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Abstract—Strong semantic segmentation models require large backbones to achieve promising performance, making it hard to adapt

to real applications where effective real-time algorithms are needed. Knowledge distillation tackles this issue by letting the smaller

model (student) produce similar pixel-wise predictions to that of a larger model (teacher). However, the classifier, which can be deemed

as the perspective by which models perceive the encoded features for yielding observations (i.e., predictions), is shared by all training

samples, fitting a universal feature distribution. Since good generalization to the entire distribution may bring the inferior specification

to individual samples with a certain capacity, the shared universal perspective often overlooks details existing in each sample, causing

degradation of knowledge distillation. In this paper, we propose Adaptive Perspective Distillation (APD) that creates an adaptive local

perspective for each individual training sample. It extracts detailed contextual information from each training sample specifically, mining

more details from the teacher and thus achieving better knowledge distillation results on the student. APD has no structural constraints

to both teacher and student models, thus generalizing well to different semantic segmentation models. Extensive experiments on

Cityscapes, ADE20K, and PASCAL-Context manifest the effectiveness of our proposed APD. Besides, APD can yield favorable

performance gain to the models in both object detection and instance segmentation without bells and whistles.

Index Terms—Knowledge distillation, scene understanding, semantic segmentation

Ç

1 INTRODUCTION

DEEP learning has significantly boosted the performance
of semantic segmentation. Powerful segmentation mod-

els [3], [54] require strong feature extractors [9], [36], [41] to
reach high performance. While real-time algorithms are
more preferred in practice. Designing efficient segmentation
models [21], [44], [53] is thus important.

Compared to hand-crafted efficient model design, knowl-
edge distillation (KD) [12] is a more general technique for
achieving high efficiency since KD can be applied to any
existing models without structural constraints. Specifically,
“knowledge” is distilled from a large model (teacher) to a
smaller one (student) by minimizing the Kullback-Leibler
divergence (KLD) between student output and soft target
yielded by the teacher.

KD has been shown effective in classification [12], [28],
[34], [42], while in segmentation, models are required to
maintain the encoded features in certain resolutions and

accomplish pixel-wise labeling by up-sampling to the origi-
nal size. Contextual information is essential in segmentation
because models cannot make predictions merely based on
the RGB value of every single pixel. Design for contextual
information enrichment (i.e., global pooling [19], pyramid
pooling [54], dilated convolution [4] and attention [38]) can
significantly improve the baselines. Previous methods [20],
[39] propose distillation schemes to extract and transfer
structured information on features, while it is notable that
one important factor “perspective” in semantic segmenta-
tion is seldom studied.

Perspective works by representing the light that passes
from a scene through a plane to the viewer’s eye. In fact,
deep models perceive the encoded semantic features and make final
predictions from the essential “perspective”. We can consider
the final classifier as a form of perspective for a model. Put
differently, the inference of a segmentation model can be
deemed as a process that the perspective (classifier) projects the
encoded high-level semantic information to yield observations
(predictions) for the viewer, as illustrated in Fig. 1. Compared
to the student, the teacher usually has a better perspective
because of the large feature encoder that can produce high-
quality features to learn a good perspective, providing more
accurate observations (predictions) used as soft targets in
normal KD loss [12].

During KD, the teacher’s feature encoder and perspective
are fixed. Both of them generally fit the universal distribu-
tion given that they have been sufficiently trained on the
entire training set. The fixed “universal perspective” of
teacher achieves high-quality evaluation results by general-
izing to all testing samples. However, the soft targets
exploited with such a good generalization might not be the
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optimal choice for transferring knowledge from the teacher
to student, because, with a certain capacity, high generaliza-
tion might cause poor specification that can reveal more
useful information of the encoded features for decent
knowledge distillation. To maintain good specification, the
feature maps of different training samples should be pro-
jected by different perspectives to yield predictions, because
even the same object may occur with varying co-occurrence
information in different training samples, and a fixed uni-
versal perspective might not be able to well handle all the
individual cases.

To address this key issue, we propose a new knowledge
distillation method based on the concept of perspective for
semantic segmentation. Our method enables models to
form the adaptive perspective for every input image, i.e.,
different images are processed by different perspectives,
based on their contextual contents. As illustrated in Figs. 2
and 3, the adaptive perspective is generated for each image
and it can better describe the encoded feature distribution,
which reveals more contextual details that are conducive to
knowledge distillation. As teacher always learns a better

universal perspective, we also align the adaptive perspec-
tives of teacher and student. It makes the student learn to
form better adaptive perspectives under the teacher’s guid-
ance. Besides, the auxiliary observations (predictions) are
obtained from the adaptive perspectives of the teacher and
student. They are then used for distillation from the adap-
tive perspectives, further boosting performance.

We name our method Adaptive Perspective Distillation
(APD) since it offers an adaptive perspective to reveal more
contextual cues for semantic segmentation. Our method is
effective in boosting different models on various benchmark

Fig. 1. Deep semantic segmentation framework is abstracted as the pro-
cess that the final pixel-wise observation (prediction) is obtained from
the perspective (classifier) based on encoded features produced by the
deep neural networks.

Fig. 2. Qualitative t-SNE [35] results of the difference between the fixed universal perspective (top) and adaptive perspective (bottom). Categories are
represented by different colors. Top figures show that generally correct observations can be obtained by the fixed universal perspective, while the
lack of specification to individual samples causes erroneous observations/knowledge for distillation. On the other hand, with our proposed APD, mod-
els learn to form adaptive perspectives that are clearer decision boundaries as demonstrated in the bottom figures where the adaptive perspective,
conditioned on the content of each image, decently describes the feature distribution. Therefore, APD reveals additional detailed co-occurring
semantic cues conditioned on individual training samples so as to better accomplish the knowledge distillation.

Fig. 3. Training mIoU curves of the auxiliary prediction ppa;s and the main
prediction pps of the student model on PASCAL-Context. ppa;s and pps are
obtained from the adaptive perspective and fixed universal perspective
respectively. The auxiliary prediction ppa;s achieves much higher mIoU on
the training set because ppa;s is generated by the adaptive perspective As

that is with high specification to each image, mining more details for
knowledge distillation and forming better decision boundaries as
depicted by the bottom examples in Fig. 2. The comparison on the vali-
dation set is presented in Fig. 5.
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datasets, achieving advanced performance compared with
state-of-the-art algorithms. Note only two light-weight pro-
jectors are introduced for knowledge distillation, and, after
training, they are simply discarded without causing any
structural modification to the original model during evalua-
tion, manifesting the substantial practical merit. In sum-
mary, our contribution is threefold.

� Different from the common practice in KD, we exam
individual images and generate adaptive perspectives
and observations to improve knowledge distillation.

� The proposed APD is model-agnostic and achieves
great success by significantly improving different
semantic segmentation models on popular datasets
without structural constraints.

� Ourmethod is also effective for knowledge distillation
on the tasks of object detection and instance segmenta-
tion, further demonstrating the generalization ability.

2 RELATED WORK

Semantic Segmentation. Semantic segmentation is a fundamen-
tal and challenging task that requires accurate pixel-wise pre-
dictions for each image. FCN [31] is the first to adopt the
convolution layers instead of the fully-connected layer to
accomplish the semantic segmentation task. Encoder-decoder
is developed [1], [23], [29] to let the encoded latent features
refined by the decoder in steps. Dilated convolution [3], [46]
enlarges the receptive field that is important for per-pixel pre-
dictions based on the contextual information. Pooling is
another way for providing more contextual cues, such as
global pooling [19], pyramid pooling [3], [43], [54], and strip
pooling [13]. Note attention mechanism further boosts the
performance by leveraging the long-range relationship across
features [7], [8], [14], [17], [47], [48], [50], [55].

