clustering and vertical clustering are both O(n2). Then

the complexity of the whole procedure is O(n2), where n is the number of

candidates.

A KD-Tree [14] is used to speed-up the process of finding available pair

(ci, cj). It provides fast O(logn) region searching operations which keeping

the time for insertion and deletion small: insertion, O(logn); deletion of the

root, O(n(k− 1)/k); deletion of a random node, O(logn). Using KD-Tree, the

complexity of the Algorithm 18 can be reduced to O(nlogn). For instance,

given nine character candidates {c1, . . . , c9}, the corresponding KD-Tree is

shown in Fig. 4.10 (a). For the sake of convenience, here characters are

distributed only based on horizontal and vertical spaces. The edges of KD-

Tree are labelled as well. To search candidates with similar space with c2

(see the shaded region of Fig. 4.10 (a)), it may need O(n) time to scan all

candidates, where n is the total candidate number. However, under the KD-

Tree structure, this search procedure can be resolved in O(logn). Particularly,

all candidates scanned (c1 − c5) are illustrated in Fig. 4.10 (b).

In [113], the 2D-OSP is transformed into a fixed-outline floorplanning

problem. If a character candidate is outside the fixed-outline, then the char-

acter would not be prepared on stencil. Otherwise, the character candidate

would be selected and packed on stencil. Parquet [7] was adopted as simulated

annealing engine, and Sequence Pair [74] was used as a topology representa-

tion. In E-BLOW we apply a simulated annealing based framework similar to

that in [113]. To demonstrate the effectiveness of our pre-filter and clustering
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Figure 4.10: KD-Tree based region searching.

methodologies, E-BLOW uses the same parameters.

4.2.4 Experimental Results

E-BLOW is implemented in C++ programming language and executed

on a Linux machine with two 3.0GHz CPU and 32GB Memory. GUROBI [43]

is used to solve ILP/LP. The benchmark suite from [113] are tested (1D-1,

. . . , 1D-4, 2D-1, . . . , 2D-4). To evaluate the algorithms for MCC system,

eight benchmarks (1M-x) are generated for 1D-OSP and the other eight (2M-

x) are generated for the 2D-OSP problem. In these new benchmarks, character

projection (CP) number are all set to 10. For each small case (1M-1, . . . , 1M-

4, 2M-1, . . . , 2M-4) the character candidate number is 1000, and the stencil

size is set to 1000µm×1000µm. For each larger case (1M-5 , . . . , 1M-8, 2M-5,

. . . , 2M-8) the character candidate number is 4000, and the stencil size is set

to 2000µm × 2000µm. The size and the blank width of each character are
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similar to those in [113].

For 1D-OSP, Table 4.3 compares E-BLOW with the greedy method

in [113], the heuristic framework in [113], and the algorithms in [57]. We have

obtained the programs of [113] and executed them in our machine. The re-

sults of [57] are directly from their paper. Column “char #” is number of

character candidates, and column “CP#” is number of character projections.

For each algorithm, we report “T”, “char#” and “CPU(s)”, where “T” is

the writing time of the E-Beam system, “char#” is the character number on

final stencil, and “CPU(s)” reports the runtime. From Table 4.3 we can see

E-BLOW achieves better performance than both greedy method and heuris-

tic method in [113]. Compared with E-BLOW, the greedy method has 32%

more system writing time, while [113] introduces 27% more system writing

time. One possible reason is that different from the greedy/heuristic methods,

E-BLOW proposes mathematical formulations to provide global view. Addi-

tionally, due to the successive rounding scheme, E-BLOW is around 23× faster

than the work in [113].

E-BLOW is further compared with one recent 1D-OSP solver [57] in

Table 4.3. E-BLOW found stencil placements with best E-Beam system writ-

ing time for 10 out of 12 test cases. In addition, for all the MCC system

cases (1M-1, . . . , 1M-8) E-BLOW outperforms [57]. One possible reason is

that to optimize the overall throughput of the MCC system, a global view

is necessary to balance the throughputs among different regions. E-BLOW

utilizes the mathematical formulations to provide such global optimization.
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Although the linear programming solvers are more expensive than the deter-

ministic heuristics in [57], the runtime of E-BLOW is reasonable that each

case can be finished in 20 seconds on average.

We further demonstrate the effectiveness of the fast ILP convergence

and post-insertion. We denote E-BLOW-0 as E-BLOW without these two

techniques, and denote E-BLOW-1 as E-BLOW with these techniques. Fig.

4.11 and Fig. 4.12 compare E-BLOW-0 and E-BLOW-1, in terms of sys-

tem writing time and runtime, respectively. From Fig. 4.11 we can see that

applying fast ILP convergence and post-insertion can effectively E-Beam sys-

tem throughput, that is, averagely 9% system writing time reduction can be

achieved. In addition, Fig. 4.12 demonstrates the performance of the fast ILP

convergence. We can see that in 11 out of 12 test cases, the fast ILP conver-

gence can effectively reduce E-BLOW CPU time. The possible reason for the

slow down in case 1D-4 is that when fast convergence is called, if there are

still many unsolved aij variables, ILP solver may suffer from runtime overhead

problem. However, if more successive rounding iterations are applied before

ILP convergence, less runtime can be reported.

