IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 38, NO. 5, MAY 2019 949

Adaptive 3D-IC TSV Fault Tolerance
Structure Generation

Song Chen ', Member, IEEE, Qi Xu

Abstract—In 3-D integrated circuits (3D-ICs), through silicon
via (TSV) is a critical technique in providing vertical connec-
tions. However, the yield is one of the key obstacles to adopt the
TSV-based 3D-ICs technology in industry. Various fault-tolerance
structures using spare TSVs to repair faulty functional TSVs have
been proposed in literature for yield and reliability enhancement,
but a valid structure cannot always be found due to the lack of
effective generation methods for fault-tolerance structures. In
this paper, we focus on the problem of adaptive fault-tolerance
structure (AFTS) generation. Given the relations between func-
tional TSVs and spare TSVs, we first calculate the maximum
number of tolerant faults in each TSV group. Then we pro-
pose an integer linear programming-based model to construct
the AFTS with minimal multiplexer delay overhead and hard-
ware cost. We further develop a speed-up technique through an
efficient min-cost-max-flow model. All the proposed methodolo-
gies are embedded in a top-down TSV planning framework to
form functional TSV groups and generate AFTSs. Experimental
results show that, compared with state-of-the-art, the number of
spare TSVs used for fault tolerance can be effectively reduced.

Index Terms—3-D integrated circuit (3D-IC), fault-tolerance,
through silicon via (TSV) planning, TSV yield.

I. INTRODUCTION

S DEVICE feature sizes continue to rapidly decrease,

the interconnect delay is becoming a bottleneck limiting
IC performance. 3-D integrated circuits (3D-ICs) technology
involves vertically stacking multiple dies connected by through
silicon vias (TSVs), providing a promising way to alleviate the
interconnect problem and achieve a significant reduction in
chip area, wire-length and interconnect power [1]. Study indi-
cates that the average wire-length of a 3D-IC varies according
to the square root of the number of layers [2]. Moreover,
3D-ICs also offer the potential for heterogeneous integration,

Manuscript received July 12, 2017; revised November 26, 2017 and
January 30, 2018; accepted March 27, 2018. Date of publication April 6, 2018;
date of current version April 19, 2019. This work was supported in part by
the National Natural Science Foundation of China under Grant 61732020 and
Grant 61674133, in part by the Anhui Provincial Natural Science Foundation,
China under Grant 1508085MF134, and in part by the Research Grants
Council of Hong Kong under Project CUHK24209017. This paper was recom-
mended by Associate Editor H.-G. Stratigopoulos. (Corresponding authors:
Qi Xu; Song Chen.)

S. Chen and Q. Xu are with the Department of Electronic Science and
Technology, University of Science and Technology of China, Hefei 230027,
China (e-mail: songch@ustc.edu.cn; xuqi @mail.ustc.edu.cn).

B. Yu is with the Department of Computer
Engineering, Chinese University of Hong Kong,
(e-mail: byu@cse.cuhk.edu.hk).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2018.2824284

Science and
Hong Kong

, Student Member, IEEE, and Bei Yu, Member, IEEE

which is essential for More than Moore technology [3]. 3-D
integration has already seen commercial applications in the
form of 3-D memory but there are still significant open prob-
lems in both research and implementation [4]. In this paper,
we will focus on the TSV reliability problem.

TSVs may be affected by various reliability issues, such
as undercut, misalignment, or random open defects [5], [6].
Because there exist a large number of TSVs in a chip, these
issues in turn lead to a low chip yield. For example, [7]
reported a 60% chip yield for a chip with 20000 TSVs and
only 20% yield for 55000 TSVs in IMEC process technol-
ogy. Since yield and reliability is a primary concern in 3D-ICs
design, a robust fault-tolerance structure is imperative. In gen-
eral, there are two types of yield losses in 3D-ICs: 1) the yield
loss due to defects in stacked dies and 2) the yield loss due to
defects occurred during assembling process [8]. For the former
case, it is critical to conduct prebond testing to avoid the stack-
ing of defective dies [9]. A number of die/wafer matching and
interdie repair strategies have also been proposed to increase
the stack yield [10]-[13]. For the latter case, adding spare
TSVs (referred to as s-TSVs) to repair fault functional TSVs
(referred to as f-TSVs) is an effective method for enhancing
yield.

One key problem in TSV fault-tolerance design is the
fault-tolerance structure generation, where a number of func-
tional TSVs and one or several spare TSVs are grouped
together to provide redundancy. Chen et al. [7] proposed a
minimum spanning tree-based method to group f-TSVs and
form one-fault-tolerance structures. However, the method is
difficult to be applied to multiple-fault-tolerance structure
generation. Wang et al. [14] presented a regular TSV replac-
ing chain structure that can repair faulty TSVs based on a
realistic clustered defect model. Xu et al. [15] further con-
sidered the physical information of the TSV groups, and
developed an integer linear programming (ILP) formulation
for fault-tolerance structure generation. They model replace-
able relations between f-TSVs, so the maximum input-port
number of individual multiplexers can be effectively reduced.
However, all previous works [14], [15] are under an assump-
tion that a predetermined number of s-TSVs is assigned to
each TSV group. To ensure that K common s-TSVs can be
allocated to each f-TSV group, in each group f-TSV number is
usually quite small, which introduces a large number of TSV
groups. Since the total number of s-TSVs is proportional to
the TSV group number, it may cause overuse of s-TSVs.