Recently, in order to perform pixel-wise semantic seg-
mentation in real-time on mobile devices, efficient segmen-
tation models are developed [21], [26], [45], [53]. E-Net [26]
incorporates early down-sampling, filter factorization, and
pooling in parallel with strided convolution to reduce the
computation overhead without compromising accuracy.
ESPNet [21] builds the efficient spatial pyramid (ESP) mod-
ule with factorized convolutions to accelerate the model.
ICNet [53] leverages the multi-resolution branches with
label guidance to accomplish real-time inference effectively.
BiSeNet [45] proposes the spatial- and context-path to
obtain sufficient contextual cues efficiently.

Knowledge Distillation. Knowledge distillation was pro-
posed by Hinton in [12]. It supervises a compact model by a
larger pre-trained teacher in classification. The teacher pro-
vides soft labels, which contain useful “dark knowledge”
for the student. The student could learn better results from
the soft labels. Later, FitNet [28] distills knowledge from the
features instead of the final prediction, which opened a new
door in knowledge distillation. Following work [11], [25],
[49] studied how to extract useful information from the
features to better transfer to the student.

The study of knowledge distillation in semantic segmenta-
tion tasks commences in recent years. SKD [20] extracts struc-
tured information from the features. It also leverages a GAN
network on top of the prediction of teacher and student to

distill the holistic knowledge. Similar to SKD, the structural
knowledge is also used in KA [10] by distilling the spatial cor-
relation from the element-to-element similarity matrix, but
differently, KA optimizes the feature similarity in a trans-
ferred latent domain formulated by an auto-encoder, instead
of the original features used by SKD, to alleviate the issues
brought by the inconsistency between teacher and the stu-
dent. After that, IFVD [39] extracts the intra-class feature vari-
ation on the features. SKD replaces the transformation in SKD
with an IFV transformation. Besides, CSCACE [24] makes use
of both channel and spatial correlation (CSC)with an adaptive
cross-entropy (ACE) loss that tries to combine the merits of
the ground truth labels and predictions of the teacher net-
work.More recently, [15] applies domain adaptive distillation
to tackle the unsupervised domain adaptation problem and
yields decent improvement. However, the study of knowl-
edge distillation in semantic segmentation is still far from
satisfactory.

Alternatively, in this paper, we analyze the knowledge
distillation problem from a new view, and propose the
Adaptive Perspective Distillation that achieves advanced
performance on different baselines and datasets.

3 PRELIMINARY - KNOWLEDGE DISTILLATION

Large models always achieve better performance than the
small ones because of the large capacity. As suggested by
Hinton et al. [12], knowledge of a large model (teacher) can
be transferred to the smaller one (students) via soft labels
that are more informative than the one-hot hard labels. This
process is called knowledge distillation (KD). By mimicking
the soft labels predicted by the teacher, the student gradu-
ally obtains the “dark knowledge” contained in the teacher
model, such as correlation between different entities, which
is conducive to the representation learning and cannot be
expressed by the hard labels.

Liu et al. [20] apply KD to semantic segmentation where
the Kullback-Leibler divergence (KLD) is calculated in a
pixel-wise manner. Formally, letH andW denote the height
and width of the prediction, and the knowledge distillation
loss Lkd is the average KLD of all pixels as

Lkd ¼ 1

H �W

XH�W

x¼1
KLDðppxs jjppxt Þ; (1)

where x is the pixel index, thus ppxt and ppxs represent the class
probabilities of x-th pixel predicted by teacher and student
models respectively.

It is worth noting that, normally, the teacher model is
fixed during training to provide consistent soft targets pxt to
student, and Lkd is used as an auxiliary loss that is optimized
together with the main loss Lce produced by pxs and one-hot
hard labels. Therefore, the overall training objectiveL is

L ¼ Lce þ �kdLkd; (2)

where �kd is set to 10 following [20], [39].

4 ADAPTIVE PERSPECTIVE DISTILLATION

Overview. All semantic segmentation models can be decom-
posed into two components: 1) feature generator G and 2)
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classifier C. Both G and C are fixed in the teacher model dur-
ing distillation. Teacher’s classifier Ct takes the features fft
extracted from Gt and produces soft targets for Lkd. How-
ever, Ct fits the entire training set, and thus it provides a
fixed universal perspective for mining knowledge from
each feature map extracted by Gt of the teacher.

To further investigate the “dark knowledge” inside the
teacher, we take a closer look at each training sample by form-
ing individual adaptive perspectivesAt that are composed of
semantic anchors (i.e., representative vectors for individual
semantic classes) obtained from the encoded features fft,
which serves as another auxiliary task providing local per-
spectives for distilling knowledge. Auxiliary observations ppa;t
are then generated by adaptive perspectives At and encoded
features fft for transferring the knowledge from teacher to stu-
dent. The student feature generator Gs is required to mimic Gt
to yield similar adaptive perspectivesAs, as well as the auxil-
iary observations ppa;s obtained from As. Since both the adap-
tive perspective and auxiliary observations are generated
specifically for each training sample, they providemore infor-
mative cues for KD. Ourmethod is abstracted in Fig. 4.

Adaptive Perspective. In the following, we introduce the
way to generate adaptive perspectives to better distill the
knowledge between the teacher and student models. First,
two light-weight projectors, i.e., two 2-layer Multi-layer Per-
ceptrons (MLPs) with an intermediate ReLU activation
layer, are used to produce the adapted features for con-
structing new perspectives with the same channel numbers,
making our method model-agnostic because the teacher
and student models usually have different output channels.
We can formalize this procedure as

ffa;t ¼ PtðfftÞ; ffa;s ¼ PsðffsÞ: (3)

Masked average pooling (MAP) is then applied to ffa;t and
ffa;s to generate the C-dimensional semantic anchors Ai

t and

Ai
s 2 R½1�C�ði 2 f1; . . .; NgÞ as shown in Eq. (4), where MMi 2
R½H�W�1� is the binary mask obtained from the ground truth

label, indicating whether the features belong to class ci, and

x denotes the feature position. N represents the number of
classes contained in the current image, and different images

may have different values of N . For simplicity, we only dis-

cuss the case with one single image.

Ai
t ¼

PHW
x¼1 ff

x
a;t �MMx

iPHW
x¼1 MM

x
i

; Ai
s ¼

PHW
x¼1 ff

x
a;s �MMx

iPHW
x¼1 MM

x
i

: (4)

We name the collection of these features, i.e., semantic
anchors, as “adaptive perspective” because they are then put
together to form a classifier whose semantic information
varies on different images, i.e., being “adaptive” to different
contexts, for yielding auxiliary predictions during distillation.
With the semantic information provided by the ground-truth
labels, the adaptive perspective can better describe the
encoded semantic intra- and inter-class distributions, as
shown in Figs. 2 and 3 where more accurate predictions can
be obtained from the adaptive perspective. Thus, though it
cannot be used for the final prediction due to the use of the
ground-truth label, it is suitable to distill knowledge between
the student and teacher with deeper insight, i.e., how the
model interprets the encoded features for different images.
Note it is normal to add extra modules during distillation in
literature. The proposed two projectors are not used during
inference, so themodel efficiency is not adversely affected.