For 2D-OSP, Table 4.4 gives the similar comparison. For each algo-

rithm, we also record “T”, “char #” and “CPU(s)”, where the meanings

are the same with that in Table 4.3. Compared with E-BLOW, although

the greedy algorithm is faster, its design results would introduce 41% more

system writing time. Furthermore, compared with E-BLOW, although the

framework in [113] puts 2% characters onto stencil, it gets 15% more system
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Figure 4.11: The comparison of E-Beam system writing times between E-
BLOW-0 and E-BLOW-1.

writing time. The possible reason is that in E-BLOW the characters with

similar writing time are clustered together. The clustering method can help

to speed-up the packaging, so E-BLOW is 28× faster than [113]. In addition,

after clustering the character number can be reduced. With smaller solution

space, the simulated annealing engine is easier to achieve a better solution, in

terms of system writing time.

From both tables we can see that compared with [113], E-BLOW can

achieve a better tradeoff between runtime and system throughput.

We further compare the E-BLOW with the ILP formulations (4.2) and

(4.5). Although for both OSP problems the ILP formulations can find optimal

solutions theoretically, they may suffer from runtime overhead. Therefore,

we randomly generate nine small benchmarks, five for 1D-OSP (“1T-x”) and

four for 2D-OSP (“2T-x”). The sizes of all the character candidates are set
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Figure 4.12: The comparison of runtime between E-BLOW-0 and E-BLOW-1.

to 40µm × 40µm. For 1D-OSP benchmarks, the row number is set to 1,

and the row length is set to 200. The comparisons are listed in Table 4.5,

where column “candidate#” is the number of character candidates. “ILP”

and “E-BLOW” represent the ILP formulation and our E-BLOW framework,

respectively. In ILP formulation, column “binary#” gives the binary variable

number. For each mode, we report “T”, “char#” and “CPU(s)”, where “T”

is E-Beam system writing time, “char#” is character number on final stencil,

and “CPU(s)” is the runtime. Note that in Table 4.5 the ILP solutions are

optimal.

Let us compare E-BLOW with ILP formulation for 1D cases (1T-1,

. . . , 1T-5). E-BLOW can achieve the same results with ILP formulations,

meanwhile it is very fast that all cases can be finished in 0.2 seconds. Although

ILP formulation can achieve optimal results, it is very slow that a case with

14 character candidates (1T-5) can not be solved in one hour. Next, let us
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Table 4.5: ILP v.s. EBLOW
candidate# ILP E-BLOW

binary# T char# CPU(s) T char# CPU(s)
1T-1 8 64 434 6 0.5 434 6 0.1
1T-2 10 100 1034 6 26.1 1034 6 0.2
1T-3 11 121 1222 6 58.3 1222 6 0.2
1T-4 12 144 1862 6 1510.4 1862 6 0.2
1T-5 14 196 NA NA >3600 2758 6 0.1
2T-1 6 66 60 6 37.3 207 5 0.1
2T-2 8 120 354 6 40.2 653 7 0.1
2T-3 10 190 1050 6 436.8 4057 4 0.1
2T-4 12 276 NA NA >3600 4208 5 0.2

compare E-BLOW with ILP formulation for 2D cases (2T-1, . . . , 2T-4). For

2D cases ILP formulations are slow that if the character candidate number

is 12, it cannot finish in one hour. E-BLOW is fast, but with some solution

quality penalty.

Although the integral variable number for each case is not huge, we find

that in the ILP formulations, the solutions of corresponding LP relations are

vague. Therefore, expensive search method may cause unacceptable runtimes.

From these cases ILP formulations are impossible to be directly applied in

OSP problem, as in MCC system character number may be as large as 4000.

4.2.5 Summary

We have proposed E-BLOW, a tool to solve OSP problem in MCC sys-

tem. For 1D-OSP, a successive relaxation algorithm and a dynamic program-

ming based refinement are proposed. For 2D-OSP, a KD-Tree based clustering
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method is integrated into simulated annealing framework. Experimental re-

sults show that compared with previous works, E-BLOW can achieve better

performance in terms of shot number and runtime, for both MCC system and

traditional EBL system. As EBL, including MCC system, are widely used for

mask making and also gaining momentum for direct wafer writing, we believe

a lot more research can be done for not only stencil planning, but also EBL

aware design.

4.3 L-Shape based Layout Fracturing

For EBL writing, a fundamental step is layout fracturing, where the

layout pattern is decomposed into numerous non-overlapping rectangles. Sub-

sequently the layout is prepared and exposed by an EBL writing machine onto

the mask or the wafer, where each fractured rectangle is shot by one variable

shaped beam (VSB).

As the minimum feature size further decreases, the number of rectangles

in the layout is steadily increased. First, longer writing time and larger data

volume are caused by highly complex optical proximity correction (OPC). Be-

sides, the introduction of advanced lithographic techniques, e.g., DPL/MPL,

add more masks in the mask manufacturing. Since the manufacturing cost

is directly associated with increasing write time and data volume, the cost is

also steadily increased. In addition, the low throughput has been and is still

the bottleneck of EBL writing.