To overcome the above issues, in this paper we propose
an adaptive fault-tolerance structure (AFTS), in which the

0278-0070 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-0341-3428
https://orcid.org/0000-0002-0375-9800

950

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 38, NO. 5, MAY 2019

SignalA Signal B SignalC Signal D SignalA Signal B SignalC Signal D
R i !
pntt :____‘:_____|__ 11 | | T] I | D TSV
[| | Int2 |
B8R b
Lol | | \ |
s | -TSV
o e Th H H H H ﬂ (i, I I
\ | | | \
| | | MUX
A T R . -
L , \ ‘ ’ ‘ I
N I \ | [T REEER [| i i
L __ N3 NI N/
Signal A Signal B Signal C Signal D Signal A Signal B Signal C Signal D
(a) (b) ()
Fig. 1. (a) Example of TSV group with four f-TSVs and two s-TSVs. (b) Fault-tolerance structure with large multiplexer delay overhead. (c) Regular chain

structure.

number of tolerant faults is adaptively determined by the dis-
tribution of the f-TSVs and their candidate s-TSVs. A set of
s-TSVs will be selected from a large amount of candidates.
Our AFTS generation method can achieve minimal multiplexer
delay overhead, as well as minimal number of required s-
TSVs. Key technical contributions of this paper are listed as
follows.

1) We are able to determine the maximum number of

tolerant faults, denoted as K, in polynomial time.

2) We present an ILP formulation in generating the adap-
tive K-fault tolerance structures.

We further propose an efficient min-cost-max-flow
(MCMF)-based heuristic method to speed-up the K-fault
tolerance structure generation.

All the proposed methodologies are embedded in a top-
down TSV planning framework to form f-TSV groups
and generate fault-tolerance structures.

Experimental results show that, compared with state-of-the-
art, the proposed framework can reduce the number of used
s-TSVs and maximum port number of multiplexers.

The remainder of this paper is organized as follows.
Section II presents the motivation and gives the problem for-
mulation. The method for determining the maximum number
of tolerant faults is presented in Section III. Sections IV and V
present the proposed ILP formulation and heuristic method.
Section VI describes the proposed fault tolerance TSV plan-
ning methodology. Section VII provides experimental results,
followed by conclusion in Section VIIIL.

3)

4)

II. PRELIMINARIES
A. Chip Yield and TSV Yield
Consider a 3D-IC containing / layers, and the yield of ith

layer die is Y4ie;. The yield for wafer-to-wafer stacking Yack
can be roughly modeled as [8]

l
Yitack = [| (Vaie)- (1)

i=1

Therefore, the defects exist in each die will certainly affect
the overall chip yield after stacking.

Besides, during bonding, any foreign particle caught
between the wafers can lead to peeling, as well
as delamination, which dramatically reduces bonding
quality and yield [16]. YBonding captures the yield loss of the
chip due to faults in the bonding processes.

According to the cumulative yield property, the yield of a
3-D chip Y3-p—chip can be formulated as follows [8]:

-1
Y3-D—chip = Ystack * l_[(Y Bonding(i) * ¥ TSV(i))

i=1

2

where YBonding(i) 1S the yield of the ith bonding step, and
Ytsv(is the TSV yield in the ith layer. In this paper, we
focus on the yield enhancement of 3-D chip in terms of TSV
yield Ytsy [14]. The total TSV yield Ytsy is calculated by
multiplying all f-TSV groups yield Yy; as follows:

N
Yrsv = [Yo 3)
j=1

where N is the number of f-TSV groups. In this paper we
adopt the algorithm described in [14] for the calculation of
group yield Y;.

B. TSV Fault-Tolerance Structure

By inserting the multiplexers (including control circuits) and
carefully designing the reconfigurable TSV replacing paths,
we can construct TSV fault-tolerance structures, where the s-
TSVs can be used to transfer signals in the presence of faulty
f-TSVs [5].

Given an f-TSV planning result, we know the number and
position of all f-TSVs. Then we perform a top-down iterative
f-TSV partitioning to form f~-TSVs groups and allocate s-TSVs
in the whitespace for each group. The number and position of
used s-TSVs for each f-TSV group are determined simulta-
neously in the f-TSV partitioning stage. Fig. 1(a) shows an
example of a TSV group with four f-TSVs (f - - - fa) and two
s-TSVs (s; and s7). Here, fi - --f1 belong to nets ntg - - - nty,
respectively. The dashed large rectangles represent the bound-
ing boxes of different nets. Without loss of generality, we
denote the bounding box of an f-TSV f; as the bounding box

CHEN et al.: ADAPTIVE 3D-IC TSV FAULT TOLERANCE STRUCTURE GENERATION 951

signal A

signal B

signalC SignalD Signal E

I |
5 6
I s-TSV
5§ 2 3
a b s
MUX S ofa
1lb
y
al b| ¢ s

|

nt4 | |
,,,,,,, W 54
Pntt | OA | | @ss | '
|
| [i ﬁiﬁ I
R i
| |
| = F———————- E—t—-
T
| [= R [
i |
I T R 1= T Y
\ \ | . \
\ \ }.51 O mse } |
| \ b ——- r—-
L L __ | | |
L nt3 |
Signal A Signal B
(a)

Fig. 2.
methodology.

of the net f; belonging to. We say that an f-TSV f; can be
replaced by another TSV v, if and only if v is located inside
or nearby the bounding box of f;. Note that here the TSV v
can be either f-TSV or s-TSV. For example, f] is replaceable
by f>, f3, s1, $2, since these four TSVs are covered by the
bounding box of fi.

