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Abstract— Multiple patterning layout decomposition (MPLD)
has been widely investigated, but so far there is no decomposer
that dominates others in terms of both result quality and effi-
ciency. This observation motivates us to explore how to adaptively
select the most suitable MPLD strategy for a given layout graph,
which is nontrivial and still an open problem. In this article,
we propose a layout decomposition framework based on graph
convolutional networks to obtain the graph embeddings of the
layout. The graph embeddings are used for graph library con-
struction, decomposer selection, graph matching, stitch removal
prediction, and graph coloring. In addition, we design a fast non-
stitch layout decomposition algorithm that purely depends on the
message passing graph neural network. The experimental results
show that our graph embedding-based framework can achieve
optimal decompositions in the widely used benchmark with a sig-
nificant runtime drop even compared with fast but nonoptimal
heuristics.

Index Terms—Design methodology, layout decomposition,
VLSI design.

I. INTRODUCTION

THE SEMICONDUCTOR industry nowadays is greatly
challenged by extreme scaling, which imposes severe

issues on circuits manufacturing. Among various advanced
lithography techniques, multiple patterning lithography (MPL)
is one of the most practical solutions to enhance the manufac-
turability and has been widely adopted in industry [1].

The core problem of MPL is the layout decomposition,
which assigns features on a layout to separate masks for
printability improvement and is also called multiple pattern-
ing layout decomposition (MPLD). If two features located
closer than minimum coloring distance are assigned to the
same mask, a coloring conflict is introduced. Additionally,
stitches can be inserted to assist conflict resolving, at a cost of
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potential yield loss though. Therefore, the objective of MPLD
is to find a mask assignment for features such that the number
of conflicts and stitches is minimized.

Due to the NP-hardness of the general layout decom-
position problem, a variety of decomposition approaches
has been proposed to achieve high quality and efficiency.
These approaches can be roughly categorized into three
types: 1) mathematical programming; 2) graph-theoretical
approaches; and 3) heuristic approaches. The mathematical
programming approach formulates the problem into integer
linear programming (ILP) [2]–[7], and its relaxations, such
as semidefinite programming (SDP) [5], linear programming
(LP) [8], and discrete relaxation method [9]. Besides math-
ematical programming, graph-theoretical approaches resolve
the problem with graph theories, e.g., the maximal independent
set (MIS) [10], shortest path [11], [12], and fixed-parameter
tractable (FPT) [13] algorithms. Some heuristic approaches are
also proposed in [5], [10], [14], and [15], which are generally
efficient but may have low quality. A recent work formulated
MPLD into an exact cover problem and achieved high quality
and efficiency with algorithm X [15]. Another extremely fast
solution is based on graph matching [14], in which a color-
ing solution library for small graphs is constructed, and then
graphs are colored efficiently by graph matching.

Although many decomposition algorithms have been
developed, there is no conclusion that one decomposer is
always better than another. The ILP-based method ensures
optimality but suffers from runtime overhead for large lay-
outs. The exact-cover (EC)-based method demonstrates high
efficiency for large layouts at a cost of marginal degradation
on the solution quality. The graph matching-based method
shows good performance in both efficiency and quality for
small graphs. But the library size of this method cannot be
too large and only nonstitch graphs are supported, which is
not applicable to large layouts or layouts with stitches. This
observation motivates that it is worth exploring how to adap-
tively select the most suitable MPLD strategies for a given
layout, which is nontrivial and still an open problem so far.

With successful deep learning applications in various fields
by learning from historical data, we can naturally cast the
problem into a classification task and leverage learning-based
approaches. We need to investigate as much information on the
graphs as possible and let our framework learn to adaptively
utilize proper decomposition algorithms. However, graphs usu-
ally vary in terms of scale, making them hard to digest for
learning models. Therefore, we need to obtain graph embed-
ding under a unified shape to represent the graph as shown in
Fig. 1. Specifically, we use some techniques to generate the
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Fig. 1. Example of graph embeddings of layout graphs, where the graphs
are transformed into vector space.

graph embedding such that the graph is transformed into a
vector space in a lower but unified dimension with maximal
representation capability and the powerful graph embedding
helps us to adaptively select the best decomposer, where the
best refers to the best solution quality at the lowest runtime.

Among different graph embedding methods, graph neural
networks (GNNs) are widely used for irregular graph repre-
sentations. In this article, we develop several GNN variations
to obtain graph embeddings for different usages. First, we pro-
pose a nonstitch layout decomposer that purely depends on the
graph embedding obtained by a specifically designed GNN.
Second, the graph embeddings are used as representations to
select the ILP-based decomposer (optimal but slow), EC-based
decomposer (efficient but may not be optimal), or GNN-based
decomposer (efficient and nearly optimal but does not support
stitch). Besides decomposer selection, the graph embedding
helps us to avoid isomorphic graphs during library construc-
tion. After that, it is used for matching graphs efficiently in the
library and predicting whether the stitch edges in the layout
graph are needed or not.

The main contributions are summarized as follows.
1) We point to the redundancy of stitch candidates in the

layout graph, and develop a stitch redundancy prediction
method based on graph embeddings.

2) We design a nonstitch layout decomposer that purely
depends on GNN.

3) We design a graph library construction algorithm based
on graph embeddings for small graphs excluding iso-
morphic ones.

4) We propose an adaptive workflow for efficient decom-
poser selection and graph matching using graph
embeddings.

5) We conduct experiments on widely used benchmarks
and experimental results demonstrate that our framework
can reduce the runtime by 97.5% while still preserving
the optimality compared with optimal but slow ILP-
based decomposer.

The remainder of this article is organized as follows.
Section II lists basic terminologies related to this work and
gives the problem formulation. Section III introduces existing
state-of-the-art decomposers and proposes a pure GNN-based
decomposer, which is specifically designed for the nonstitch
layout graphs. Section IV shows details of the GNN-based
framework, including graph library construction and GNN

model construction. Section V covers experimental results and
finally, Section VI concludes this article.

II. PRELIMINARIES

A. Multiple Patterning Lithography Decomposition (MPLD)

Given a routed layout represented by a set of polygonal
features, P = {, . . . , pi, . . .}, the minimal conflict space d, the
number of masks k, and other constraints like precoloring con-
straints, the task of the MPLD problem is to assign masks to
features or subfeatures divided by stitches so that the number
of conflicts and stitches is minimized.