To overcome this manufacturing problem, several optimization methods
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have been proposed to reduce the EBL writing time to a reasonable level

[81] [29] [113]. Among them, the L-shape shot strategy is a very simple yet

effective approach to reduce the e-beam mask writing time, and thus reduce the

mask manufacturing cost and improve the throughput [81] [29]. Besides, this

technique can be also applied to reduce the cost of lithographic process. The

conventional EBL writing is based on rectangular VSB shots. As illustrated

in Fig. 4.13(a), the electrical gun generates an initial beam, which becomes

uniform through the shaping aperture. Then the second aperture finalizes

the target shape with a limited maximum size. As an improved technique,

the printing process of the L-shape shot is illustrated in Fig. 4.13(b). One

additional aperture, the third aperture, is employed to create L-shape shots.

To take advantage of this new printing process, new fracturing methodology

is needed to provide L-shape in the fractured layout. L-shape shot strategy

has the potentiality to reduce the EBL writing time or cost by 50% if all

rectangles are combined into L-shapes. For example in Fig. 4.14, instead of

four rectangles, using L-shape fracturing only requires two L-shape shots.

Note that the layout fracturing problem is different from the general

polygon decomposition problem in geometrical science. In order to consider

yield control and CD control, the minimum width of each shot should be

above a certain threshold value ε. A shot whose minimum width is < ε is

called a sliver. In the layout fracturing, sliver minimization is an important

objective [52]. As shown in Fig. 4.15, two fractured layouts can achieve the

same shot number 2. However, because of sliver, the fractured result in Fig.
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Mask

Electrical Gun

Shaping
Aperture

2nd Aperture

(a)

Mask

Electrical Gun

Shaping
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2nd Aperture
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Figure 4.13: (a) Traditional rectangular EBL writing process. (b) L-shape
writing process with one additional aperture.

4.15 (a) is worse than that in Fig. 4.15 (b). It shall be noted that the layout

in Fig. 4.15 can be written in one L-shaped shot without any sliver.

For traditional rectangular shots, several papers have studied the layout

fracturing problem [52] [53] [26] [66] [46]. Kahng et. al proposed an integer

linear programming (ILP) formulation, and some matching based speed-up

techniques [52] [53]. Recently, Ma et. al [66] presented a heuristic algorithm

to generate rectangular shots and further reduce the sliver. Compared with

the rectangular fracturing problem, the L-shape fracturing problem is new and

there is only limited work, mostly describing methodology, but no systematic

algorithm has been proposed so far. [81] reported the initial results that L-

shape fracturing can further save about 38% of shot count, but no algorithmic
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(a) (b)

Figure 4.14: Examples of polygon fracturing. (a) Rectangular shots with 4
shot number. (b) L-shape shots with 2 shot number.

< ɛ

Sliver

(a) (b)

Figure 4.15: (a) Fracturing with one sliver. (b) Fracturing without sliver.

details are provided. For the general decomposition problem of polygon into L-

shapes, several heuristic methods are proposed [28] [63]. However, since these

heuristic methods only consider horizontal decomposition, which would result

in numerous slivers, they cannot be applied to the layout fracturing problem.

This section presents the first systematic study for EBL L-shape frac-

turing considering the sliver minimization. We propose two algorithms for the

L-shape fracturing problem. The first method, called RM, starts from rect-

angles generated by any previous fracturing framework, and merge them into

L-shapes. A maximum weighted matching algorithm is proposed to find the

optimal merging solution, where the shot count and the sliver can be mini-
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mized simultaneously. To further overcome the intrinsic limitations of rectan-

gular merging, we propose another fracturing algorithm, called DLF. Through

effectively detect and take advantage of some special cuts, DLF can directly

fracture the layout into a set of L-shapes in O(n2logn) time. The experimen-

tal results show that our algorithms are very promising for both shot count

reduction and sliver minimization. In addition, DLF can even achieve signifi-

cant speed-up compared with previous state-of-the-art rectangular fracturing

algorithm [66].

The rest of the section is organized as follows. Section 4.3.1 presents the

basics and problem formulation. Section 4.3.2 provides RM, the merging based

algorithm, which will also be used as a baseline. In Section 4.3.3 we propose

the DLF algorithm to directly fracture polygons into L-shapes. Section 4.3.4

presents experimental results, followed by summary in Section 4.3.5.

4.3.1 Problem Formulation

We first introduce some notations and definitions to facilitate the prob-

lem formulation. For convenience, we use the term polygon to refer to recti-

linear polygons in the rest of this chapter.

Let P be an input polygon with n vertices, we define the concave ver-

tices as follows.

Definition 8 (Concave Vertex). The concave vertex of a polygon is one at

which the internal angle is 270o.
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Let c be the number of concave vertices in P , [76] gave the relationship

between n and c: n = 2c + 4. If the number of concave vertices c is odd,

polygon P is called odd polygon; otherwise, P is called even polygon.

Definition 9 (Cut). A cut of a polygon P is a horizontal or vertical line

segment at least one of whose endpoints is incident on a concave vertex. The

other endpoint is obtained by extending the line segment inside P until it first

encounters the boundary of P .