Given a TSV group with some f-TSVs and K s-TSVs, a K-
fault tolerance structure includes K independent directed TSV-
replacing paths from each f-TSV to s-TSVs. In this structure
we can repair at most K faulty f-TSVs through multiplexer
rerouting. For instance, for the TSV group shown in Fig. 1(a),
a 2-fault tolerance structure with two s-TSVs can be generated
as in Fig. 1(b), where each f-TSV is directly connected to all s-
TSVs. Although the design scheme is very simple, this structure
suffers from large delay overhead due to large multiplexer input
size. Some recent works [14], [15] proposed a regular K-fault
tolerance structure, as shown in Fig. 1(c). Here, each f-TSV
is regularly connected to two right side neighboring TSVs
and the rightmost f-TSVs are connected to s-TSVs. Instead
of 4-port multiplexers occupied in Fig. 1(b), here only 3-port
multiplexers and 2-port multiplexers are needed. For each f-TSV,
the independent TSV-replacing paths are listed as follows:

fir i—=fH—=s) fi—hH—fa—> s}
fr AL —=>f—=sh L= fi— s}

B A=), = fa— sl

Jar {fa — 51}, {fa = 52}

To ensure the existence of fault-tolerance structures in TSV
groups, the previous works (e.g., [14] and [15]) form TSV
groups under two constraints: 1) K fault-tolerance structures
use exactly K s-TSVs and 2) an f-TSV in a group can be
replaced by any s-TSV within the group. Fig. 1(a) shows an
example of TSV group having two-fault tolerance structures,
where all the f-TSVs, f1, f2, f3, and f1, can be replaced by both
s1 and s> considering the net bounding boxes. Unfortunately,
general cases may violate these constraints. Fig. 2(a) shows a
generalized example, where five f-TSVs (fi ---f5) and four
s-TSVs (s1---s4) are involved. The replaceable relations

srasd el o2

Signal C Signal D Signal €

(b)

(a) Example of TSV group with five f-TSVs and four s-TSVs, which cannot be handled by previous works. (b) AFTS generated by our proposed

between TSVs are shown in Fig. 3(a). In this TSV group, the
constraint 1) is violated since we cannot find two-fault toler-
ance structures if only two s-TSVs are used. The constraint
2) is also violated even if the group is partitioned into smaller
groups since f> have no replaceable s-TSVs. Consequently, the
method in [14] cannot generate cost-effective fault-tolerance
structures for this TSV group, because f> has no candidate
s-TSVs. The ILP-based method in [15] cannot generate fault-
tolerance structures for this TSV group since the number of
tolerant faults is unknown. However, the f-TSV group def-
initely includes a two-fault tolerance structure as shown in
Fig. 3(c), where three out of four s-TSVs are used in the fault-
tolerance structure. The possible TSV replacing paths are as
follows:

fir th—=sh fi=fh—=>H—>f—s)

Lo Ah—=>fi=>f—s) L= fa— s}
fr A= (B —>fa— s}

fao {fa—>fr—=>s1h, {fa— 52}

fso Afs—>fi—= sk {fs — s3)

In reality, there is no essential difference between f-TSVs
and s-TSVs. Therefore, the existing TSV testing technique
can be directly adopted to test f~TSVs and s-TSVs [17]. And
the control signal of multiplexers can be set to determine the
direction of signal transfer. As shown in Fig. 2(b), the control
signal of 2-to-1 and 3-to-1 multiplexer are 1-bit and 2-bit,
respectively. When all TSVs are fault-free or existing faulty s-
TS Vs, the control signals of each multiplexer are set to transfer
signal through their corresponding f-TSVs. But once an f-TSV
is faulty, the reconfigurable routing paths can be determined by
the corresponding control signal of multiplexers. For instance,
when f-TSV 1 is faulty, the control signals of multiplexer 6
and 7 are set to 0 and 10, causing s-TSV 1 to reroute the
signal A.

C. Hardware Cost and Multiplexer Delay Overhead

The hardware cost incurred by the fault-tolerance structure
can be divided into several parts, including the area overhead

952 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 38, NO. 5, MAY 2019

Fig. 3.

due to inserted s-TSVs, related control logic (i.e., MUXes),
and rerouting interconnect [14]. And the cost is dominated
by the first two parts [13]. Jiang et al. [18] pointed out that
the area of control logic is negligible compared with the TSV
size and the TSV manufacturing cost is much larger than logic
gates. Therefore, in order to reduce the hardware cost, we
should reduce the number of s-TSVs used in the fault-tolerance
structures.