1) Conflict and Stitch: A conflict happens when two fea-
tures whose relative distance is less than d are assigned the
same mask. For example, we say one conflict happens when
p1 and p3 in Fig. 2(a) are assigned the same mask. Sometimes,
the conflict can be resolved by dividing the feature using two
masks. Such a division is called a stitch. The polygonal feature
p is split by stitch(es) into subfeatures, i.e., p = {, . . . , ri, . . .}.
To find effective stitches, many works [5], [16] generate a
series of stitch candidates in the features before decompo-
sition. These stitch candidates indicate possible locations of
stitches to prevent the occurrence of conflicts. The p1 and
p3 conflicts mentioned above can be resolved by inserting a
stitch candidate [marked by a black-dotted line in Fig. 2(c)].
Previous works have shown that current stitch candidates are
able to cover all possible stitches [3], [5].

2) Graph Format: The MPLD problem can be modeled as
a variation of a pure graph-based problem, since the input
layout can be translated into an undirected graph G = (V, E)

without any information loss. When we consider the stitch
candidates, i.e., predefine possible stitch locations, G is a
heterogeneous graph where the node vi corresponds to the
subfeature ri, and the edge set E is composed of two sub-
sets: 1) the conflict edge set CE and 2) the stitch edge set SE.
In the heterogeneous layout graph, if one feature is split into
multiple subfeatures by stitch candidate(s), it will be trans-
lated into multiple nodes in the graph. To be more specific,
one node is either: 1) one polygonal feature if there is no stitch
candidate in the feature or 2) one subfeature split by the stitch
candidate(s) in the polygonal feature. That is, vi → ri ∈ p or
v → p if p does not contain the stitch candidate. The edge
set E = {CE, SE} models the relations between nodes. Two
nodes are connected by the conflict edge e ∈ CE if their rela-
tive distance is less than d and they do not belong to the same
feature. Two nodes are connected by the stitch edge e ∈ SE
if they belong to the same feature and are split by the stitch
candidate [like node v3 and v4 in Fig. 2(c)].

Otherwise, when no stitch is introduced, the layout graph
is a simple homogeneous graph, where the node corresponds
to one polygonal feature, i.e., vi → pi, and the edge only rep-
resents the conflict relation. We refer to such a homogeneous
graph as Gp (parent graph). Clearly, any heterogeneous lay-
out graph G can be transformed to one homogeneous graph
Gp by merging nodes connected by stitch edges. One exam-
ple of the two representations is shown in Fig. 2. When we
merge the nodes v3 and v4 in Fig. 2(c), the graph becomes a
homogeneous one as shown in Fig. 2(b).
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(a) (b) (c)

Fig. 2. Example of the routed layout and its graph representations. (a) Input routed layout. (b) Homogeneous graph representation, where the black line
represents the conflict relation. (c) Heterogeneous graph representation considering stitches, where the stitch candidate is marked by the black-dotted line, and
the stitch edge is highlighted in blue. Here, the relationship between p and v is: p1 = {v1}, p2 = {v2}, and p3 = {v3, v4}.

3) Objective Function: From the perspective of a graph
coloring problem, the objective is to assign colors to each node
so that the weighted sum of conflict cost and stitch cost is min-
imized. Let f : v→ {1, . . . , k} be the coloring (decomposition)
function and f (v) be the color assigned to v by f . Given two
features pm = {, . . . , ri, . . .} and pn = {, . . . , rj, . . .}, the con-
flict cost adds to one if at least two nodes in pm and pn: 1) are
connected by the conflict edge and 2) are assigned the same
color, i.e., ∃ri ∈ pm, rj ∈ pn : {vi, vj ∈ CE, f (vi) = f (vj)}. The
stitch cost adds to one if the two nodes connected by one stitch
edge are assigned different colors, i.e., f (vi) �= f (vj) : vi, vj ∈
SE. Formally, the objective can be formulated in

min
f

∑

pm,pn∈P;m�=n

Cmn + α
∑

{vi,vj}∈SE

sij, (1a)

s.t. Cmn = min{
∑

ri∈pm,
rj∈pn,

{vi,vj}∈CE

cij, 1} (1b)

sij =
{

1, if f (vi) �= f (vj)

0, otherwise.
(1c)

cij =
{

1, if f (vi) = f (vj)

0, otherwise.
(1d)

where α is a parameter indicating the relative importance
between the conflict cost C and the stitch cost s, which is
usually set as 0.1.

B. Graph Isomorphism and Graph Matching

The formal definition of graph isomorphism and graph
matching is stated as follows [17]. Given two graphs G1 =
(V1, E1) and G2 = (V2, E2) with |V1| = |V2|, where V1, V2 and
E1, E2 are corresponding node sets and edge sets, respectively.
The objective of graph matching is to find a node-to-node
mapping f : V1 → V2 such that (u, v) ∈ E1 if and only if
(f (u), f (v)) ∈ E2. This is called an isomorphism if such a
mapping f exists, and G1 is said to be isomorphic to G2.

In the graph library construction, graph isomorphism is
one of the most critical factors because there exists n! − 1
isomorphic graphs for any graph with size n. If not remov-
ing these isomorphic graphs, the library will be occupied by
redundancy. Also, graph matching is inevitable when extract-
ing the coloring results of the matched node stored in the graph
library.

C. Graph Neural Networks

GNN takes the graph as input and returns the node
embeddings or graph embedding. Nowadays, most widely

used GNNs adopt an iterative manner composed of two
steps: 1) aggregation and 2) combination, which exploit the
neighborhood information and ego-information, respectively.
Specifically, for each node v in graph G, the aggregation
step aggregates neighbor u’s features hu and obtains an
intermediate representation ĥv such that the final graph embed-
ding is able to contain graph structure information. During
the combination, GNN combines the aggregated representa-
tion ĥv with the ego-feature hv, and the result feature becomes
the input of the next layer. GNN can be also explained in a
message-passing way where the intermediate representations
can be viewed as messages. The aggregation is the actual
message-passing phase and each node passes its message to
its neighbors along the edge. The combination is served as the
integration phase, in which each node integrates the received
message and reduces it into its new message. Each message
pass and integration phase formulate one GNN layer. A general
GNN layer can be described as follows:

h(i)
v = COM(i)

(
h(i−1)

v , AGG(i)
(
{h(i−1)

u : u ∈ N (v)}
))

(2)

where h(i)
v is the feature of node v after the ith layer, COM

is the combination function, and N (v) is the neighbors of
node v. The feature after the final layer is called the node
embedding of each node and the graph embedding by GNN is
usually obtained by some node invariant operations on node
embeddings such as summation or mean.