If both endpoints of a cut are concave vertices in the original polygon,

then the cut is called a chord. If a cut has odd number of concave vertices to

one side or another, then the cut is called an odd-cut. If an cut is not only odd-

cut but also chord, it is called an odd-chord. These concepts are illustrated in

Fig. 4.16, where vertices b, e, h are concave vertices, edges b̄h, ēj are odd-cuts,

and edge b̄h is chord. Note that b̄h is an odd-chord.

a b

c d

e f

gh

ik j

Figure 4.16: Concepts of concave vertices and cuts.

Definition 10 (L-shape). An L-shape is a polygon shaped in the form of the

letter L.
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An L-shape can be also viewed as a combination of two rectangles with

a common coordinate. There are two easy ways to check whether a polygon

is an L-shape. First, we can check whether the number of vertices equals to

6, i.e., n = 6. Besides, we can check whether there is only one concave vertex,

i.e., c = 1.

Definition 11 (Sliver Length). For an L-shape or a rectangle, if the width

of its bounding box B is above ε, its sliver length is 0. Otherwise, the sliver

length is the length of B.

Problem 11 (L-shape based Layout Fracturing). Given an input layout

which is specified by polygons, our goal is to fracture it into a set of L-shapes

and/or rectangles to minimize the number of shots, and meanwhile minimize

the silver length of fractured shots.

4.3.2 Rectangular Merging (RM) Algorithm

Given the rectangles generated by any rectangular fracturing methodol-

ogy, we propose an algorithm, called RM, to merge them into a set of L-shapes.

The main idea is that if two rectangles share a common coordinate, they can

be combined into one L-shape. Although this idea is straightforward, the

benefit is obvious that the previous rectangular fracturing algorithms can be

re-used. Besides, the RM algorithm is used as a baseline in comparison with

our another algorithm, DLF, which will be described in Section 4.3.3.

Given the input rectangles, the RM algorithm can find the optimal L-

shape merging solution. Meanwhile, the shot count and sliver length can be

204



4

3

2

1

(a)

4

3

2

1

(b) (c)

Figure 4.17: Example of RM algorithm. (a) Graph construction. (b) Maximum
matching result. (c) Corresponding rectangular merging.

minimized simultaneously.

First we construct a merging graph G to represent the relationships

among all the input rectangles. Each vertex in G represents a rectangle. There

is an edge between two vertices if and only if those two rectangles can be

merged into an L-shape. For example shown in Fig. 4.17, after rectangular

fracturing, four rectangles are generated. The constructed merging graph G

is illustrated in Fig. 4.17(a), where the three edges show that there are three

ways to generate L-shapes. L-shape merging can be viewed as edge selection

from the merging graph G. Note that one rectangle can only be assigned to

one selected edge, that is, no two selected edges share a common end point.

For example, rectangle 2 can only belongs to one L-shape, and thus only one

edge can be chosen between edges 1̄2 and 2̄3.

By utilizing the merging graph, the best edge selection can be solved

by finding a maximum matching. Therefore, the rectangular merging can

be formulated as a maximum matching problem. In the case of Fig. 4.17,

the result of the maximum matching is illustrated in Fig. 4.17(b), and the
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corresponding L-shape fracturing result is shown in Fig. 4.17(c).

In order to consider the sliver minimization, we assign weights to the

edges to represent whether the merging would remove one sliver. For example,

if there is still one sliver even two rectangles vi and vj are merged into one

L-shape, we assign less weight to edge eij. Otherwise, larger weight is assigned.

Therefore, the rectangular merging can be formulated as maximum weighted

matching. Even in general graphs, the maximum weighted matching can be

solved in O(nmlogn) time [35], where the n is the number of vertices, and the

m is the number of edges in G.

4.3.3 Direct L-Shape Fracturing (DLF) Algorithm

Although the RM algorithm described above can provide the optimal

merging solution for given rectangles, it may suffer from several limitations.

First, the polygon is fractured into rectangles first, and followed by a merging

stage. This strategy, however, has some redundant or unnecessary operations.

For the case in Fig. 4.14, instead of complex rectangles generation, only one

cut is enough for the L-shape fracturing. Second, the rectangular fracturing

may ignore some internal features of L-shape fracturing, which could sacrifices

the whole performance. To overcome all these limitations, in this section we

propose a novel algorithm, called DLF, to directly fracture polygon into L-

shapes.

We observe that the solution space for the L-shape fracturing can be

very large. Given a polygon, there can exist several fracturing solutions with
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the same shot count. For example, as shown in Fig. 4.18, the input polygon

has at least five different fracturing solutions with two shots.

(a) (b) (c) (d) (e)

Figure 4.18: Five fracturing solutions with the same shot count.

Note that a cut has the following property: if the polygon is decomposed

through a cut, the concave vertex that is one of the endpoints of the cut is no

longer concave in either of the two resulting polygons. Our L-shape fracturing

algorithm, DLF, takes advantage of this property. Each time a polygon is

cut, DLF searches one appropriate odd-cut to decompose the polygon. It was

shown in [76] that odd-cut always exists and bc/2c+ 1 “guards” are necessary

and sufficient to cover all the interiors of a polygon with c concave vertices.