The delay of a multiplexer is increased along with the num-
ber of ports. Therefore, a large multiplexer will introduce large
delay overhead. Moreover, the proposed TSV fault tolerance
planning is performed in floorplanning stage and we have no
exact timing information. If we minimize the multiplexer delay
overhead in this stage, we could alleviate the timing closure
issue in next placement and routing stage. Therefore, in this
paper, we consider the multiplexer delay overhead as one of
optimization objectives.

D. Problem Formulation

From the example in Fig. 2, we can see that we confront new
design challenging if not all s-TSVs can be occupied in con-
structing K-fault tolerance structure. Given a TSV group with
m f-TSVs and n s-TSVs, we first construct a directed graph
G(V, E) consisting of all TSV replaceable relations. Here, ver-
tex set V.= VUV,, where Vi ={fili = 1, ..., m} is the f-TSVs
set and V, = {s;|li = 1, ..., n} is the s-TSVs set. Besides, the
edge set E = {(u, v)|u € Vi Av € V Aucan be replaced by v}.
Given the TSV group in Fig. 2(a), the corresponding replace-
able relation graph is shown in Fig. 3(a).

We define the problem of TSV fault-tolerance structure
generation as follows.

Problem 1: Given a TSV group with m f-TSVs and n s-
TSVs, and the directed graph G(V, E), we search for the
maximum number of tolerant faults K. Then we generate a K-
fault tolerance structure, which includes K independent TSV
replacing paths (vertex-disjoint) for each f-TSV, to minimize
both the multiplexer delay overhead and the number of used
s-TSVs.

Notice that the yield of the TSV group is evaluated based
on the allocated s-TSVs and f-TSVs. With the yield of TSV
groups, the total TSV yield can be calculated as discussed in
Section II-A. If the target TSV yield is not satisfied, a TSV
group will be selected and partitioned into two smaller new
TSV groups, where the above TSV fault-tolerance structure
generation problem will be solved again. New TSV groups

(a) Corresponding directed graph G of layout in Fig. 2(a). (b) Corresponding splitting graph G’. (c) 2-fault tolerance structure on graph G.

will be iteratively generated until the target chip yield is
satisfied.

III. MAX FLOW-BASED METHODOLOGY

Given a TSV group with replaceable relation graph G, we
say the TSV group has a K-fault tolerance structure if each
f-TSV f € Vi has K paths to s-TSV vertices in G. Besides,
for each f-TSV f, the paths are vertex-disjoint except the f
itself. In this section, we develop a polynomial time algorithm
to determine the K value in a TSV group. Our methodology
is based on the Menger’s theorem as follows.

Lemma 1 (Menger’s Theorem [19]): Let G be a directed
graph, and let S and T be distinct vertices in G. Then the
maximum number of vertex-disjoint S-7" paths is equal to the
minimum size of an S-T disconnecting vertex set.

Here, the S—T disconnecting vertex set represents a vertex
set whose removal will cause no paths from any vertex in S to
any vertex in 7. According to Lemma 1, for each f-TSV f, the
number of vertex-disjoint paths Nd(f) equals to the minimum
size of the {f}-V; disconnecting vertex set in G. For example,
in Fig. 3(a), {f2, s1} is @ minimum {f }-V> disconnecting ver-
tex set. Therefore, the number of vertex-disjoint paths, Nd(f1),
equals to 2. Based on above lemma, we reach the following
theorem.

Theorem 1: Given the replaceable relation graph, the max-
imum number of tolerant faults, K, can be determined in
polynomial time, as follows:

K = min{Nd(f)}. 4)
fevy

Since vertex-disjoint problem is not easy to model, we per-
form vertex splitting on G(V, E) so that it can be transformed
into an edge-disjoint problem, which can be appropriately
modeled in a maximum flow problem. Each vertex u € V
is split into two vertices u and «’, respectively, corresponding
to the vertex’s input and output, and an extra edge (u, u’) with
zero cost is also added. A new directed graph G'(V', E') is
constructed as follows.

1) The vertex set V' =V U V] UV}, where V| is the split

vertex set of Vi and Vé is the split vertex set of V5.

2) The edge set E' = E| UE), where E| = {(u,u)|u €

V A u' is the corresponding split vertex of u} and
E, = {(,v)|(u,v) € E(G) Au is the corresponding
split vertex of u}. If there is a directed edge from u to
v in E(G), a corresponding directed edge from u' to v
is added in E'(G).

CHEN et al.: ADAPTIVE 3D-IC TSV FAULT TOLERANCE STRUCTURE GENERATION 953

TABLE I
NOTATIONS USED IN ILP

v, Vv’ set of f-TSVs and s-TSVs, set of split f-TSVs and split
s-TSVs
Vi, Vl’ set of f-TSVs, set of split f-TSVs
Va, Vg set of s-TSVs, set of split s-TSVs
fis le f-TSV in V1, split f-TSV in Vll
S5, 59 s-TSV in V3, split s-TSV in Vj
E’ set of all edges in graph G’

Ef set of all splitting edges in graph G’ (f; — f/ and s; —
s')
i

E} set of all replaceable edges in graph G’