D. Problem Formulation

Given a set of layout graphs and two state-of-the-art decom-
posers, ILP-based decomposer and EC-based decomposer, our
objective is to train several GNN variations to obtain the graph
embeddings such that: 1) the embedding can help to directly
color the homogeneous layout graph, i.e., a layout that does
not contain any stitch candidate; 2) the embedding can be
used to build a graph library for small graphs, recording the
coloring solutions; 3) the embedding can predict whether the
stitch candidates in a heterogeneous layout graph are all redun-
dant; 4) any new graph can find the best decomposer using its
embedding; and 5) any new small graph can find the coloring
solution directly through graph matching with graphs in the
library.

III. LAYOUT DECOMPOSITION ALGORITHMS

A. State-of-the-Art Decomposers

Over the past few years, lots of decomposers are developed
to solve the MPLD problem. We compare all state-of-the-art

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on October 27,2022 at 14:18:18 UTC from IEEE Xplore.  Restrictions apply. 



LI et al.: ADAPTIVE LAYOUT DECOMPOSITION WITH GRAPH EMBEDDING NEURAL NETWORKS 5033

TABLE I
COMPARISON AMONG DIFFERENT DECOMPOSERS

decomposers in terms of four perspectives: 1) result quality;
2) efficiency; 3) flexibility in multithread, GPU-acceleration,
larger layout, and more masks; and 4) whether the method
supports the stitch insertion. A general comparison is shown
in Table I. In the following paragraphs, we simply introduce
these existing decomposers and discuss the performance from
the four listed perspectives.

1) Integer Linear Programming: Given the objective func-
tion as shown in 1, the problem can be naturally solved by
ILP [3], [5], where the node color f (vi) is represented by 1-bit
0-1 variable(s). The ILP model for triple patterning lithography
decomposition (TPLD) is described in

min
∑

eij∈CE,ri∈pm,rj∈pn

Cmn + α
∑

eij∈SE

sij (3a)

s.t. xi1 + xi2 ≤ 1 (3b)

xi1 + xj1 ≤ 1+ Cmn1

∀eij ∈ CE, ri ∈ pm, rj ∈ pn (3c)

(1− xi1)+ (1− xj1) ≤ 1+ Cmn1

∀eij ∈ CE, ri ∈ pm, rj ∈ pn (3d)

xi2 + xj2 ≤ 1+ Cmn2

∀eij ∈ CE, ri ∈ pm, rj ∈ pn (3e)

(1− xi2)+ (1− xj2) ≤ 1+ Cmn2

∀eij ∈ CE, ri ∈ pm, rj ∈ pn (3f)

Cmn1 + Cmn2 ≤ 1+ Cmn

∀eij ∈ CE, ri ∈ pm, rj ∈ pn. (3g)

In (3), Cmn, Cmni, sij, and xij are integer variables in {0, 1}.
xij represents the jth bit to encode the color of vi. If the mask
number k goes beyond 4, the maximum of j should also be
larger than 2. Cmn represents whether there exists a conflict
between pm and pn. Cmn is 1 when both Cmn1 and Cmn2 are
1 by the constraint formulated in (3g). Cmn1(Cmn2) represents
whether there exists ri ∈ pm, rj ∈ pn, s.t., xi1(xi2) = xj1(xj2)

and is controlled by (3c), (3d) and [(3e), (3f)].
The ILP-based method gives the optimal solution and sup-

ports the stitch scheme. However, the poor efficiency impedes
its deployment in a large layout, which becomes more and
more important with the development of the semiconductor
industry.

2) Semidefinite Programming: Solving (3) using ILP is
NP-hard. As an alternative solver, SDP can approximately
solve (3) in linear time. The basic idea is to program
the colors by vectors so that the inner product between
two vectors gives different values based on whether the
two vectors (colors) are the same or not. For example, in
the TPLD problem [5], [18], [19], three colors are assigned
to three two-dimensional vectors, (1, 0), (−1/2,

√
3/2), and

(−1/2,−√3/2), respectively. Then, given any two vectors vi

and vj, which represent the colors of node i and node j, we
have the following properties:

vi · vj =
{

1, f (vi) = f (vj)

−1/2, f (vi) �= f (vj).
(4)

Therefore, the MPLD problem can be solved by semidefinite
programming in polynomial time if we relax the discrete val-
ues of v to a continuous one. Given the solutions of SDP, a
fast heuristic mapping process is used to map the continuous
solutions to coloring results.

The SDP-based method makes a good balance on the effi-
ciency and performance and can be applied to the stitch case
by simply adjusting the cost function. Nevertheless, the vector
programming process for the node color in [5] is specifically
designed for the TPLD problem, when extended to the four
masks (quadruple patterning problem) or even more masks,
the dimension of the vector will also increase, which harms
the efficiency.

3) EC-Based Method: The EC-based method [16] trans-
forms the MPLD problem to an exact cover problem, and
solves it by a customized and augmented combination of danc-
ing links data structure and Algorithm X∗ (DLX). Here, the
routed layout is translated into a 0-1 matrix. In the matrix,
each row index represents one possible coloring solution of
a single feature p. If there is no stitch candidate in p, there
will be k rows, representing k different color assignments of p.
Otherwise, there will be more than k rows to represent different
color combinations of subfeatures split by stitch candidates.
The column index models the conflict relation to assure that
two nodes connected by the conflict edge are not assigned
the same color. Finally, the EC-based method returns a set of
rows, which can be translated back to the decomposition result
of the MPLD problem.

The EC-based method demonstrates excellent efficiency,
and also, it is applicable for the stitch scheme and multithread.
Moreover, it shows a relatively fast execution for very large
cases. However, for some cases, it cannot be optimal, and the
result quality may vary largely depending on the structure of
the layout graph and the node ordering in the matrix.