Therefore, we can obtain the following lemma.

Lemma 10. A polygon with c concave vertices can be decomposed into L-

shapes with upper bound number Nup = bc/2c+ 1.

Fig. 4.19 shows the overall flow of our DLF algorithm. We will ef-

fectively use chords and cuts to reduce the problem size while containing or

even reducing the L-shape fracturing number upper bound. The first step is to

detect all chords (i.e., horizontal or vertical cuts made by concave points), in
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Figure 4.19: Overall flow of DLF algorithm.

particular odd-chords as they may reduce the L-shape upper bound. We will

then perform sliver-aware chord selection to decompose the original polygon

P into a set of sub-polygons. Then for each sub-polygon, we will perform

sliver aware L-shape fracturing, where odd-cuts are detected and selected to

iteratively cut the polygon into a set of L-shapes. The reason we differ chord

and cut during polygon fracturing is that chord is a special cut with both end

points being concave points in the original polygon. That way, we can design

more efficient algorithm for odd cut/chord detection.

4.3.3.1 Sliver Aware Chord Selection

The first step of DLF algorithm is sliver aware chord selection. Cutting

through chords decomposes the whole polygon P into a set of sub-polygons.

By this way the problem size is reduced. We can further prove that cutting

through a chord does not increase the L-shape upper bound Nup.
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Lemma 11. Decompose a polygon through a chord does not increase the L-

shape upper bound number Nup.

Proof. Cut the polygon along this chord, and let c1 and c2 be the number of

concave vertices in the two pieces produced. Since c = c1 + c2 + 2, then using

Lemma 10 we have

bc1/2c+ 1 + bc2/2c+ 1 ≤ b(c1 + c2)/2c+ 2

= b(c− 2)/2c+ 2 = bc/2c+ 1

Chord selection has been proposed in rectangular fracturing [53] [66],

but for L-shape fracturing, odd-chord shall be selected as they can even reduce

the number of L-shapes.

Lemma 12. Decomposing a even polygon along an odd-chord can reduce the

L-shape upper bound number Nup by 1.

The proof is similar to that for Lemma 11. The only difference is that

since c is even and c1, c2 are odd, bc1/2c + 1 + bc2/2c + 1 < bc/2c + 1. Note

that for an odd polygon, all chords are odd. For a even polygon, Lemma 12

provides a guideline to select chords. An example is illustrated in Fig. 4.20,

which contains two chords b̄h and h̄k. Since the number of concave vertices to

both side of chord b̄h are odd (1), b̄h is an odd-chord. Cut along b̄h, as shown

in Fig. 4.20(a), can achieve two L-shots. However, cut along another chord

209



h̄k, which is not an odd-chord, would need three shots. Note that in an odd

polygon, although all chords are odd, cutting along them may not reduce Nup,

but it will not increase Nup either.

a b

cd

e f

gh

i

k

j

l

(a)

a b

cd

e f

gh

i

k

j

l

(b)

Figure 4.20: Examples to illustrate Lemma 12. (a) Cut along odd-chord b̄h
results in two L-shape shots. (b) Cut along chord h̄k would cause one more
shot.

For any even polygon P , we propose the odd-chord search procedure

as follows. Each vertex vi is assigned with one Boolean parity pi. Starting

from an arbitrary vertex with any parity assignment, we proceed clockwise

around the polygon. If the next vertex vj is concave, then pj = ¬pi, where pi

is the parity of current vertex vi. Otherwise pj is assigned to pi. This parity

assignment can be completed during one clockwise traverse in O(n) time. An

example of parity assignment starting from a(0) is shown in Fig. 4.21, where

each vertex is associated with one parity.

Theorem 7. In an even polygon, a chord āb is odd iff pa = pb.

Given the parity values, the odd-chord detection can be performed

using Theorem 7. For each concave vertex vi, a plane sweep is applied to search
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a(0) b(1)

c(0)
d(0)

e(0) f(0)

g(0)h(1)

i(1)j(1)

k(0)l(0)

Figure 4.21: To detect odd-chords in even polygon, each vertex is associated
with one Boolean parity.

any chord containing vi. The plane sweep for each vertex can be finished in

O(logn), and the number of vertices is O(n). Therefore, in an even polygon

odd-chords detection can be completed in O(nlogn) time.

After all chords are detected, chord selection is applied to choose as

many chords as possible to divide the input polygon into a set of independent

sub-polygons. Note that if a chord is selected to cut the polygon, it releases

the concavity of its two endpoints. Therefore, if two chords intersect with

each other, at most one of them could be selected. For example, in Fig. 4.21,

chords b̄h and h̄k cannot be selected simultaneously. The relationship among

the chords can be represented as a bipartite graph [53], and the vertices in left

and right columns indicate the horizontal and vertical chords, respectively.