(w,w’) | edgein E7 and w in V>
s, t split f-TSV in V7, split s-TSV in V3
v(s:t) binary variable; if a unit flow (path) exists from s to ¢ then
U(S?R,: 1, otherwise v(5t) =0
(v,u) | edgein E’
xE,Z’t) binary variable; if a unit flow (path) from s to ¢ goes through

edge (v, u), then xq(,su’t) = 1, otherwise xvsu’t =0

binary variable on edge (v,w); if a unit flow (path) goes
through edge (v, w), then dy, = 1, otherwise dyy = 0

Based on the splitting graph, the maximum number of toler-
ant faults K can be determined in polynomial time by solving
a max-flow problem [19] for each f-TSV. For instance, given
the replaceable relation graph G(V, E) in Fig. 3(a), Fig. 3(b)
illustrates the splitting graph G'(V’, E’). The number of edge-
disjoint paths for each f-TSV is as follows, Nd(fi) = 2,
Nd(f2) = 2, Nd(f3) = 3, Nd(fs) = 3, and Nd(fs) = 3. Since
f1 and f> have only two edge-disjoint paths, the maximum
number of tolerant faults, K, equals to 2.

The fault-tolerance structure can be generated by finding
m x K paths, which begin with each split f-TSV in V| and
end with split s-TSV in V. In addition, all the paths sharing
one same source vertex should be edge-disjoint. In the next
two sections, we will propose an ILP-based algorithm and an
MCMF-based heuristic method to generate the K-fault toler-
ance structure in minimizing both the used s-TSV number and
the multiplexer delay overhead.

IV. INTEGER LINEAR PROGRAMMING FORMULATION

In this section, we discuss how the K edge-disjoint path
search problem can be formulated as an integer programming.
For convenience, some notations used in this section are listed
in Table I.

First, an integer programming formulation in [15] is given
to generate the fault-tolerance structures with minimization of
the multiplexer delay overhead.

To model the delay of each multiplexer, it is of impor-
tance calculating indegree of each vertex u € V. As shown
in Fig. 3(b), the edge (f;./3) is on the path from f] to s},
as well as the path from f) to s5. Although the same edge
is traversed by two paths, it only increases the indegree of
f3 by one. Meanwhile, there may be several edges directed
into same TSV vertex on the paths. For instance, due to edges
(f5.f3) and (fy.f3), the indegree of f3 should be increased by

two. Given a vertex u € V, its indegree is calculated by the
following equation:

indegree(u) = Z min

v:(v,u)eE’

Yool o

! !
seVi.teV,

The starting integer programming formulation of fault-
tolerance structure generation problem in [15] is shown in (6).
The objective function in (6) is to minimize the maximum
indegree of all the vertices. The number of binary variables
xii;l) is m x n x |E’|, where m is the number of f-TSVs, n
is the number of s-TSVs, while |E’| is the number of edges
in split directed graph G’. The constraint (6a) defines a unit
flow from s € V| to t € V}, which corresponds a path from
s to t. The number of this set of constraints is m x n x |V/|.
The constraint (6b) ensures that a set of Vé paths, which have
the same source s € Vj, are edge-disjoint. The number of this
set of constraints is m x (m + n)

min max indegree () (6)
ueV

s.t. Z X0 Z X0

vi(u,v)eE’ vi(v,u)eE’

1, ifu=s

=10, ifueV —{s,t}, VseV,reV}
—1, ifu=t
(6a)

YU <1, VseV (uu) e E| (6b)
eV}
K80 e 0,1}, Yv,u)eE,seV teV,. (6¢)

Though the integer programming method in [15] can gen-
erate K fault-tolerance structures using K s-TSVs, the method
cannot be directly applied for the generation of AFTSs, where
the number of required s-TSVs might be larger than K in K
fault-tolerance structures. Then a new integer programming
formulation is proposed to generate AFTSs in minimizing
both the used s-TSV number and the multiplexer delay over-
head. The number of s-TSVs used in the structure can be
calculated by

K01 (7)

ww' ?

usedstsv = E min

weV,

2

! !
seV,1eV,

Based on the above notations, the edge-disjoint path search
problem can be formulated as the following integer program-
ming (8).

Compared with the integer programming (6), in con-
straint (8a) a new binary variable v:0 is introduced to indicate
whether a unit flow (path) exists from source s € Vi to sink
t € V). Besides, a new constraint (8b) is defined to ensure that
there will be K paths from each source s € V] to vertices in
V). The number of this set of constraints is m. By this way, (8)
can be applied for any K < n and additionally minimize the
number of required s-TSVs in the structure, while (6) can only

954 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 38, NO. 5, MAY 2019

be applied for the case K =n

min {ma&g indegree(u) + usedstsv} ()
ue
S.t. Z x,ﬂ“v”) — Z xéﬁ;')
v:(u,v)EE’ v:(v,u)eE’
VD ify =
=10, ifueV —{s,1}, VseV,teV,
—VD ifu =1t
(8a)
DD =K, VseV (8b)
1€V)
v (0,1}, VseV|,reV, (8¢)
(6b) — (6¢).