After we get the adaptive perspectives, additional explicit
observations can be obtained by calculating the cosine simi-
larity between the adapted features (ffa;t and ffa;s) and adap-
tive perspectives (At and As) as Eqs. (5)-(6) where x is the
pixel index, i and j are the indexes among N adaptive per-
spectives. Therefore, ppx;ia;t and ppx;ia;s tell how likely the x-th pix-
els belong to the corresponding i-th semantic anchors of
teacher and student respectively.

ppx;ia;t ¼
expð cos ðffx

a;t;Ai
tÞ=tÞPN

j¼1 expð cos ðffx
a;t;Aj

tÞ=tÞ
; (5)

Fig. 4. Illustration of our method. The input image is first processed by teacher and student encoders (Gt and Gs) respectively to get the encoded fea-
ture maps fft and ffs. To accomplish normal KD, Lkd [12] is applied to the predictions obtained from the main classifiers CCt and CCs, offering a global
perspective. fft and ffs are also transformed by projectors (Pt and Ps) to form adaptive classifiersAt and As, serving as local perspectives that reveal
useful details by better describing the feature distributions as shown in Figs. 2 and 3. We note that the projected features ffa;t and ffa;s are l-2 normal-
ized. Then, the distillation from the adaptive perspectives is accomplished by the proposed Lrec and Lob that rectifies adaptive classifiers and aligns
auxiliary predictions (ppa;t and ppa;s) respectively. Lt only updates teacher’s projector Pt, and the gradients yielded by Lkd, Lrec and Lob will not be back-
propagated to ppt, At and ppa;t. The normal cross entropy loss Lce applied to pps is omitted in this figure for simplicity.
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ppx;ia;s ¼
expð cos ðffx

a;s;Ai
sÞ=tÞPN

j¼1 expð cos ðffx
a;s;Aj

sÞ=tÞ
: (6)

A new hyper-parameter t is introduced for yielding pre-
dictions via cosine similarity because the value of cosine
similarity ranges from -1 to 1 thus the results of the Softmax
operation performed in Eqs. (5)-(6) are constrained within a
rather small scale. t is adopted to enlarge the output scale
for facilitating the optimization performed with Eqs. (5)-(6),
and we empirically set t to 0.1 in all experiments.

Learning Objective for Teacher’s Adaptive Perspective.Teacher’s
projector Pt is randomly initialized by the default setting of
PyTorch, thus it will collapse with meaningless interpretation
without optimization. To ensure that Pt can provide represen-
tative perspectives At 2 R½N�C� that reveal more contextual
details for each image, an explicit regularization is indispens-
able – features belonging to class ci should get closer toAi

t and
are far from the semantic anchors of the other co-occurring cat-
egories. Therefore, we introduce the learning objective for
teacher’s projectorPt as

Lt ¼ 1

H �W

XH�W

x¼1
�log expð cos ðffx

a;t;AcðxÞ
t Þ=tÞPN

i¼1 expð cos ðffx
a;t;Ai

tÞ=tÞ
(7)

where cðxÞ indicates the class that ffx
a;t belongs to. We note

that the teacher model is fixed during KD, and Lt only opti-
mizes the teacher’s projector Pt.

Learning Objective for the Student. Misaligned perspectives
may result in different observations. Therefore, student’s
feature generator Gs and projector Ps are first required to
mimic teacher by producing similar perspectives. To realize
this objective, we apply Lrec to accomplish the rectification
on the adaptive perspectives of teacher and student. Lrec

directly encourages the similarity between At and As as

Lrec ¼ 1� 1

N

XN

i¼1
cos ðAi

s;Ai
tÞ: (8)

Furthermore, the observation obtained from the student’s
perspective also needs to imitate the teacher’s observation,
which can be achieved by minimizing KLD between their
observations ppa;t and ppa;s as

Lob ¼ 1

H �W

XH�W

x¼1
KLDðppxa;sjjppxa;tÞ: (9)

The overall Adaptive Perspective Distillation objective
for student extends the loss in Eq. (2) with Lob and Lrec pro-
viding extra informative cues for distillation as

Ls ¼ Lce þ �kdðLkd þ LobÞ þ �recLrec; (10)

where �kd for Lkd is set to 10, the same as those in SKD and
IFVD for fair comparison. As for Lob that minimizes the
Kullback-Leibler divergence from the adaptive observa-
tions, its loss weight is empirically set to �kd. The weighting
factor �rec is set to 10. t for scaling the cosine similarity is
0.1 in Lob and Lrec. The sensitivity analysis of �rec and t is
given in Section 5.4. They both work well on all datasets
with different backbones without further tuning.

Optimization. Lt only optimizes the teacher’s projector Pt

because the gradients yielded by Lkd, Lrec and Lob will not
be back-propagated to ppt, At and ppa;t, as shown in Fig. 4. On
the other hand, Ls optimizes the entire student model, i.e.,
feature generator Gs and classifier Cs, as well as the projector
Ps. Therefore, Lt and Ls work independently on each train-
ing batch. As shown in Algorithm 1, ut represents the
parameters of teacher’s projector Pt, and us denotes all
trainable parameters of the student model. Specifically,
given a training batch, the teacher’s projector Pt is first
updated in lines 4-5. Then, Pt is detached to accomplish the
update of student’s parameters us in lines 6-7 without back-
propagating the gradients to update ut.

Algorithm 1. Optimization of APD

Require: pðBÞ: distribution over the training set.
Require: a, b: step size hyper-parameters.
1: Randomly initialize ut and us.
2: while not done do
3: Sample a batch of samples Bi � pðBÞ
4: YieldrutLt w.r.t. jBij training samples
5: Update ut  ut � arutLt
6: YieldrusLs w.r.t. jBij training samples
7: Update us  us � brusLs

8: end while

5 EXPERIMENTS

5.1 Dataset Description

Cityscapes [6] focuses on semantic understanding of urban
street scenes. It contains 5000 finely annotated images. Spe-
cifically, 2975, 500 and 1525 images for training, validation
and testing respectively. 19 classes are required in predic-
tion for evaluation.

ADE20K [56] is a rather challenging dataset that spans
diverse annotations of scenes, objects, parts of objects, and
in some cases even parts of parts. ADE20K contains up to
150 classes and diverse scenes for semantic segmentation.
20000, 2000 and 3000 images are used for training, valida-
tion and testing.

PASCAL-Context [22] extends the original PASCAL VOC
semantic segmentation task with more detailed annotations
for the whole scene. 4998 and 5105 images are used for
training and validation, and 9637 images are used for test-
ing. We evaluate all models on 60 categories (59 + back-
ground), following the practice of MMSegmentation [5].

COCO [18] is the most popular and challenging dataset
for object detection and instance segmentation. In this paper,
we use ”COCO” to represent COCO 2017 dataset. It contains
more than 200,000 images and 80 object categories for train,
validation, and test sets. We use the COCO 2017 train set for
training and report the validation results on the COCO 2017
val set. The results are reported in COCO-style mAP.

5.2 Implementation Details

We adopt three popular scene parsing benchmark datasets
(Cityscapes [6], ADE20K [56] and PASCAL-Context [22]) in
experiments. Models are trained and evaluated on the train-
ing and validation sets of these datasets respectively by
default.
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Both projectors Pt and Ps are composed of two 1�1 con-
volutional layers (denoted as din � dout) with an intermedi-
ate ReLU activation layer, while the difference lies in the
input & output dimensions of the convolutional layers. Let
dt and ds represent the dimensions of features fft and ffs
yielded by teacher and student feature generators Gt and Gs,
respectively. Usually, because the teacher is with a larger
capacity and dt � ds, teacher’s projector Pt is required to
compress the dimension of fft from dt to ds, matching that
of the student feature ffs. Therefore, the structure of Pt is
as: [dt � ds ! ReLU ! ds � ds], and the structure of Ps is:
[ds � ds ! ReLU ! ds � ds]. Then, the projected features
are l-2 normalized for calculating the cosine similarity.