4) Graph Matching-Based Method: The basic idea of
graph matching is to build a graph library that contains graphs
and corresponding solutions. Each time when we try to decom-
pose the layout, the system will match the target layout graph
to graphs in the library. If a match is found, the correspond-
ing decomposition solution will be returned. Generally, since
the library can be constructed offline, i.e., before any decom-
position, the decomposition runtime is only influenced by the
efficiency of the matching algorithm and the size of the library.
However, the graph library size explodes when increasing the
graph size or considering the stitch. In [14], the graph library
is not applicable to stitch and only contains graphs with a size
less than seven. Therefore, the flexibility is poor compared
with other decomposers.

B. Nonstitch Layout Decomposer by GNNs

Given the overwhelming success of GNNs, we may attempt
to solve the MPLD problem by GNNs directly. However, as
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(a) (b)

Fig. 3. Histogram of the number of graphs (|G|, orange) and graphs that need not stitches (|ns-G|, gray) in (a) small layouts and (b) large layouts.

Fig. 4. Example of redundant stitch candidates. In this layout graph, both
stitch candidates (highlighted in blue) finally do not generate any stitch.

a heterogeneous variation of the coloring problem, the MPLD
problem contains both stitch edge and conflict edge, making it
more difficult than a pure coloring problem. On the other hand,
there exist lots of redundant stitch edges (stitch candidates),
which do not play a role in the final decomposition results. The
histogram shown in Fig. 3 empirically states the phenomenon:
over 80% layout graphs do not have stitches in the final results
while most of them contain stitch edges. Although it is not
easy to decompose the layout graph by GNNs directly, the
stitch redundancy provides a vision of GNNs applying to the
prediction of redundant stitch edges and then conducting a
nonstitch layout decomposition. In the following section, we
first introduce how graph embedding is used for the stitch
redundancy prediction, and then propose a pure GNN-based
method for the decomposition of nonstitch layouts.

1) Stitch Redundancy Prediction: Despite the fact that the
state-of-the-art stitch candidate generation algorithm is able
to enumerate all stitches, there are a huge number of stitch
candidates that are not stitches in the final result, i.e., the two
nodes split by the stitch candidates are assigned the same color
in any optimal solutions. One example of the redundancy is
given in Fig. 4, where each stitch candidate splits the corre-
sponding feature into two subfeatures and generates two nodes
connected by the stitch edge. Since both nodes are assigned the
same color in the optimal solution, these redundant stitch can-
didates can be removed without any influence on the coloring
quality.

On the other hand, useless candidates will increase the
problem complexity largely and result in significant drops in
efficiency performance. The layout statistics in Fig. 3 demon-
strates that there exists a large portion of layout graphs that
totally need no stitches. To avoid the waste of computation

(a) (b)

Fig. 5. Example of alterative solutions for stitches. The activated stitch is
{v5, v6} in (a) and {v3, v4} in (b), respectively.

resources and further improve the efficiency of our decomposi-
tion framework, we propose a graph embedding-based method
to remove these redundant and useless stitch candidates. The
basic idea is that we can predict whether these stitch candidates
are redundant or not. If redundant, these stitch candidates can
be eliminated by merging those nodes split by stitch edges.
Since the graph embedding can be obtained in parallel with
other embeddings and the merge operation is processed in a
constant time, the additional time cost can be ignored in light
of the huge benefit from removing redundant stitches.

Although successful predictions bring about efficiency
improvement, it is not easy to accurately predict which stitch
candidate can be removed. The optimal solution is usually not
unique: one stitch candidate can be redundant in one optimal
solution while not in another one. The stitch candidate {v3, v4}
shown in Fig. 5 is a representative example. In Fig. 5(a), edge
{v3, v4} is redundant since node v3 and v4 are assigned the
same color. On the contrary, the two nodes v3 and v4 have
different colors in another optimal solution shown in Fig. 5(b),
indicating that the stitch edge {v3, v4} cannot be removed.

Considering the nonuniqueness of stitches as illustrated in
Fig. 5, we regard the problem as a graph classification problem
rather than an edge classification problem. That is, the algo-
rithm predicts whether the stitch candidates in a graph are all
redundant (graph level) instead of whether stitch edge(s) in the
graph are redundant (edge level). Therefore, the redundancy
prediction can be implemented as a 2-class classifier on graph
level and simply modeled by a multilayer perceptron (MLP)
that uses the graph embedding as input. A detailed illustration
can be found in Algorithm 1 (lines 1–7). After obtaining the
corresponding graph embedding hr (line 1), hr is fed into the
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(a) (b) (c)

Fig. 6. Toy example on how ColorGNN gives the coloring results directly. (a) Randomly initialized color distribution. (b) Message passing procedure finished
by trainable ColorGNN. (c) Final results (color distribution) of ColorGNN.

Algorithm 1 Pure GNN-Based Layout Decomposer
Require: RGCNr← RGCN trained for generating graph embedding,

where the embedding is used to predict the stitch redundancy;
Require: ColorGNN ← GNN trained for graph coloring;
Require: G ← Target graph;
Require: iter ← Number of repetitive executions;
Ensure: x → The coloring results for each node in G;

1: hr ← RGCNr(G);
2: confidence ← MLP(hr);
3: if confidence ≤ b then
4: Decompose G by other decomposer;
5: return the decomposition solution;
6: else
7: Gp ← Remove all stitch edges in G and merge related nodes;
8: end if
9: for i ∈ {1, . . . , iter} do

10: x ← Randomly initialized probability distribution of colors
for each node;

11: ci ← ColorGNN(Gp, x);
12: end for
13: return the best solution in {c1, . . . , citer};

implemented MLP and predicts a confidence value (line 2).
After prediction, if the confidence of the graph is larger than
a specific bar, say b (lines 6 and 7), the graph will merge
all stitch candidates in the graph, which results in a nonstitch
graph Gp.

2) Nonstitch GNN Decomposer: Although our redundancy
prediction is only applicable for stitch-enabled cases, which
may not be useful in some foundries, the following nonstitch
GNN decomposer can directly help those foundries. We refer
to our nonstitch GNN decomposer as ColorGNN, which uses
the message passing GNN as a backbone, and gives a prior
that the node embedding represents the probability (belief) of
color assignments. The detail is described as follows. Given
a nonstitch graph Gp = {V, E}, where E = {CE}, we first
randomly assign each node v ∈ V a discriminative attribute
xv ∈ R

k that represents the probability distribution of k masks.
In the aggregation step, we simply sum up the features

from all neighbors. However, for each aggregation iteration,
we randomly sample neighbors to do the summation. Such
a random sampling scheme improves the efficiency and the
inserted randomness helps to avoid local optimum in the color-
ing problem [20]. Formally, let c(i)

v ∈ R
k be the result returned

by AGG(i) for the node v in the ith layer, and the aggre-
gation layer can be represented by: m(i)

v = ∑
u∈N ′(v) c(i−1)

u ,
where N ′(v) is defined as the subset of N (v) and is selected
randomly.