Equation (8) is nonlinear due to the min-max-min and min-
min operations in the objective function. Through linearizing
the objective function, (8) can be transformed into an ILP (9).
For each edge (v,u) € E', an extra binary variable d,, and
extra constraints (9a)—(9c) are introduced to replace the min
operation in (5) and (7). Besides, the extra constraint (9d)
ensures that the indegrees of all TSVs will not be greater than
A1. Another extra constraint (9¢) ensures that the number of
s-TSVs used in the structure equals to Ao

min (A + A2) 9

st dy, > x50 VseV,reVy, (vu)e E (9a)

du < Y x50V, u) € E (9b)

seV),teV}

dy, €{0,1}, Y(v,u) € E 9¢)

Y. dws<h VueV (9d)
v:(v,u)eE’

Z Ay = h2, Ywe Vs (%)
(w.w)eE]

(6b) — (6¢), (8a) — (8c).

For instance, as shown in Fig. 3(b), the blue lines present
edge-disjoint paths for each split f-TSV, and the corresponding
generated 2 fault-tolerance structure is shown in Fig. 2(b).

V. HEURISTIC FRAMEWORK

For large TSV groups, the ILP-based method is very time
consuming. Consequently, in this section, we propose an
MCMF-based heuristic method to solve the edge-disjoint path
problem. The basic idea is to deal with f-TSVs one by one
and, for each f-TSV, an MCMF algorithm is used to find K
independent paths. The edge costs are defined to keep the input
port number of multiplexer and the number of s-TSVs as small
as possible.

A. Network Graph Model

In order to find K (K < n) edge-disjoint paths for an f-TSV
fi € V1, we construct a directed graph Gy(Vy, Ey) from G’ by
adding an extra sink vertex ¢ and some edges. The vertex set

V, contains two portions, Vi = V' U {r}, and r is the sink
vertex. The edge set E; = E' U {V] — r}.

When finding edge-disjoint paths for a certain TSV f; €
V1, the edge capacities are defined as follows: the capacity of
the edge from f; to its splitting vertex f/ equals to K; while
the capacities of all the other edges are set to 1. The capacity
constraints ensure that we can find up to K edge-disjoint paths
from f/ to s-TSV vertices, which correspond to K independent
TSV-replacing chains for the TSV f;.

For the splitting edges corresponding to f-TSVs, the edge
costs are defined as zero while the splitting edges correspond-
ing to s-TSVs are defined as follows:

0, if (w, w’) € E|,we Vs, and w has
been used

if (w,w') €Ej,we Vs, and w
has not been used.

ecs(w, w') =1k

(10)

C is constant, which represents the costs of introducing a
new s-TSV for constructing the fault-tolerance structure. And
the edge costs tend to restrict the use of s-TSVs. In the exper-
iment, we set C to 3 by the experimental results shown in
Section VII-A.

For the edges in Ej,, which correspond to the replaceable
relations between TSVs, the edge costs are defined as follows:

0, if (u,v) € E} and (u, v) corresponds
to a TSV connection

C*M | if (u,v) € Ej and (u, v) does not
correspond to a TSV connection.

(1)

In the edge cost function (11), fc[v] is defined to be the
number of edges that end at v and have been used as TSV
connections in the generated partial fault-tolerance structure,
that is, the edges that have been traversed by edge-disjoint
paths of some other f-TSVs. Therefore, fc[v] corresponds to
the input port number of the multiplexer in the input side of
the TSV v.

With this edge costs function, first, we tend to make full use
of existing TSV connections to build the edge-disjoint paths
for the current f-TSV since it will not increase the input ports
of the multiplexers.

Second, to minimize the maximum size of multiplexers, the
costs of the edges that do not correspond to TSV connections
are defined as the exponential function of zc[v].

ecg(u,v) =

B. Algorithmic Flow of Heuristic

The algorithmic flow of the proposed heuristic is summa-
rized in Algorithm 1. Because the quality of solution depends
on the order of f-TSVs selected, an iterative post-processing
stage is used to improve the generated fault-tolerance struc-
tures. In the post-processing stage, we randomly select an
f-TSV, and define the edge costs based on the TSV paths of
all the other f-TSVs. Then we resolve the MCMF model to
find edge-disjoint paths for the selected f-TSV. The procedure
is repeated until the multiplexer maximum input port number
keeps unchanged over a predefined threshold iteration number.

CHEN et al.: ADAPTIVE 3D-IC TSV FAULT TOLERANCE STRUCTURE GENERATION

955

Fig. 4. Label on edges represents (capacity, cost). (a) MCMF network for f—TSVfl/, where the two edge-disjoint paths for fl’: {fl’ — 51 — s’l} and {fl’ —
fh = fy = 3 = f3 = s2 = s5). (b) After solving f, the MCMF network for f-TSV f;, where the two edge-disjoint paths for f3: {f; — f5 — fi = fi
= fl = s1 = s)yand {f; = f3 = f; = 52 = s5}. (c) After solving f] and f;, the MCMF network for f-TSV f;, where the two edge-disjoint paths for

Ly = 51— s()and {5 — 52 = 55}

Algorithm 1 Pseudo Code of Our Heuristic Method

Input: A directed graph G'(V’, E), which contains m f-TSVs
and n s-TSVs.

Output: A repairable structure including m x K paths.