The semantic segmentation models are built upon Semseg
[52]. Studentmodels are trained following the default configu-
ration of PSPNet [54] except for the initial learning rate and
batch size because PSPNet uses 8 GPUs by default while we
use 4 GPUs for training. Specific epoch numbers, initial learn-
ing rates and training patch sizes used for different datasets
are summarized in Table 1. SGD is used for optimization.
Weight decay andmomentum are set to 0.0001 and 0.9 respec-
tively. The “poly” learning rate decay [3] is used by multiply-
ing the initial learning rate with ð1� current itermax
iterÞpower, where power is set to 0.9. All models are optimized
without OHEM. As for the teacher, since the feature generator
and classifier are fixed during training, only the projector Pt

requires gradients. Pt is optimized by Adam optimizer with
initial learning rate 1e-5 and beta (0.9, 0.99), which generalize
well on all datasets without additional tuning. Both SKD [20]
and IFVD [39] incorporate a GAN loss to accomplish holistic
distillation, while the proposedAPDdoes not adopt this strat-
egy during training.

Data augmentation includes mirroring, re-scaling from
0.5 and 2.0, and random rotation from -10 to 10 degrees.
Finally, image patches are cropped from the original images
as training samples. During evaluation, following the offi-
cial implementation of PSPNet [54], the sliding window
inference strategy with the training crop size is adopted for
experiments in semantic segmentation, and we output the
prediction without additional post-processing (e.g., fully
connected conditional random field (CRF) [16] and multi-
scale testing). All experiments are conducted on PyTorch
with four NVIDIA GTX 2080Ti GPUs, and results are
obtained without altering the original labels. We will make
our code publicly available for reproducing all experimental
results in this paper.

5.3 Comparison With State-of-the-Art

In this section, we show quantitative and qualitative
comparison with recently proposed methods SKD [20],
CSCACE [24], KA [10] and IFVD [39]. For a fair comparison,

we reproduce these methods in the same training and test-
ing settings as our method.

Statistical Comparisons. As shown in Table 2, we make
comparison between the teacher PSPNet-R101 and student
models on different backbones, i.e., ResNet-18 [9], Mobile-
Net-V2 [30] and EfficientNet [33]. Since our method enables
models to form new local perspectives that mine extra
useful information, the proposed Adaptive Perspective
Distillation achieves better performance compared to other
methods when different student backbones are adopted.

We note SKD and IFVD only distill knowledge from
an unchanged global view with a fixed classifier of the
teacher. It is via Lkd [12] without new perspectives, causing
limited knowledge that can be transferred. Contrarily, the
proposed method mines extra cues for distillation by creat-
ing a new perspective for every single image specifically,
and thus our method consistently yields significant perfor-
mance gain to all student models. Besides, in Section 5.4,
we show that our proposed APD is complementary to
SKD and IFVD.

TABLE 1
Training Configurations on Different Datasets

Dataset Epoch BS InitLR PS

Cityscapes [6] 200 8 5e-3 713
ADE20K [56] 100 8 5e-3 473
PASCAL-Context [22] 100 12 7.5e-4 473

Epoch: Training Epoch Number. BS: Batch Size. InitLR: Initial Training
Learning Rate. PS: Patch Size for Training.

TABLE 2
Performance Comparison With State-of-the-Art Methods on

Cityscapes valWith PSPNet [54] and DeepLab-V3 [3]

Methods Backbone PSPNet DeepLab-V3

Teacher RN-101 78.15 78.47
Student-I RN-18 74.15 74.47
+ KD RN-18 74.81 73.67
+ SKD RN-18 74.56 74.03
+ IFVD RN-18 74.10 74.99
+ CSCACE RN-18 74.50 74.81
+ KA RN-18 74.59 74.87
+ Ours RN-18 75.68 75.45

Student-II RN-18* 73.20 74.19
+ KD RN-18* 73.33 74.53
+ SKD RN-18* 73.40 74.00
+ IFVD RN-18* 73.63 74.47
+ CSCACE RN-18* 72.98 74.46
+ KA RN-18* 74.18 73.82
+ Ours RN-18* 74.77 75.14

Student-III MN2-1.0 71.34 71.40
+ KD MN2-1.0 71.91 71.94
+ SKD MN2-1.0 72.40 71.34
+ IFVD MN2-1.0 72.94 70.79
+ CSCACE MN2-1.0 72.56 71.92
+ KA MN2-1.0 71.01 71.89
+ Ours MN2-1.0 73.66 74.47

Student-IV EN-B0 72.30 71.54
+ KD EN-B0 73.32 72.55
+ SKD EN-B0 73.45 69.47
+ IFVD EN-B0 74.43 72.93
+ CSCACE EN-B0 74.15 73.25
+ KA EN-B0 73.83 72.61
+ Ours EN-B0 75.79 74.92

Teacher MN2-1.0 71.34 71.40
Student MN2-0.5 63.34 63.89
+ KD MN2-0.5 64.60 66.03
+ SKD MN2-0.5 65.06 65.84
+ IFVD MN2-0.5 65.31 66.78
+ CSCACE MN2-0.5 65.31 66.82
+ KA MN2-0.5 64.64 66.06
+ Ours MN2-0.5 67.28 67.58

RN, MN2 and EN Represent ResNet [9], MobileNet-V2 [30] and EfficientNet
[33] Respectively. Models With RN-18	 are Trained With 512�512 Crop Size,
and the Others are TrainedWith 713� 713Crops Following PSPNet [54].
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The efficiency comparison is illustrated in Table 3 with
the test mIoU results on Cityscapes. We also conduct experi-
ments with PSPNet on ADE20K and PASCAL-Context to
show the superiority of our method on different datasets.
Results are shown in Table 4.

Cross-Model Distillation. To further manifest the generali-
zation ability of the prosed method, we conduct experi-
ments across different models, i.e., PSPNet ! DeepLab-V3
and DeepLab-V3 ! PSPNet. The cross-model distillation
Results are shown in Table 5. It can be observed that IFVD
and SKD may adversely affect the performance for cross-
model distillation as sometimes they may cause perfor-
mance degradation compared to the results of KD proposed
by Hinton et al. [12]. On the contrary, the proposed method
still consistently brings decent performance gain in the
practical cross-model setting.

Comparison With Validation Curves. Qualitative compari-
son with validation curves is presented in Fig. 5. We note

that these validation results are obtained from the center
regions cropped with the training patch sizes (i.e., 473� 473
for ADE20K [56] and PASCAL-Context [22], and 713� 713
for Cityscapes [6]), which is different from the formal evalu-
ation phase when the sliding windows inference strategy is
adopted. The center cropping for the intermediate valida-
tion and the sliding window inference for the final evalua-
tion are both implemented according to the official PyTorch
implementation of PSPNet.

From Fig. 5, we can observe that APD consistently out-
performs other methods by a large margin on both three
benchmark datasets throughout the entire training process,
which manifests the robustness of our method.

Discussion. The proposed Adaptive Perspective Distilla-
tion (APD) aims at: 1) letting the student mimic teacher to
form local perspectives that can well describe temporary fea-
ture distributions; 2) learning to form similar observations
(predictions) based on the local perspectives (classifiers). In
other words, both inter- and intra-class distributions are lev-
eraged by APD to probe more cues from individual training
samples, and APD attempts to find a better distribution
descriptor for them.

Both SKD [20] and KA [10] exploit the structured infor-
mation without explicitly modelling the feature distribu-
tion, and the difference is that KA adopts an auto-encoder
to accomplish knowledge transfer on the compressed

TABLE 3
Efficiency Comparison on Cityscapes Test

Methods testmIoU Params (M) FLOPS (G)

ENet [26] 58.3 0.3580 3.612
ESPNet [21] 60.3 0.3635 4.422
FCN [31] 65.3 134.5 333.9
ERFNet 68.0 2.067 25.60
ICNet [53] 69.5 26.50 28.30
RefineNet 73.6 118.1 525.7
PSPNet [54] 78.4 70.43 574.9
RN-18 + SKD 72.9 16.31 148.2
RN-18 + IFVD 73.2 16.31 148.2
RN-18 + CSCACE 73.0 16.31 148.2
RN-18 + KA 72.8 16.31 148.2
RN-18 + Ours 74.9 16.31 148.2
MN2-1.0 + SKD 72.1 4.840 39.44
MN2-1.0 + IFVD 72.0 4.840 39.44
MN2-1.0 + CSCACE 71.6 4.840 39.44
MN2-1.0 + KA 71.1 4.840 39.44
MN2-1.0 + Ours 73.5 4.840 39.44
EN-B0 + SKD 73.0 13.44 95.86
EN-B0 + IFVD 73.6 13.44 95.86
EN-B0 + CSCACE 73.5 13.44 95.86
EN-B0 + KA 72.9 13.44 95.86
EN-B0 + Ours 75.2 13.44 95.86

Teacher Model is PSPNet [54] With ResNet-101. RN, MN2 and EN Repre-
sent ResNet [9], MobileNet-V2 [30] and EfficientNet [33] Respectively.