In the combination function, we define COM(i) as a sim-
ple trainable weighted summation between ego feature and
features from neighbors

c(i)
v = c(i−1)

v λ
(i)
C +m(i)

v λ
(i)
A . (5)

Here, both λ
(i)
C and λ

(i)
A are trainable variables. Finally, the

color of each node is assigned based on ci that represents
the color belief. A figure illustration of the whole process is
shown in Fig. 6. In our implementation, we iteratively execute
the GNN multiple times (five times in our experiments) by
setting different initializations (lines 9–13 in Algorithm 1).
Finally, we select the best solution among all iterations.

IV. ADAPTIVE DECOMPOSITION FRAMEWORK

In this section, we first briefly present the workflow of our
proposed framework. Then, we describe the GNN used for
graph embedding, and how the graph embedding is used for
graph library construction, graph matching, and decomposer
selection.

A. Overview

Combining with the pure GNN-based decomposer intro-
duced in Section III, we propose a decomposition framework
that selects the decomposition method adaptively and supports
the GNN-based decomposer. The framework is divided into
offline and online parts by whether the operation is needed in
the decomposition.

The offline part is like a preprocessing step, and done before
any decomposition. Generally, it includes GNN model training
and graph library construction. We first train all GNN models
required in the decomposition, including two relational graph
convolutional networks (RGCNs) [22] and one proposed GNN
decomposer for nonstitch decomposition. A summary of all
GNNs used in our framework is shown in Table II. Overall,
the first RGCN model RGCN is trained to select the better
decomposer in EC and ILP. The generated graph embedding
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TABLE II
GNNS USED IN OUR FRAMEWORK

Fig. 7. Workflow of our framework. Purple blocks are executed in our
framework while the yellow blocks are directly executed in OpenMPL [21].

h is also used to build the graph library and achieve effi-
cient graph matching. The second RGCN model RGCNr is to
predict whether the stitch edges in G are all redundant. RGCN
and RGCNr have the same model architecture, but they are
trained for different tasks so that their graph embeddings are
expected to be different. Besides the training of all models,
we use graph embeddings obtained by the trained RGCN to
build the isomorphism-free graph library.

When the above offline part is done, we can execute layout
decomposition following the workflow shown in Fig. 7. The
layout graph transformed from the original layout is simplified
by several simplification techniques, such as independent com-
ponent computation (ICC) [5], hide small degrees [5], [14],
and biconnected component analysis [3], [4]. Next, stitch can-
didates are inserted by pattern projection [5]. Stitch candidate
insertion transforms the simplified homogeneous graphs into
heterogeneous graphs, which contain both conflict and stitch
edges. After another series of simplification steps for the het-
erogeneous graphs, these simplified heterogeneous graphs are
fed into RGCN and RGCNr to obtain the graph embeddings
h and hr. For a graph whose graph size is under the size
constraint max_size, h is used to determine whether there is
an isomorphism between the target graph and graphs in the
library. If the isomorphic graph is found in the library, the
corresponding node embeddings of two graphs are used to get
the node-to-node mapping and directly return the final col-
oring result by the mapping in the library. If no isomorphic
graph is found or the graph size is larger than max_size, the
generated graph embeddings h and hr help to select the best
decomposers. During the selection, hr is first used to predict

whether the stitch edges are redundant. If predicted as yes,
these stitch edges are eliminated by merging all stitch edges
so that the heterogeneous graph G is simplified as a nonstitch
homogeneous graph Gp (parent graph). Then, our proposed
GNN decomposer ColorGNN is adopted to decompose Gp. If
predicted as no, an ILP/EC selector based on h is going to
select which one is the better algorithm for the target graph.
Here, a better algorithm means the one achieving lower cost or
higher efficiency when the cost is the same. After all graphs
are decomposed, a color recovery process is executed to get
the final layout decomposition results.

B. Graph Embedding Neural Network

Considering that the simplified graph contains both con-
flict edges and stitch edges, we apply RGCN [22], a GCN
variation specifically for heterogeneous graphs, to obtain the
graph embedding. The process for graph embedding is shown
in Fig. 8. The original layout is transformed into multiple het-
erogeneous graphs by graph simplification and stitch insertion.
Those simplified graphs are fed into the two-layer model. For
each node vi in a graph G = {V, E}, E = {CE, SE}, the node
representation h(l+1)

i ∈ R
D(l+1)

at the (l + 1)th layer of the
neural network can be calculated by the following formula:

h(l+1)
i = ReLU

⎛

⎝
∑

e∈E

∑

j∈Ne
i

W(l)
e h(l)

j + h(l)
i

⎞

⎠ (6)

where D(l) is the dimension of node representation at the lth
layer, W(l)

e ∈ R
D(l+1)×D(l)

is a learnable weight matrix of edge
type e ∈ E, and Ne

i denotes the set of neighbor nodes of
node vi connected by e. Intuitively, RGCN specified in (6)
works like the classical GCN, as both neural network lay-
ers contain two phases: 1) aggregation and 2) combination.
The difference is that edges in GCN share the same learn-
able weight in each layer on the combination phase while
only edges under the same edge type share the weight matrix
for RGCN, which means that the message integration for
different kinds of edges is independent. One central issue
of the different weight matrixes strategy is the exploding
number of parameters. Also, this strategy can easily lead
to overfitting. These issues are solved by regularization of
weight and we adopt a basis decomposition [22], in which
each weight matrix W(l)

e is a linear combination of basis
transformations V(l) and defined by

W(l)
e =

B∑

b=1

δ
(l)
rb V(l)

b (7)
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Fig. 8. Overview of the process for graph embedding.

where V(l)
b ∈ R

D(l+1)×D(l)
is one of the multiple basis transfor-

mations and δ
(l)
rb is the learnable coefficient.