1: for f-TSV f; < 1 to m do

2 Construct a directed graph Gy(Vs, E;) for fi;

3 > Find K edge-disjoint paths for f;;
4 Solve the MCMF model for f;;

5: end for
6
7
8
9

> Perturb the repairable structure;
: while no coverage do
Randomly select an f-TSV f;;
: Resolve edge-disjoint paths for f; by MCMF;
10: Record the maximum number of TSV connections on
all TSVs;
11: end while

Fig. 4(a)—(c) illustrate the process of the heuristic method.
We choose the f-TSV f] to start with. The MCMF network
for f{ is shown in Fig. 4(a). All the costs of edges that end
at f-TSVs and s-TSVs are initialized at 1 since there are no
any other f-TSV paths and for all v, #c[v] = 0. By solving
the MCMF, 2 edge-disjoint paths, which correspond to two
independent TSV replacing chains for fi, are obtained and the
TSV connections (solid edges) in the partial fault-tolerance
structure.

With the 2 edge-disjoint paths for fi, the flow network is
updated (edge costs and capacities) for f-TSV f) and shown
in Fig. 4(b). The edges that are on the edge-disjoint paths of
/1 have zero costs. Considering the vertex s1, for example, the
edge (f{, s1) has zero costs since it has been traversed by the
TSV path of f; while the edges (f;, s1) and (f;, s1) have a cost
of 3 because the both edges are not traversed by any TSV paths

Fig. 5. Generated 2-fault tolerance structure by solving edge-disjoint paths
for all f-TSVs, where the TSV connections are shown in solid edges.

of fi and zc[s1] = 1. A new TSV connection will be introduced
if we use (f,s1) or (f;,s1) on the edge-disjoint paths for
/2, which will increase the input ports of multiplexer in the
input side of the TSV s1. With the updated network, we can
find two edge-disjoint paths from f; to s-TSVs by making use
of the existing TSV connections as many as possible, which
potentially reduces the TSV connections on individual TSVs
and minimizes the maximum number of the input ports of
multiplexers. The bottom part of Fig. 4(b) shows the TSV
connections in the updated partial fault-tolerance structure.

Repeating the same process until the MCMF model is
solved for all f-TSVs, we obtain 2 edge-disjoint paths from
each split f-TSV vertex in V|, f{ - - - fi, to split s-TSV vertices
in Vj, s} ---s5, as shown in Fig. 5. Here, the solid edges are
TSV connections.

VI. FAULT TOLERANCE TSV PLANNING

In this section, we discuss a top-down fault tolerance
TSV planning framework to form f-TSV groups and gener-
ate AFTSs. The number of {-TSV groups is greatly reduced
as well as the total number of s-TSVs because of AFTSs.

956 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 38, NO. 5, MAY 2019

Determine the number of

tolerant faults for new groups (f'TSV planning results>

L]

Allocate s-TSVs to new
groups

¥

Calculate the chip yield

Satisfy target
yield?

Generate fault-tolerance TSV pla_nning
structure solution

Fig. 6. Flow of the proposed fault tolerance TSV planning.

A4

Partition the group
with smallest yield

Given an f-TSV planning result and the floorplan of the
blocks, we know the number and positions of all f-TSVs.
Then f-TSV groups are first formed using a top-down iterative
f-TSV partitioning under the yield constraint and, then, the
AFTSs are generated for each group. In each iteration of the
f-TSV partitioning stage, the group with the smallest yield
will be partitioned into two new f-TSV groups using the min-
cut bi-partitioning algorithm and the required s-TSVs are also
allocated for evaluating the group yield. The iterative f-TSV
partitioning is repeated until the target chip yield is satisfied.
Therefore, the number and position of required s-TSVs for
each f-TSV group are determined simultaneously in the f-TSV
partitioning stage.

The chip yield is the product of group yield, which depends
on the maximum number of tolerant faults (K), the number
of TSVs, and the defect probability of TSVs as discussed in
Section II-A. We construct the replaceable relation graph G,
whose vertex set includes the f-TSVs in the group and the
corresponding candidate s-TSVs, for computing K and allo-
cating s-TSVs. The maximum number of tolerant faults, K,
can be determined in polynomial time by solving a max-flow
problem on G, as discussed in Section III. The MCMF-based
heuristic in Section V is used to temporarily generate an adap-
tive K-fault tolerance structure, thus the number of required
s-TSVs is determined.

Finally, the ILP-based method in Section IV and the
MCMF-based heuristic in Section V can be adopted to gen-
erate AFTSs with minimization of both the multiplexer delay
overhead and the hardware cost. Fig. 6 illustrates the proposed
TSV planning framework.

In [14], a greedy method is used to partition f-TSVs into
groups and then an ILP formulation is adopted to allocate
s-TSVs for each group. The generation of fault-tolerance struc-
ture is not considered since they assume regular structures
always exist. In [15], the TSV planning framework includes a
top-down partitioning followed by a bottom-up iterative merg-
ing (clustering) for reducing the number of f-TSV groups.
Then, an MCMF-based method is used to allocate s-TSVs
for each group and an ILP model is adopted to generate fault-
tolerance structures. The same number of s-TSVs is allocated
to all the f-TSV groups in [14] and [15] and, for an f-TSV

group, the key point is to ensure enough number of candidate
s-TSVs that can be shared by all the f-TSVs in the group. As a
result, many small f-TSV groups are formed, which potentially
causes an overuse of s-TSVs.