TABLE 4
Performance Comparison With State-of-the-Art Methods Using
PSPNet on the Validation Sets of Three Popular Benchmarks:

Cityscapes [6], ADE20K [56] and PASCAL-Context [22]

Methods Cityscapes ADE20K PASCAL-Context

Teacher 78.15 43.44 48.50
Student 74.15 37.19 42.29
+ KD [12] 74.81 37.69 42.45
+ SKD [20] 74.56 37.61 42.53
+ IFVD [39] 74.10 37.89 42.74
+ CSCACE [24] 74.50 37.50 42.86
+ KA [10] 74.59 38.26 43.13
+ Ours 75.68 39.25 43.96

Teacher and Student Models Adopt ResNet-101 and ResNet-18 as Their
Backbones.

TABLE 5
Cross-Model Distillation Results on Cityscapes ValWith

PSPNet [54] and DeepLab-V3 [3]

Method Backbone PSPNet!DL-V3 DL-V3! PSPNet

Teacher RN-101 78.15 78.47
Student-I RN-18 74.15 74.47
+ KD RN-18 75.13 73.50
+ SKD RN-18 75.65 73.67
+ IFVD RN-18 75.42 74.29
+ CSCACE RN-18 74.93 74.33
+ KA RN-18 75.64 74.58
+ Ours RN-18 76.01 75.90

Student-III MN2-1.0 71.34 71.40
+ KD MN2-1.0 71.81 71.57
+ SKD MN2-1.0 72.45 71.74
+ IFVD MN2-1.0 70.97 72.54
+ CSCACE MN2-1.0 71.54 71.80
+ KA MN2-1.0 70.82 70.61
+ Ours MN2-1.0 73.22 73.66

Student-IV EN-B0 72.30 71.54
+ KD EN-B0 72.66 73.73
+ SKD EN-B0 72.29 73.69
+ IFVD EN-B0 72.87 74.06
+ CSCACE EN-B0 73.28 74.28
+ KA EN-B0 72.46 73.62
+ Ours EN-B0 75.03 75.51

Teacher MN2-1.0 71.34 71.40
Student MN2-0.5 63.34 63.89
+ KD MN2-0.5 64.42 64.88
+ SKD MN2-0.5 64.11 64.47
+ IFVD MN2-0.5 64.27 64.36
+ CSCACE MN2-0.5 65.13 65.04
+ KA MN2-0.5 65.46 64.68
+ Ours MN2-0.5 67.14 66.90

RN, MN2 and EN Represent ResNet [9], MobileNet-V2 [30] and EfficientNet
[33] Respectively. PSPNet! DL-V3 Means the Teacher Network is PSPNet
and the Student is DeepLab-V3, and Vise Versa.
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features, while SKD directly let the student mimic the raw
correlation matrix without the feature transformation.

It is worth noting that the “adaptation” of KA is different
from our proposed “adaptive perspective”. Specifically, the
“adaptation” of KA denotes the use of an auto-encoder that
adapts the teacher’s features to a compressed feature space
to extract essential information for distillation. However,
the term “adaptive perspective” in the proposed APD refers
to the local classifier that is conditioned on the semantic
information varying in individual images, serving as a bet-
ter feature distribution descriptor for mining additional
details during the distillation process.

Differently, CSCACE [24] leverages the channel-wise corre-
lation and a pseudo-label based adaptive cross-entropy loss,
while the experiments show that the results of CSCACE are
also less-satisfying that ours. Besides, IFVD [39] only makes

use of the intra-class distribution. Though IFVD also adopts
cosine similarity calculation for capturing the intra-class rela-
tion, without the inter-class reasoning in Eqs. (5)-(6) and Lob,
IFVD achieves inferior results compared to APD. Moreover,
with an eye towards a better distribution descriptor, APD
appliesLt and Lrec to regularize the teacher and student mod-
els respectively. Therefore, the proposed learning objectives
introduces further improvement to IFVD as shown in Table 8.
We note that the hyper-parameter t of APD is used for scaling
the output of cosine similarity, and it is helpful by making the
temporary inter-class distributionmore discriminative.

Visual Comparison.We present the qualitative comparison
between SKD and IFVD on Cityscapes, ADE20K and PAS-
CAL-Context in Fig. 6 where it is observed that our predic-
tions are generally better than the others by capturing more
local contextual information for distillation.

Fig. 5. Validation mIoU curves on Cityscapes, ADE20K and PASCAL-Context. Our proposed APD (colored in red) consistently outperforms other
methods throughout the training process. The teacher is PSPNet with ResNet-101 and the student is PSPNet with ResNet-18.

Fig. 6. Visual comparison on Cityscapes, ADE20K and PASCAL-Context. White regions in GTare ignored during evaluation.
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5.4 Ablation Study

In this Section, we first verify that Lob and Lrec are important
to align teacher’s observations and perspectives respec-
tively. Then, as two projectors Pt and Ps are introduced
during student training, we show that the improvement
brought by Lob and Lrec is not originated from these addi-
tional learnable modules. Besides, we provide a sensitivity
analysis of �rec and t to show the robustness of our method.

Effectiveness of Lob and Lrec. The proposed Adaptive Per-
spective Distillation (APD) has two components Lob and
Lrec. Lob accomplishes the alignment between auxiliary pre-
dictions ppa;t and ppa;s (i.e., observations) obtained from the
adaptive perspectives, while Lrec rectifies student view As,
making it similar to At of teacher. Because the adaptive As

encodes more specific semantic details for each image than
the fixed Cs, the produced ppa;s are generally more accurate
than pps obtained from Cs, as demonstrated in Fig. 3. Results
in Table 6 show that the observation alignment and perspec-
tive rectification are both indispensable.

Different perspectives result in varying observations.
Thus perspective rectification is helpful for the observation
alignment as proved by Exp.III & Exp.VI and Exp.IV & Exp.
VII. However, without observation alignment Lob, imple-
menting Lrec alone with Lkd in Exp.V only slightly improves
the performance of Exp.II. On the other hand, merely apply-
ing observation alignment via Lob achieves decent improve-
ment as shown by Exp.II & Exp.III. When perspectives are
rectified by Lrec, Lob boosts performance from 42.88 from
43.96 as shown in Exp.V & Exp.VI.

In Eq. (9), ppa;t is used as soft targets to distill knowledge
from teacher to student in the proposed APD. An alternative
is to replace the soft targets with one-hot labels, denoted as
LLocal
ce in Table 6, thus Kullback-Leibler divergence in Eq. (9)

equals to the standard Cross Entropy Loss. We note that the
difference betweenLLocal

ce andLce is that the former is applied
to local predictions ppa;s while the latter is applied to pps.