The input feature of node vi is defined as

h(0)
i =

∑

j∈Ni

I{ei,j∈CE} + αI{ei,j∈SE} (8)

where I{·} is an indicator function and α = −0.1 is a user-
defined parameter following the general stitch cost. After
obtaining the node embeddings by the RGCN model, for the
algorithm selection, we calculate the graph embedding by the
summation of the node embeddings. A summation is used
because the graph size may influence results of the two sub-
tasks. Formally, we have h = ∑

i∈V h(out)
i , where h(out)

i is
the node embedding of node vi. As for the stitch redundancy
prediction, we use max-pooling because it is some subgraph
structures that determine whether there exist redundant stitch
edges or not.

C. Graph Library Construction

Generally speaking, it is possible to enumerate all the valid
graphs under a size constraint such that we can build up a
graph library to accelerate decomposition by simply matching
the graph with graphs in the library and collecting the coloring
information stored in the library.

Previous work [14] follows the algorithm described in [23]
and [24], and constructs a graph library that contains all homo-
geneous graphs (23 in total) with node numbers less than
seven. However, the graph in that library does not contain
stitch edge, which means that one heuristic stitch insertion
and coloring method should be used if the nonstitch graph
is not colorable. To store graphs containing stitch edges, we
propose an isomorphism-free heterogeneous graph library con-
struction algorithm that contains all possible graphs with both
stitch edges and conflict edges.

Different from the general 2-connected graph described
in [23], the graph transformed by circuit layout has some spe-
cific rules, especially after stitch insertion. The rules are stated
as follows.
• The degree of each node in Gp is at least the mask

number k.
• The degree of each node in G is at least two.
• One node pair {u, v} cannot be connected if u and v are in

the stitch relation. The stitch relation of two nodes means
they belong to the same feature in the original layout.

Algorithm 2 Graph Library Construction
Require: max_size → Maximal graph size.
Ensure: L → The isomorphism-free library of valid graphs;

1: L← {};
2: Sp ← Generate graphs following method in [23];
3: Sp ← Remove invalid Graphs in Sp;
4: S← Enumerate graphs containing stitches from graphs in Sp;
5: for G ∈ S do
6: if G satisfies layout graph rules then
7: h← normalize(RGCN(G));
8: Lh ← Extract graph embeddings stored in the library;
9: if max(Lh × h) < 1 then

10: Decompose G with ILP-based decomposer;
11: Insert G and corresponding graph embedding, node

embeddings, and decomposition result into L;
12: end if
13: end if
14: end for

• For any two nodes in the stitch relation, their neighbors
connected by the conflict edges cannot be the same.

The pseudocode of our library construction algorithm is
illustrated in Algorithm 2. First, we enumerate Gp by the
method in [23] (line 2), which generates an isomorphism-free
2-connected graph set and removes all invalid graphs (line 3).
Then, for each Gp, we enumerate valid G, which satisfies the
size constraint and all the rules above by splitting nodes in Gp

and inserting stitch edges (lines 4–6). Because there may be
multiple isomorphic graphs during the enumeration of G, we
use graph embedding to avoid isomorphism. Specifically, every
time when the enumerated G is going to put into the library, G
will be fed into the RGCN model (line 7) and the obtained nor-
malized graph embedding h is compared with the embeddings
stored in the library Lh ∈ R

k×D (line 8), and a vector–matrix
multiplication is performed, i.e., m ∈ R

k = Lh × h, where
k is the number of graphs stored in the library temporarily.
Whether there is an isomorphic graph in the library or not is
determined by checking the maximum element in m (line 9)
because two unit vectors are equal if and only if their product
is 1. The idea is based on the fact that a GCN-based model
is insensitive to the node order, which means that the graph
embeddings of all isomorphic graphs by a GCN-based model
are totally the same. After isomorphism checking, G will not
be inserted into the library if there is an isomorphic graph.
Otherwise, G will be decomposed by an ILP-based decom-
poser for optimal solution (line 10), and then graph G with its
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optimal coloring result, corresponding graph embedding, and
node embeddings will be stored in the library (line 11).

D. Graph Matching and Decomposer Selection

1) Graph Matching: In the decomposition process, when
the graph embedding is obtained and the graph size is under
the limitation, we directly match the graph with graphs
in the library to obtain the decomposition result. We use the
obtained graph embedding to find isomorphic graphs in the
library. Then, we use the corresponding node embeddings to
find the node-to-node mapping and return the solution directly.

To illustrate the process clearly, we provide a simple exam-
ple and explain the details step by step. The graph library L
in this example is composed of three graphs, in which each
graph has four nodes and the dimension of graph embed-
ding is two. The library stores all information of graphs
needed by our framework, including its node embeddings
Lu ∈ R

3×4×2, graph embeddings Lh ∈ R
3×2, and optimal

solutions Ls ∈ R
4×3.

Different colors represent different graphs in the library.
Taking a target graph G with four nodes as an example, we use
the RGCN model to obtain the corresponding node embedding
u ∈ R

4×2 and graph embedding h ∈ R
2, where h =∑

i ui

u =

⎡

⎢⎢⎣

0.3 −1.0
−0.2 0.8
0.4 0.4
0.1 0.6

⎤

⎥⎥⎦, h =
[

0.6
0.8

]
. (9)

We first multiply the graph embedding h with graph embed-
dings Lh in the library, i.e., m ∈ R

3 = Lh × h.

Then, the matched graph index i in the library is defined by

i =
{

arg max(m), if max(m) = 1
−1, otherwise

(10)

where −1 means there is no isomorphic graph matched in
the library such that the graph matching process is terminated
and redirected to decomposer selection. Otherwise, Lu[i] is
extracted and compared with the target graph’s node embed-
ding to get the final node-to-node mapping. The matching
method is also based on the node order insensitivity of the
GCN-based model: if the input feature does not contain any
node order information such as a one-hot vector of the node
order, the final graph embedding will be order-invariant. In
this example, m[0] = 1; therefore, i = 0, representing that the
first node embedding Lu[0] is used to compare with u.

The node-to-node mapping f is executed by comparing two
node embeddings and formulated by

f (j) = k, if u[j] = Lu[i][k] for j, k in {0, . . . , |G| − 1}
(11)

where |G| means the number of nodes in the graph. In this
example, |G| is 4 and f is then defined by: f ({0, 1, 2, 3}) =
{1, 3, 0, 2}.