Therefore, finding the most chords compatible with each other corresponds to

finding the maximum independent set in the bipartite graph, which can be

reduced to maximum matching problem, and therefore, can be done in poly-

nomial time. It shall be noted that if the input polygon is a even polygon,
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because of Theorem 7, we prefer to choose odd-chords. Therefore, the bipar-

tite graph is modified by assigning weights to the edges. In addition, sliver

minimization is integrated into the chord selection. When an odd-chord can-

didate is detected, we calculate the distance between it and the boundary of

the polygon. If the distance is less than ε, cutting this odd-chord would cause

sliver, then we will discard this candidate.

4.3.3.2 Sliver Aware L-Shape Fracturing

After chord selection, the input polygon P is decomposed into m sub-

polygons (denoted as P1, P2, ..., Pm). For each polygon Pi, we will recursively

fracture it until reaching final L-shapes and/or rectangles. Our fracturing

algorithm is based on odd-cut selection. The main idea is that each time

we pick up one odd-cut, and decompose the polygon into two pieces through

this odd-cut. Iteratively we fracture the polygon into several L-shapes. Note

that our fracturing algorithm considers the sliver minimization, i.e., we try to

minimize the sliver length during fracturing.

The first question is how to detect all the odd-cuts efficiently. Our

method is similar to that for odd-chord detection. Each vertex vi is assigned

an order number oi, and a Boolean parity pi. Start at an arbitrary vertex, each

vertex vi is assigned an order oi. We initialize the Boolean parity p to zero,

and proceed clockwise around the polygon. If the next vertex vi is normal,

label its pi as p; if vi is concave, assign p to ¬p, and label its pi with the

new p value. For each concave vertex va, we search cuts from two directions
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(horizontal and vertical) from it. Here we denote (a, b̄c) as the cut with one

endpoint at vertex va and the other endpoint at edge b̄c. For each cut (a, b̄c)

detected, whether it is an odd-cut can be checked in constant time using the

following Theorem 8.

Theorem 8. In an odd polygon, a cut (a, b̄c) is an odd-cut if and only if the

following condition is satisfied:{
pa = pb, if oa > ob
pa 6= pb, if oa < ob

Due to space limit, the detailed proof is omitted. An example of odd-

cut detection is shown in Fig. 4.22. There are three concave vertices, vb, vf

and vi in the odd polygon. Start from each concave vertex, we have searched

all six cuts. Applying Theorem 8, we find out two odd-cuts (b, f̄g) and (i, c̄d).

a(1,0)b(2,1)

c(3,1)d(4,1)

e(5,1) f(6,0)

g(7,0) h(8,0)

i(9,1)
j(10,1)

Figure 4.22: Odd-cut detection using order number and parity.

The details of our L-shape fracturing are described in Algorithm 19.

Given the input polygon P , if it is already an L-shape or rectangle, then the

fracturing is completed. Otherwise, we find all odd-cuts as described above
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Algorithm 19 LShapeFracturing(P )

Require: Polygon P .
1: if P is L-shape or rectangle then
2: Output P as one of results; return
3: end if
4: Find all odd-cuts;
5: Choose cut cc considering the sliver minimization;
6: if Cannot find legal odd-cut then
7: Generate an auxiliary cut cc;
8: end if
9: Cut P through cc into two polygons P1 and P2;
10: Update one vertex and four edges;
11: LShapeFracturing(P1);
12: LShapeFracturing(P2);

(line 5). From all the odd-cuts detected, we choose one cc, and cut the P

into two pieces P1 and P2 (lines 10− 11). Then we recursively apply L-shape

fracturing to P1 and P2 (lines 12− 13).

Note that during the polygon decomposition, we do not need to re-

calculate the order number and parity of each vertex. Instead, when a polygon

is divided into two parts, we only update one vertex and four edges, while all

other information can be maintained. If polygon P is cut through odd-cut

(a, b̄c), a new vertex, namely d, is generated. For the new vertex d, its order

number od = ob and its parity pd = pb. Edge b̄c is replaced by edges b̄d and

d̄c. Besides, two edges ād and d̄a are inserted. The update method is simple

and easy to implement. An example of such update is shown in Fig. 4.23.

Sliver minimization is integrated into our L-shape fracturing algorithm.

In Algorithm 19, when picking up one cut from all odd-cuts, we try to avoid
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(3,1)(3,1)

a(1,0)b(2,1)

c(3,1)d(4,1)

e(5,1) f(6,0)

g(7,0) h(8,0)

i(9,1)
j(10,1)

g(7,0) h(8,0)

a(1,0)

j(10,1)
i(9,1)

b(2,1)

d(4,1)

e(5,1) f(6,0)

c(3,1)

Figure 4.23: Only one vertex and four edges need to be updated during polygon
decomposition.

any sliver. For example, as illustrated in Fig. 4.24(a), there are three odd-

cuts, but all of them would cause sliver. Instead of selecting any of them, we

generate an auxiliary cut in the middle (see Fig. 4.24(b)). Because of the

auxiliary cut, the polygon can be fractured without introducing any sliver. In

addition, if there are several odd-cuts not causing sliver, we pick the cut using

the following rules: (1) We prefer the cut which partitions the polygon into

two balanced sub-polygons; (2) If the polygon is more horizontal than vertical,

we prefer a vertical cut, and vice verse.