Soft targets encode the “dark knowledge” of teacher and
are more informative than one-hot hard labels. Therefore,
superior performance has been achieved by Lob (Exp.III &
Exp.VI) compared to LLocal

ce (Exp.IV & Exp.VII) in Table 6.
While bringing Lob and LLocal

ce together in Exp.VIII is compa-
rable to Exp.VI, implying that the benefits of LLocal

ce do not

outweigh that of Lob. Also, by comparing Exp.VI and Exp.
VIII, we can conclude that the hard one-hot label used by
LLocalce might adversely affect the knowledge transfer that is
accomplished by Lob with the soft labels that are more infor-
mative [12]. Besides, Exp.IX shows that even without the
normal KD loss Lkd, the proposed Lob and Lrec still achieve
decent improvement compared to the baseline results in
Exp.I. However, by comparing the results of Exp.II, Exp.IV
and Exp.X, LLocal

ce alone does not outperforms Lkd.
In Eq. (8), student’s perspective As is encouraged to be

similar to At of teacher by minimizing Lrec between class
centers. An alternative way is to apply the pixel-wise align-
ment between ffa;t and ffa;s in Eq. (8) instead of the rectifica-
tion on class centers. We believe that mimicking local
perspectives is conducive in distilling knowledge from
teacher to student since the local observations must be
obtained by adaptive perspectives that vary according to
the content of individual images, thus the alignment
between the adaptive perspectives of teacher and student
models may help optimize Lob. The experimental compari-
son is shown in Table. 7 where it is observed that Lrec
yielded with class centers generally leads to a better perfor-
mance than the pixel-wise counterpart, because the former
directly optimizes the adaptive perspectives that are later
used in Lob, while the pixel-wise alignment accomplishes
the perspective rectification indirectly. Moreover, the com-
bination of ‘Center’ and ‘Pixel’ does not bring considerable
improvement, manifesting the necessity of rectification on
class centers.

Effect of Projectors Pt and Ps. To generalize our method to
different teacher & student models whose output features
are with different channels, we use projectors Pt and Ps to
process the feature maps of teacher and student to the same
channels, satisfying the requirement of the similarity calcu-
lation in Eq. (8). Otherwise, the perspectives cannot be recti-
fied. Two projectors are only used for training and are
simply discarded during inference, boosting student mod-
els without structural change.

To show that the improvement of Lrec and Lob is not
caused by the two additional projectors, we implement SKD
and IFVD on the projected features (ffa;t and ffa;s) to compare
with the performance obtained from the features without
projection (fft and ffs). We note that Pt is still optimized by
Lt in the following experiments for a fair comparison.

Experimental results are presented in Table 8 where
the results of IFVD and SKD implemented on the projected
features are comparable to that without projectors as shown
in Exp.II & Exp.III and Exp.V & Exp.VI. Besides, the pro-
posed Lrec and Lob are still complementary to the models
implemented with IFVD and SKD, proved by Exp.IV and
Exp.VII in Table 8.

TABLE 6
Ablation Study on the Validation Sets Of PASCAL-Context

and Cityscapes

Exp. Lkd Lob LLocal
ce Lrec Context City

I - - - - 42.29 74.15
II ✓ - - - 42.48 74.81
III ✓ ✓ - - 43.32 75.27
IV ✓ - ✓ - 42.92 74.47
V ✓ - - ✓ 42.88 74.62
VI ✓ ✓ - ✓ 43.96 75.68
VII ✓ - ✓ ✓ 43.38 75.32
VIII ✓ ✓ ✓ ✓ 43.87 75.72
IX - ✓ - ✓ 43.81 75.70
X - - ✓ - 42.50 74.41

Teacher is PSPNet With ResNet-101 and Student is PSPNet With ResNet-18.
The First Column Denotes the Experiment IDs. Lob Uses With Soft Targets
ppa;t as Shown in Eq. (9), While LLocalce Means Directly Applying Cross
Entropy Loss on ppa;s With One-Hot Hard Targets.

TABLE 7
Ablation Study of Different Methods for Yielding Lrec on the

Validation Sets of PASCAL-Context and Cityscapes

Datasets Center Pixel Center & Pixel

Context 43.96 43.40 44.06
Cityscapes 75.68 75.21 75.72

‘center’ and ‘pixel’ Adopt the Alignment Between Class Centers and Individ-
ual Pixels Respectively. ‘center & Pixel’ Combines Both.
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Layer Number of Projector. It is mentioned in Section 5.2
that the projectors for teacher and student models are both
implemented by a 2-layers MLP with an intermediate ReLU
activation layer. To investigate the influence brought by dif-
ferent layer numbers of MLP, the experimental results are
shown in Table 9 from which we can observe that the per-
formance is not sensitive to different layer numbers, and the
projectors implemented with 2 fully-connected layers can
achieve satisfying results on both two benchmarks.

Necessity of Feature Selection. In Eq. (4), with the ground
truth mask, we directly average the features of teacher and
student models to yield the semantic anchors At and As

respectively, without considering the correctness of predic-
tions of individual feature vectors. Intuitively, pixels with
wrong predicted labels might impair the compactness of
class centers since their features might be far away from
that of the correct ones, thus only incorporating those fea-
ture vectors with correct predictions may be helpful to the
final performance. To probe the effects of the feature selec-
tion mechanism, the results are shown in Table 10 where
three additional feature selection schemes are implemented
for comparison.

We find that the feature completeness is more important
than the correctness. Specifically, merely considering the
correctness of the teacher’s predictions (Tea-FS) does not
significantly undermine the performance since the teacher
network has been well trained and thus the auxiliary
predictions are generally correct during training, retaining
the majority. However, when the correctness of the student
is leveraged (i.e., Stu-FS and Tea-Stu-FS), the results are
clearly lower than that of the baseline (w/o FS) and Tea-FS,
showing the fact that the feature completeness outweighs the
feature correctness for constructing semantic anchors in our

proposed distillation method. The information lost caused
by the feature selection should take responsibility for per-
formance deduction of Stu-FS and Tea-Stu-FS, especially on
PASCAL-Context where the student model is more likely to
make wrong predictions than that on Cityscapes, as mani-
fested by the discrepancy between the mIoU results of their
baselines (42.29 and 74.15).

Sensitivity Analysis. Different hyper-parameters may
cause performance variation. Thus we conduct sensitivity
analysis in Table 11 where the best performance is robust to
different values of �rec and 1=t within the range of 5-20.

5.5 Cosine Similarity in APD

In segmentation models, the universal perspective C applies
dot product on the features ff yielded by the feature genera-
tor G to produce the observation pp ¼ Softmax ðff � CÞ ¼ Soft-
max ðjff jjCj cos ðff; CÞÞ. While, in the proposed APD, the
adaptive perspective A generates observations ppa via cosine
similarity: ppa ¼ Softmax ð cos ðffa;AÞ=tÞ. The difference
between cosine similarity and dot product is that the former
measures the angle between two vectors and the latter takes
both the angle and magnitudes into account.

Experimental Results. Both cosine similarity and dot prod-
uct seem to be feasible for yielding observation, while we
find that cosine similarity is more suitable for optimizing
the objectives of APD (Lrec and Lob). Results are shown in
Table 12. Specifically, by comparing models of “Baseline”
and “KD,” it can be found that applying cosine similarity to
the main universal perspective C (i.e., Main-Cos) to yield
the main predictions pps and ppt is detrimental to the overall
performance. On the other hand, “Main-Cos” also causes
performance deduction on the proposed APD, shown by
comparing “APD-II” and “APD-III”. As for “Adapt-Cos”
that can only be adopted by the proposed APD, it is neces-
sary for APD since the performance drops from 43.96
(“APD-II”) to 38.04 (“APD-I”) if the adaptive perspective

TABLE 8
Ablation Study on the Validation Sets Of PASCAL-Context

and Cityscapes With PSPNet

Exp. Lkd Lifv Lskd P Lob Lrec Context City

I ✓ - - - - - 42.48 74.81
II ✓ ✓ - - - - 42.74 74.10
III ✓ ✓ - ✓ - - 43.02 75.21
IV ✓ ✓ - ✓ ✓ ✓ 44.05 76.50
V ✓ - ✓ - - - 42.53 74.56
VI ✓ - ✓ ✓ - - 42.39 74.13
VII ✓ - ✓ ✓ ✓ ✓ 43.98 75.30

Teacher is Built Upon ResNet-101 and Student is With ResNet-18. Lifv and
Lskd are the Intra-Class Feature Variation Distillation and Pair-Wise Distilla-
tion of IFVD and SKD. We Reproduce Them According to Their Official
Implementations. P Means Lifv and Lskd are Applied to the Projected Features
ffa;t and ffa;s.