After f is found, the solution s can be matched quickly by

s[j] = Ls[f (j)][i], for j in {0, . . . , |G| − 1} (12)

so the final solution of G in this example is mapped as
[2, 1, 1, 0].

2) MPL Decomposer Selection: When the size is larger
than the size limitation or no mapping is found, the graph
embedding h is used to select the decomposer (ILP/EC).
Therefore, the decomposer selector can be regarded as a
2-class classifier and simply modeled by a summation of
one trainable weight matrix Ws ∈ R

2×D and a bias vector
bs ∈ R

2 combined with the arg max function, which can be
formulated as

y = arg max(Wsh+ bs) (13)

where h ∈ R
D is the graph embedding obtained by the RGCN

model with dimension D. The final decomposition result is
then generated by the selected decomposer.

V. EXPERIMENTAL RESULTS

A. Benchmark and Experimental Settings

The experiments are performed on the scaled-down and
modified ISCAS benchmarks, which are widely used in
previous works [5], [14], [15]. The framework is mainly
implemented in Python with PyTorch [25] and DGL [26]
and integrated into the open-source layout decomposition
framework OpenMPL [21]. Fig. 7 specifies the detailed task
execution platform of the workflow. We follow the same set-
tings in [5], [14], and [15] on the minimum color space, where
the first ten cases are set to 120 nm and the last five cases are
set to 100 nm. The cost of stitch is set to 0.1 such that the
decomposition cost is calculated by cn#+ 0.1st#, mask num-
ber is set to 3, and the graph simplification level in OpenMPL
is 3. It should be noted that our graph embedding, as well
as the whole framework, is flexible to be extended to other
decomposition tasks under different lithography constraints.

B. Model and Training Settings

Generally, we prepare and train three independent GNN mod-
els for: 1) graph matching and decomposer selection (RGCN);
2) stitch redundancy prediction (RGCNr); and 3) nonstitch GNN
decomposer (ColorGNN). The two RGCN models contain two
layers whose output dimensions are 32 and 64, respectively,
such that the dimension of graph embedding is 64. ColorGNN
contains ten layers. The training strategy of RGCNs follows the
idea of K-fold cross-validation; specifically, each time two of
the 15 layouts in the benchmark are used as the test/validation
set separately, and the other 13 layouts are put together to
form a training set. Therefore, there are 15 trained models
for 15 layouts following the same model configurations. In
the algorithm selection, the label of each simplified graph is
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TABLE III
F1 SCORE COMPARISON OF (a) PROPOSED RGCN AND (b)

CONVENTIONAL GCN

set as 0 (ILP) if the cost by the ILP-based decomposer is
smaller than the EC-based decomposer and 1 (EC) for other
cases. In the stitch redundancy prediction, each layout graph
is labeled as “not redundant” if there exists at least one stitch
in the optimal solution obtained by the ILP method. In the
training phase of RGCN(RGCNr), we concatenate the graph
embedding network with the MPL for decomposer selector
(stitch redundancy prediction) such that the cross-entropy loss
function can be adopted. The training of ColorGNN relies on
an unsupervised margin loss, formulated by

min
∑

{u,v}∈CE

max{m− d(cu, cv), 0} (14)

where m is a predefined margin and set as 1. The loss function
is motivated by the truth that two connected nodes should be
assigned different features. In all GNN-related operations, the
simplified graphs are batched together for efficient inference.
All the experiments are conducted on an Intel Core 2.9-GHz
Linux machine with one NVIDIA TITAN Xp GPU.

C. Effectiveness of Model Selection

In the first experiment, we compare the effectiveness of our
proposed RGCN model with the conventional GCN model.
The classical GCN model only supports homogeneous graphs
while is not compatible with this task. Therefore, we slightly
modify the message passing function by multiplying the edge
weight αe for different edge types

u(l+1)
i = ReLU

⎛

⎝
∑

e∈E

∑

j∈Ne
i

αeW(l)u(l)
j + u(l)

i

⎞

⎠. (15)

Here, αe follows the weighted cost setting and is set as 1 for
conflict edge and −0.1 for stitch edge. The result is illustrated
by the confusion matrix shown in Table III, where each row
contains the number of graphs selected to be decomposed by
the corresponding decomposer while each column contains the
number of graphs labeled by the corresponding decomposer.
For example, the element (0, 0) in the confusion matrix repre-
sents the number of graphs that are labeled as positive (ILP)
and also selected to be decomposed by an ILP-based decom-
poser. In the experiment, we use two more metrics: 1) recall
and 2) F1 score. Recall is used to measure the proportion
of ILP-labeled graphs that are correctly identified, and there-
fore, influences the decomposition quality directly. F1-score
is a general metric for the model’s accuracy. According to
Table III, we can see that the F1-score of our model is more
than 2× of that in the conventional GCN, which demonstrates

the powerful representation capability of our model compared
with conventional GCN. Another important point is that our
model classifies all the graphs labeled as positive correctly
such that our recall achieves 100% while conventional GCN
only classifies 15.4% correctly.

D. Comparison With Other State-of-the-Art Methods

In the second experiment, we compare our results with
state-of-the-art decomposers under one thread. All the decom-
posers are implemented and measured in OpenMPL such that
we can keep the preprocess procedure the same and compare
the results without potential bias due to different simplifica-
tion methods or stitch insertion techniques. Table IV lists the
decomposition cost of all decomposers. Table V lists all the
decomposition runtime excluding the time for graph simplifi-
cation and stitch insertion for better comparison. As expected,
there is no one existing decomposer that can dominate oth-
ers among existing decomposers. The EC-based decomposer
outperforms others on runtime while causing some additional
costs. An ILP-based decomposer obtains the optimal results
while the runtime is significantly worse than others. The
SDP-based decomposer shows a runtime improvement com-
pared with the ILP-based decomposer but cannot compete
with the EC-based decomposer on both runtime and quality.
Our framework [27] obtains the optimal results in all cases
no matter whether we integrate the proposed nonstitch GNN
decomposer. The average runtime is reduced to 12.3% com-
pared with the ILP-based decomposer because of the efficient
graph matching technique and EC-based decomposer, which is
selected as the decomposer in most cases. Moreover, when we
integrate the GNN decomposer into our framework, the run-
time can be further reduced to 4.2% with the optimality still
preserved. The main reasons for the large improvement are:
1) the existence of considerable graphs that need not stitches
and 2) the efficiency of our proposed purely GNN decomposer
under GPU acceleration.