< ɛ

< ɛ
< ɛ

(a) (b)

Figure 4.24: Auxiliary cut generation. (a) Here every odd-cut would cause
sliver. (b) Decompose through on auxiliary cut can avoid sliver.
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Given a polygon with n vertices, finding all concave vertices need O(n)

time. For each concave vertex vi, searching cut starting from it needs O(logn)

time. Using Theorem 8, checking whether the cut is odd-cut needs O(1), thus

finding all odd-cuts needs O(nlogn) time. Note that given a polygon with c

concave vertices, if no auxiliary cut is generated, the L-shape fracturing can

be completed through bc/2c odd-cuts. When auxiliary cuts are applied, there

are at most c−1 cuts to fracture the input polygon. Therefore, we can achieve

the following theorem.

Theorem 9. The sliver aware L-shape generation can find a set of L-shapes

in O(n2logn) time.

It shall be noted that if our objective is only to minimize the shot

number, no auxiliary cut would be introduced, thus at most bc/2c + 1 L-

shapes are generated. In other words, the shot number would be less or equals

to the theoretical upper bound Nup.

4.3.3.3 Speedup Technique

We observe that in practice during the execution of Algorithm 19, many

odd-cuts do not intersect. In other words, many odd-cuts are compatible, and

could be used to decompose the polygon at the same time. Instead of only

picking one odd-cut at one time, we can achieve further speed-up by selecting

multiple odd-cuts simultaneously.

If the polygon is an odd polygon, this speed-up is easily implemented.

In the odd polygon, there is only one type of odd-cut: a cut that has an odd
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Figure 4.25: Speed-up for odd polygon, where all three odd-cuts are compati-
ble.

number of concave vertices to each side. Partitioning the polygon along such

odd-cut can leave all other odd-cuts remaining to be odd-cuts. For example,

Fig. 4.25(a) shows an odd polygon, where all three odd-cuts are compatible,

and can be picked up simultaneously. Through fracturing the polygon along

the three odd-cuts, the L-shape fracturing problem is resolved directly.

However, this speed-up technique cannot be directly applied to an even

polygon, since it may cause more shot number. The reason is that when an

even polygon is cut into two pieces, some odd-cuts may no longer be odd-cuts

in the sub-polygons. For example, as shown in Fig. 4.26(a), in this even-

polygon all six cuts are odd-cuts and compatible. However, if we use all these

compatible cuts for fracturing, we would end up with seven rectangular shots,

which is obviously sub-optimal. To overcome this issue, for each even-polygon

we introduce one artificial concave vertex. Through this artificial concave

vertex, the polygon is translated into an odd polygon. Because of Lemma 13,

this translation does not increase the total shot number. As shown in Fig.

4.26(b), in the modified odd polygon, all compatible odd-cuts can be used for

fracturing without causing more shot number.

Lemma 13. Introducing one artificial concave vertex to an even polygon does
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not increase the L-shape upper bound Nup.

(a)

Artificial Concave Vertex

(b)

Figure 4.26: Speed-up for even polygon. (a) all cuts are odd-cuts. (b) Intro-
ducing one artificial concave vertex, translate the even polygon into an odd
polygon.

Through employing this speed-up technique, for most cases, the odd-

cut detection can be applied only once, therefore the DLF algorithm could be

completed in O(nlogn) time in practice.

4.3.4 Experimental Results

We implemented our two L-shape fracturing algorithms, RM and DLF,

in C++. Since RM needs a rectangular fracturing method to generate ini-

tial rectangles, we implemented a state-of-the-art algorithm proposed in [66].

Based on the generated rectangles, RM algorithm is applied to merge them into

a set of L-shapes. LEDA package [73] is adopted for the maximum weighted

matching algorithm.

The experiments are performed on an Intel Xeon 3.0GHz Linux machine

with 32G RAM. ISCAS 85&89 benchmarks are scaled down to 28nm logic

node, followed by accurate lithographic simulations performed to the Metal

1 layers. All involved lithography simulations in the Calibration Phase are

218



applied under industry-strength RET (OPC). For all the resulting post-OPC

layers, OpenAccess 2.2 [4] is adopted for interfacing.

Table 4.6 shows the results of our DLF algorithm in comparison with

the approaches in [66] and the RM algorithm. Since the framework [66] is

adopted to provide the input rectangles, the RM algorithm is denoted as

“ [66]+RM”. Column “poly#” lists the number of polygons of each test circuit.

All fracturing methods are evaluated with the sliver parameter ε = 5nm. For

each method, columns “shots”, “sliver”, and “CPU” denote the shot number,

total sliver length, and runtime, respectively. First we compare the fracturing

algorithm in [66] and the RM algorithm. From the table we can see that as an

incremental algorithm, the RM algorithm can further reduce the shot number

by 37%, and the sliver length by 45%. Meanwhile, the runtime increasing is

reasonable: RM algorithm introduces 41% more runtime. Besides, we compare

our DLF algorithm with other two methods. We can see that DLF demon-

strates the best performance, in terms of both runtime and performance. Com-

pared with traditional sliver aware rectangular fracturing [66], it can achieve

around 9× speed-up. Besides, the shot number and the sliver length can be

significantly reduced (39% and 82%, respectively). Even compared with RM

algorithm, DLF is better in terms of performance: it can further reduce the

shot number and the sliver length by 3.2% and 67%, respectively.