TABLE 9
Ablation Study of Different Layer Numbers for Constructing the
Projectors for Teacher and Student Models on the Validation

Sets of PASCAL-Context and Cityscapes

Datasets 1 2 3 4

Context 43.66 43.96 43.76 43.62
Cityscapes 75.69 75.68 75.58 75.00

The Intermediate ReLU Layers are Adopted If the Layer Number is Larger
Than 1

TABLE 10
Ablation Study of the Effects of Feature Selection (FS)
Mechanisms on the Validation Sets of PASCAL-Context

and Cityscapes

Datasets w/o FS Tea-FS Stu-FS Tea-Stu-FS

Context 43.96 43.79 43.01 42.23
Cityscapes 75.68 75.48 75.28 75.01

‘Tea-FS’: Only Teacher’s Local Observations (predictions) ppa;t are Used for
Selecting the Valid Feature Vectors for Semantic Anchor Generation. ‘Stu-
FS’: Only Student’s Local Observations (predictions) ppa;s are Used for Deter-
mining the Valid Feature Vectors. ‘Tea-Stu-FS’: Both Teacher’s and Student’s
Local Observations are Adopted, Thus the Valid Feature Vectors for Comput-
ingAt and As are Filtered by the Correct ppa;t and ppa;s Respectively.

TABLE 11
Sensitivity Analysis With Different Values of �rec and t

Values 0.1 1 5 10 20 50 100

�rec 43.32 43.54 43.70 43.96 43.95 43.71 43.48
1=t 42.05 42.92 43.79 43.96 43.62 43.36 43.09

Experimental Results are Obtained on PASCAL-Context Val.
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does not exploit the cosine similarity but dot product for
yielding the auxiliary observations ppa;t and ppa;s.

In summary, through the experiments in Table 12, we
empirically find that the dot-product is more suitable
for the universal perspective (i.e., normal classifier) and
the cosine similarity is better for the proposed adaptive
perspective.

Analysis. The performance discrepancy between “Main-
Cos” and “Adapt-Cos” might be related to the formation
processes of the universal perspective that is shared by all
training images and the adaptive perspective that is created
individually. The shared universal perspective approaches
to an optimal magnitude by well-fitting the entire training
set. The magnitude values of features serve as additional
descriptors, revealing more information for individual fea-
ture vectors. Therefore, the universal perspective, with
well-learned class-wise magnitude, achieves better perfor-
mance by adopting the dot product. However, the magni-
tude of the adaptive perspective is determined by the
individual feature map and thus the magnitude might be
biased towards the feature vectors with large magnitude,
causing inappropriate representation for those features
with low magnitude. Also, the magnitude values of features
belonging to the same category vary in different images due
to the varying co-occurrent contextual information. Thus
we instead only focus on the semantic relation by adopting
cosine similarity to alleviate the issues caused by the magni-
tude instability of the adaptive perspective that is formed
merely based on individual samples.

Besides, it is worth noting that, since the purposes of
“Main-Cos” and “Adapt-Cos” are different,we have carefully
tuned the values of the scaler tm for “Main-Cos” to have a fair
comparison with “Adapt-Cos” in Table 12. Specifically,
according to the sensitive analysis in Table 11, t of “Adapt-
Cos” is set to 0.1 (i.e., 1=t ¼ 10), while directly applying tm ¼
0:1 to “Main-Cos” significantly worsens the performance as
shown in Table 13 where 1=tm ¼ 40 (i.e., tm ¼ 0:025) achieves
the best performance. Thus models with “Main-Cos” in
Table 12 are implementedwith tm ¼ 0:025.

5.6 Extensions

Although our method is motivated from the perspective of
semantic segmentation tasks, it also generalizes well to the

tasks of object detection and instance segmentation. Imple-
mentation details and results are presented as follows.

5.6.1 Object Detection

Implementation Details. We use the most popular Faster-
RCNN-FPN detector in Detectron2 [40] with different back-
bones as our strong baselines. We use the standard training
policies provided in Detectron2 excepts for the number of
GPUs. The original models in Detectron2 are trained using
8 GPUs. The official 1� training policy is to train 90,000 iter-
ations with 16 images per batch. The learning rate is initial-
ized as 0.02 and decayed by 10 at 60,000 and 80,000
iterations. The baseline and other models are trained on 4
GPUs, thus we halve the batch size to 8 and double the total
iterations to 180,000. The initial learning rate is 0.01 and it
decays by 10 at 120,000 and 160,000 iterations. Our repro-
duction yields similar baseline performance and costs the
same overall GPU time. We use the standard multi-scale
training augmentations. The input images are randomly
resized to one of the sizes {640, 672, 704, 736, 768, 800} and
then images are randomly horizontal fliped with a probabil-
ity of 0.5. We do NOT use any augmentations during the
inference.

We apply the proposed APD to the features after the RoI
Align operation. We simulate the scenario in the semantic
segmentation tasks and assume every feature vector in the
feature map belongs to the class of the corresponding pro-
posal. Then we consider all proposals in a mini-batch as a
whole and generate adaptive perspectives in a batch-wise
manner.

We reimplement the KD loss proposed by Hinton et al.
on the logits of the classification branch in the RoI head. The
loss weight is also set to 10. We notice that, in object detec-
tion, the teacher and student may have different proposals,
causing a mismatch between the features after the RoI Align
operation as well as the final predicted logits. To address
this issue, since only the student’s proposals are used for
generating the final task losses, we let the teacher network
adopt the proposals yielded by the student, thus the
teacher’s features and logits are aligned with that of the
student.

SSD [2] and FGFI [37] are the distillation methods specifi-
cally designed for object detection. However, the baseline
methods used by them are relatively weaker than the popu-
lar ones. So we re-implement SSD and FGFI on our stronger
baseline according to the paper or the official code provided
by the authors. OFD [11] is another distillation method that
improves the student detector by proposing a marginal loss
to leverage BN’s information to guide the distillation pro-
cess. Also, we make a comparison with the recent state-of-

TABLE 13
Different Values of tm for the Baseline Model

Implemented With “Main-Cos”

1=tm 10 20 30 40 50

Baseline-II 40.09 41.56 41.88 41.90 41.62
KD-II 40.22 41.79 41.92 42.03 41.88
APD-III 40.99 43.15 43.09 43.24 43.11

TABLE 12
Comparison on the Validation Sets of PASCAL-Context
and Cityscapes Between Cosine Similarity and Dot

Product for Observation Generation

Method Main-Cos Adapt-Cos Context City

Baseline-I (Default) N/A 42.29 74.15
Baseline-II ✓ N/A 41.90 74.25
KD-I (Default) N/A 42.48 74.81
KD-II ✓ N/A 42.03 73.77
APD-I 38.04 73.29
APD-II (Default) ✓ 43.96 75.68
APD-III ✓ ✓ 43.24 75.31

The Teacher is PSPNet With ResNet-101 and the Student is PSPNet With
ResNet-18. “main-Cos” Means the Main Perspective (classifier) Adopts
Cosine Similarity for Prediction and “adapt-Cos” Means the Adaptive One
Uses Cosine Similarity. Thus “adapt-Cos” Can Only Be Adopted by APD.
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the-art distillation method named FBKD [51] that adopts the
attention guided and non-local distillation on detectors.