E. Runtime and Algorithm Selection Analysis

In the third experiment, we analyze the runtime and the
algorithm selection results in our framework. The decom-
position runtime of our framework is mainly composed of
five parts: 1) decomposition runtime by our GNN decom-
poser; 2) decomposition runtime by the ILP-based decom-
poser; 3) decomposition runtime by the EC-based decomposer;
4) algorithm selection time; and 5) the runtime for the stitch
redundancy prediction. The runtime for graph matching and
graph embedding is counted in the decomposer selection since
the 2-class classifier is integrated into the graph embedding
network for fast inference. Fig. 9 shows the result, where the
metric is the total decomposition runtime of 15 layouts as
before. From the figure, we can clearly see that the decompo-
sition runtime by the selected decomposer (ILP and DL) is the
major bottleneck and occupies 84.31% of the total runtime.
The result indicates that the runtime of GNN-related opera-
tions in our framework is trivial, meaning that our method
has strong scalability and can be applied to select other more
efficient decomposers in the future. The inference runtime of
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TABLE IV
DECOMPOSITION COST COMPARISON

TABLE V
DECOMPOSITION RUNTIME COMPARISON

Fig. 9. Runtime breakdown of our framework.

algorithm selection and redundancy prediction is very close
because both of them use RGCN as the backbone with the
same parameters.

For each graph, our adaptive framework tries to select the
most suitable decomposition algorithm. Here, we compare
the ratio of graphs assigned to different decomposers. The
result is shown in Fig. 10, more than 86.11% graphs are
predicted as graphs with stitch redundancy, and therefore,
decomposed by our nonstitch GNN decomposer. Although

Fig. 10. Decomposer usage breakdown, i.e., the percentage of decompositions
by using ILP/DL/ColorGNN/Matching.

ILP only decomposes 2.07% graphs, it still occupies most
of the decomposition time of our framework due to its low
efficiency.

F. Effectiveness of Redundant Stitch Prediction

In the fourth section, we demonstrate the effectiveness of
our GNN-based stitch redundancy predictor empirically. The
results are presented in Table VI in the form of a confusion
matrix. Table VI(a) counts all instances, and Table VI(b) only
counts instances whose prediction score is larger than 0.99
are selected. According to the results, our GNN-based pre-
dictor successfully predicts most redundancy, which largely
improves the efficiency after eliminating these redundancies.
More importantly, benefitting from the bar constraint, the
prediction avoids any false prediction that predicts a nonre-
dundant graph as redundant. A more detailed result for each
circuit is shown in Table VII, where |pred. ns-G| is the number
of successful predictions among all instances.

G. Effectiveness of Nonstitch GNN Decomposer

In the final experiment, we separately study the effectiveness
of our proposed GNN-based decomposer, which is specifically
for nonstitch graphs. The results are shown in Table VII, where
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TABLE VI
F1 SCORE OF STITCH REDUNDANCY PREDICTION. THE RESULTS INCLUDE (a) ALL INSTANCES AND (b) INSTANCES WHOSE PREDICTION CONFIDENCE

ARE ABOVE THE BAR. “REDUN.” AND “NOT REDUN.” REPRESENT WHETHER THE STITCH CANDIDATES IN A GRAPH ARE ALL REDUNDANT OR NOT

TABLE VII
LAYOUT STATISTICS AND RESULTS BY GNN DECOMPOSER

G is the graph set after simplification and stitch insertion. nsc-
G (no stitch candidate graph) is a subset of G in which graphs
do not contain stitch edges. ns-G (nonstitch graph) is a subset
of G in which the optimal decomposition results contain no
stitches. pred. ns-G (predicted nonstitch graph) is a subset of
G in which our proposed stitch redundancy predictor predicts
that these graphs do not need stitch edges. ILP(GNN) cost
represents the total cost decomposed by the ILP method (our
proposed GNN decomposer) for graphs in pred. ns-G, and ILP
time is the total decomposition time by the ILP method for
graphs in pred. ns-G. GNN time is the total execution time
by our GNN decomposer. Since we implement the decom-
poser in a batch-process manner, we use the GNN decomposer
to decompose all graphs even before the stitch redundancy
prediction rather than waiting for the prediction result of each
case (note that the additional runtime is trivial for the fast
inference). Therefore, in some layouts, such as C432, our
GNN decomposer still decomposes some graphs though there
is no redundant graphs according to the prediction, i.e., |pred.
ns-G| = 0.

According to Table VII, we can observe some statistical
properties in the layout dataset. First, the existing stitch can-
didate generation algorithm will insert stitch candidates into
most graphs. Among over 6000 graphs, only 23 graphs are
free of stitch edges. However, we observe that most of these
inserted stitch edges are not useful: in the final optimal results,
91.1% graphs contain no stitches, meaning that considerable
generated stitch candidates are redundant. Our predictor can

predict redundancy with high accuracy (381.93 over 401.13).
Then, for graphs whose stitch edges are predicted as redun-
dant, we can employ our GNN-based decomposer, which is
specifically for the homogeneous graphs, i.e., graphs only
containing conflict edges. As shown in the table, our GNN
decomposer achieves the same result quality with the optimal
ILP solver, with a large improvement in the efficiency (reduce
to 0.8%). Although our GNN decomposer does not guarantee
an optimal result for any layout graph due to the inserted ran-
domness, such as random node attributes and random neighbor
sampling, we experimentally show that our GNN decomposer
achieves “optimal”İresults in the ISCAS benchmark. These
results demonstrate that our GNN-based decomposer can be a
practical option for the nonstitch decomposition problem.

VI. CONCLUSION

In this article, we used RGCNs to obtain graph embeddings,
which are used to build the isomorphism-free graph library,
match graphs in the library, adaptively select decomposer, and
predict the stitch redundancy. We also proposed a pure GNN-
based decomposer, which is applicable for nonstitch graphs.
The results show that the obtained graph embeddings have
powerful representation capability and demonstrate an excel-
lent balance between decomposition quality and efficiency.
Also, our GNN-based decomposer achieves an optimal results
for nonstitch cases in the experimental benchmark with a huge
runtime improvement.
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