In order to evaluate the scalability of our algorithm, we summarize all

the run time from Table 4.6, and display in Fig. 4.27. Here the X axis denotes

the number of polygons (e.g., the problem size), and the Y axis shows the
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Figure 4.27: Comparison on algorithm scalability.

runtime. We can see that DLF algorithm scales better than both [66] and RM

algorithm.

4.3.5 Summary

In this section we have proposed two novel algorithms for EBL with the

new L-shape based layout fracturing for shot number and sliver minimization.

The rectangular merging (RM) based algorithm is optimal for a given set of

rectangular fractures. However, to get better performance, we show that the

direct L-shape fracturing (DLF) algorithm is superior by directly decomposing

the original layouts into a set of L-shapes. DLF obtained the best results in all

metrics, including shot count, sliver, as well as runtime compared to the pre-

vious state-of-the-art rectangular fracturing with RM. To our best knowledge,

this is the first systematic and algorithmic effort in EBL L-shaped fracturing

with sliver minimization. As EBL is widely used for mask making and also

gaining momentum for direct wafer writing, we believe a lot more research can

be done, for not only layout fracturing but also EBL-aware physical design.
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Chapter 5

Conclusions and Future Works

In this dissertation, we have proposed a set of algorithms/methodologies

to resolve issues in modern design for manufacturing problems with advanced

lithography. Our major contributions include:

• In Chapter 2, we tackled the challenge of layout decompositions for dif-

ferent patterning techniques. In Section 2.2 we have proven that triple

patterning layout decomposition is NP-hard. Besides, we have proposed

a number of optimization techniques to solve the layout decomposition

problem: (a) integer linear programming (ILP) formulation to search op-

timal solution; (b) effective graph based simplification techniques to re-

duce the problem size; (c) novel semidefinite programming (SDP) based

algorithms to achieve further balance in terms of runtime and solution

quality; To further reduce the variations in decomposed results, in Sec-

tion 2.3 we proposed a high performance layout decomposer providing

more balanced density. In Section 2.4 we proposed a comprehensive

study for LELE-EC layout decomposition. End-cut candidates are gen-

erated considering potential hotspots, and the core layout decomposition

is formulated as an integer linear programming (ILP). In Section 2.5 we
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extend to general multiple patterning problems. The proposed decom-

poser consists of holistic algorithmic processes, such as semidefinite pro-

gramming based algorithm, linear color assignment, and novel GH-tree

based graph division. Experimental evaluations have demonstrated that

our decomposer is effective and efficient to obtain high quality solution.

• In Chapter 3, we presented a coherent framework, including standard

cell compliance and detailed placement, to enable TPL friendly design.

Considering TPL constraints during early design stages, such as standard

cell compliance, improves the layout decomposability. With the pre-

coloring solutions of standard cells, we have presented a TPL aware

detailed placement where the layout decomposition and placement can

be resolved simultaneously. In addition, we proposed a linear dynamic

programming to solve TPL aware detailed placement with maximum

displacement, which can achieve good trade-off in terms of runtime and

performance.

• In Chapter 4, we study the design for manufacturing with E-Beam lithog-

raphy. In Section 4.2 we presented E-BLOW, the first study for OSP

problem in MCC system. We have proven that both 1D-OSP and 2D-

OSP problems are NP-hard. We formulated integer linear programming

(ILP) to co-optimizing characters selection and physical placements on

stencil. To handle 1D-OSP problem, we proposed a set of algorithms,

including simplified formulation, successive relaxation, and post refine-
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ment. To handle 2D-OSP problem, we designed a KD-Tree based clus-

tering algorithm to achieve speed-up. In Section 4.3 we have proposed

two algorithms for the L-shape fracturing problem. The first method,

called RM, starts from rectangles generated by any previous fracturing

framework, and merge them into L-shapes. The second fracturing al-

gorithm, called DLF can effectively detect and take advantage of some

special cuts. Therefore, DLF can directly fracture the layout into a set

of L-shapes in O(n2logn) time.

With the above explorations and discussions, we have demonstrated the

unique role of design for manufacturing (DFM) in the process of the advanced

lithography techniques. With many challenges in this emerging field, we expect

to see more future works along this direction as the advanced lithography

technique will still have a lot of room to improve and continue the Moore’s

law benefit. For example, the following are some future research directions

and open problems:

• We have handled layout decomposition for different patterning tech-

niques. However, there is still some room to improve the performance.

For instance, for triple patterning with end-cutting, only expensive ILP

based method is proposed. Such method may suffer from long runtime

penalty, and may be not able to scale to whole chip level decomposition.

Therefore, how to solve this layout decomposition problem with better

runtime and solution quality balance is an open question.

224



• We have integrated triple patterning constraints into early design stages.

It would be interesting to consider how to handle other lithography rules

or constraints in early design stages.

• Next generation lithography techniques such as directed self-assembly

(DSA), extrme ultra violet (EUV), and nanoimprint lithography (NIL)

can be further studied and evaluated as options for future manufacturing.
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