Since object detection is also a task of dense prediction,
we compare with SKD and IFVD that are originally
designed for semantic segmentation, and both SKD and
IFVD are re-implemented according to their official imple-
mentations. Specifically, we apply the SKD loss on the fea-
tures after the FPN structure with a 2�2 down-sampling,
following its default configurations. However, since class
labels are required by IFVD, we apply the IFVD loss on the
features after the RoI Align operation. Our code for object
detection will also be made publicly available.

Results. We summarize our results on COCO [18] with
the Faster-RCNN-FPN [27] detector in Table 14. We re-
implement the classic distillation methods KD and FitNet,
as well as one recent method FBKD [51] that achieves state-
of-the-art performance for distillation in object detection.
Moreover, to comprehensively compare with the methods
in semantic segmentation, we also apply SKD and IFVD to
the object detection task, since both segmentation and detec-
tion tasks require structured dense prediction. It can be
observed in Table 14 that our method still outperforms
most of the other methods by a large margin on the

detection task, including SSD and FGFI that are specifically
designed for detection. Besides, the proposed method
achieves comparable results to the recent state-of-the-art
distillation method in object detection (i.e., FBKD). These
results further demonstrate the effectiveness and generali-
zation ability of our method.

We present the qualitative comparison between SKD and
IFVD on COCO2017 val set in Fig. 7 where it is observed
that our predictions are generally better than the others.

5.6.2 Instance Segmentation

We further adapt our method to the instance segmentation
task on COCO 2017 dataset. Instance segmentation is a
more challenging task aiming to segment every object in
each image. The Mask-RCNN with FPN in Detectron2 is
adopted as our baseline. The training process of instance
segmentation is similar to that of object detection, following
the standard training policies provided in Detectron 2.

The results are summarized in Table 15 where our
method improves the results of instance segmentation task
by a large margin, while the other related methods barely
improve the baseline performance. The challenging instance

TABLE 14
Object Detection Results on COCO 2017 Val

Method Backbone Schedule mAP AP50 AP75 APs APm APl

Teacher ResNet101 - 42.04 62.48 45.88 25.22 45.55 54.60
Student ResNet18 1x 33.26 53.61 35.26 18.96 35.68 43.16
KD [12] ResNet18 1x 33.68 54.10 35.93 19.65 36.17 43.22
FitNet [28] ResNet18 1x 34.13 54.16 36.71 18.88 36.50 44.69
SSD [2] ResNet18 1x 33.89 53.35 36.46 18.59 36.20 44.43
FGFI [37] ResNet18 1x 34.16 54.43 36.60 18.79 36.57 44.97
OFD [11] ResNet18 1x 33.36 53.34 35.60 18.61 35.53 43.87
SKD [20] ResNet18 1x 33.97 54.66 36.62 18.71 36.67 44.14
IFVD [39] ResNet18 1x 34.20 54.63 36.66 19.16 36.65 44.71
FBKD [51] ResNet18 1x 35.20 55.20 38.30 18.80 37.90 47.80
CWD [32] ResNet18 1x 35.40 54.60 38.50 18.20 38.20 49.00
Ours ResNet18 1x 35.47 56.68 38.00 20.41 38.17 46.14

Student ResNet18 2x 35.13 55.40 38.20 19.66 37.81 45.13
KD [12] ResNet18 2x 35.56 55.56 38.58 19.43 38.88 47.09
FitNet [28] ResNet18 2x 35.64 55.23 38.64 19.52 38.75 46.27
SSD [2] ResNet18 2x 35.60 55.27 38.60 20.22 37.97 46.95
FGFI [37] ResNet18 2x 35.93 56.41 38.72 19.86 38.14 46.41
OFD [11] ResNet18 2x 35.49 55.68 38.17 19.71 38.01 47.01
SKD [20] ResNet18 2x 35.56 56.04 38.55 19.99 38.18 45.98
IFVD [39] ResNet18 2x 35.87 56.58 38.59 20.65 38.56 46.20
FBKD [51] ResNet18 2x 37.00 57.20 39.70 19.90 39.70 50.30
CWD [32] ResNet18 2x 37.00 56.70 40.20 19.40 40.30 50.40
Ours ResNet18 2x 37.08 57.99 40.13 21.59 39.88 48.38

Teacher ResNet50 - 40.22 61.02 43.81 24.16 43.53 51.98

Student MobileV2 1x 29.47 48.87 30.90 16.33 30.77 38.86
KD [12] MobileV2 1x 30.13 50.28 31.35 16.69 31.91 39.56
FitNet [28] MobileV2 1x 30.20 49.80 31.69 16.39 31.64 39.69
SSD [2] MobileV2 1x 29.96 48.76 31.65 16.51 31.56 39.75
FGFI [37] MobileV2 1x 30.27 49.87 31.60 17.03 31.82 40.06
OFD [11] MobileV2 1x 29.73 48.39 31.67 16.26 31.63 39.29
SKD [20] MobileV2 1x 31.52 50.72 33.35 17.66 33.52 40.75
IFVD [39] MobileV2 1x 30.67 50.30 32.43 17.09 33.62 38.38
FBKD [51] MobileV2 1x 32.20 52.80 33.70 18.00 34.50 43.80
CWD [32] MobileV2 1x 31.20 49.00 33.30 14.70 32.60 44.00
Ours MobileV2 1x 32.58 53.23 34.41 19.12 34.66 42.35
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Fig. 7. Visual comparison of object detection (first three rows) and instance segmentation (last three rows) on COCO2017 val set.

TABLE 15
Instance Segmentation Results on COCO 2017 Val

Method Backbone mAPbox mAPmask APmask
50 APmask

75 APmask
s APmask

m APmask
l

Teacher ResNet101 42.90 38.63 60.45 41.28 19.48 41.33 55.29

Student ResNet18 33.98 31.25 51.07 33.10 14.18 32.80 45.53
KD [12] ResNet18 34.53 31.66 51.85 33.59 14.80 33.38 45.73
FitNet [28] ResNet18 34.69 31.75 51.46 33.82 14.50 33.25 46.76
SSD [2] ResNet18 34.17 31.10 50.59 32.92 14.14 32.40 45.84
FGFI [37] ResNet18 34.73 31.85 51.59 33.72 14.95 33.25 46.94
OFD [11] ResNet18 34.29 31.56 51.02 33.31 14.19 32.73 46.59
SKD [20] ResNet18 34.53 31.62 51.90 33.54 14.48 33.44 46.10
IFVD [39] ResNet18 34.59 31.64 52.06 33.38 14.93 33.49 46.34
FBKD [51] ResNet18 35.40 32.10 52.50 34.00 14.20 34.10 48.10
CWD [32] ResNet18 35.60 32.50 52.00 34.70 15.70 35.00 46.10
Ours ResNet18 35.90 32.84 53.70 34.71 15.77 34.79 47.81

The Results are Measured in Box mAP and Mask mAP.
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segmentation task further demonstrates the superiority of
our proposed method. The qualitative comparison on
COCO2017 val set is shown in Fig. 7.

6 CONCLUSION

We have presented the proposed Adaptive Perspective
Distillation (APD). Different from the previous distillation
methods that distill knowledge via pixel-wise predictions
obtained by the fixed perspective (i.e., classifier), APD aims
at creating adaptive perspectives for individual samples,
revealing more details on the encoded feature for helping
student models achieve better performance. APD has no
structural constraints on the base model and thus can be eas-
ily applied to normal semantic segmentation frameworks.
APD is also complementary to other existing knowledge dis-
tillationmethods in segmentation. The extensive comparison
with state-of-the-art knowledge distillation methods for
semantic segmentation demonstrate the effectiveness and
generalization ability of APD.
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