Compared with the above two works, the proposed TSV
planning framework includes a similar top-down partitioning
stage, but the allocation of s-TSVs during the partitioning is
quite different. That is because AFTSs with various number
of s-TSVs are built temporarily by solving a series of MCMF
problems.

VII. EXPERIMENTAL RESULTS

The proposed algorithms have been implemented in C++
language and tested on a 12-core 2.0 GHz Linux server with 64
GB RAM. The TSV pitch is assumed to be 5 um x 5 um [3].
LEDA [20] is adopted to solve the max-flow and the MCMF
problems. GLPK [21] is used as the ILP solver. hMetis [22]
is adopted on f-TSVs partitioning.

A. Effectiveness and Efficiency of Fault-Tolerance Structure
Generation Method

We generate several TSV replaceable relation graphs Gi1—
Gig by using the proposed TSV planning framework on
MCNC and GSRC benchmarks. Each graph contains f-TSVs
and the corresponding candidate s-TSVs, which are covered by
at least one of the bounding boxes of the f-TSVs. In order to
compare the proposed ILP model with the ILP method in [15]
on G11-Gig, we adapt the ILP formulation in [15] here. To
generate the K-fault tolerance structure on a TSV replaceable
relation graph G, we select K s-TSVs in all n s-TSVs, and unit
flow constraints are defined from all f-TSVs to those chosen K
s-TSVs. If the K-fault tolerance structure is still not achieved
after solving all K combinations, we think the ILP method
in [15] cannot generate the K-fault tolerance structure on this
TSV replaceable relation graph G.

In addition, the previous work in [15] deals with a special
type of TSV fault-tolerance structure generation. That is, they
are under an assumption that a predetermined number of s-
TSVs is assigned to each TSV group, and an f-TSV in a group
should be replaced by any s-TSV within the group. We also
generate some specific TSV replaceable relation graphs Gaj—
Gog by using the TSV planning methods in [15] on MCNC and
GSRC benchmarks. Since the f-TSVs can be replaced by all
n s-TSVs in each graph, the n-fault tolerance structure always
exists.

First, we show the effectiveness of the proposed ILP model.
Table II shows the experimental results, where “ILP” and
“Heuristic” denote results of the proposed ILP model and
MCMF-based heuristic method, respectively. Columns “m,”
“n,” “#Edges,” and “K” list the number of f-TSVs, the total
number of available s-TSVs, the number of edges, and the
number of maximumly tolerant faults on each TSV replace-
able relation graph. Besides, columns “#Port” and “#us” show
the maximum port number of multiplexers and the number of
s-TSVs used in the generated fault-tolerance structure. “ITWire”
shows the sum of incremental half-perimeter wirelength over-
head of all f-TSVs incurred by the fault-tolerance structure,

CHEN et al.: ADAPTIVE 3D-IC TSV FAULT TOLERANCE STRUCTURE GENERATION 957
TABLE 1T

COMPARISON BETWEEN ILP [15] AND OUR METHODS FOR GENERATING AFTS
Graph | m | n | #Bdges | K I?vpviiflm) I\Efe(um) HeIli;’llsr:fum)

#Port | #us . RT(s) #Port | #us . RT(s) #Port | #us . RT(s)

(ratio) (ratio) (ratio)
G11 9 | 4 72 3 3 3 32.90 (0.51%) 535.20 3 3 32.90 (0.51%) 301.53 3 4 25.88 (0.40%) | 0.008
G12 13| 4 129 2 3 2 6.85 (0.18%) 603.68 3 2 9.65 (0.25%) 67.80 3 4 16.79 (0.43%) | 0.013
Gi3 14 | 4 101 1 NA | NA NA >3600 2 4 29.77 (1.77%) 1.09 3 4 28.99 (1.72%) | 0.006
G1a 155 177 2 NA | NA NA >3600 3 4 32.50 (0.62%) 96.90 3 4 32.71 (0.62%) | 0.009
G1s 18| 5 215 2 NA | NA NA >3600 3 4 65.20 (0.96%) 240.07 4 5 52.35 (0.77%) | 0.013
Gie 18 | 6 199 2 NA | NA NA >3600 3 6 90.03 (1.76%) 155.74 3 6 98.36 (1.93%) | 0.011
Giz | 21| 7 255 2 NA | NA NA >3600 NA | NA NA >3600 4 6 | 214.39 (1.83%) | 0.017
Gis | 26 | 13 529 4 NA | NA NA >3600 NA | NA NA >3600 4 12 | 333.60 (1.47%) | 0.038
Ga1 9 5 99 5 4 5 16.34 (0.15%) 100.84 4 5 16.34 (0.15%) 101.10 4 5 16.34 (0.15%) | 0.005
Ga2 1215 155 5 5 5 49.77 (0.25%) 304.91 5 5 49.77 (0.25%) 306.14 6 5 56.26 (0.28%) | 0.007
Gos 14| 5 197 5 5 5 10.21 (0.06%) | 3435.64 5 5 10.21 (0.06%) | 3468.93 5 5 11.84 (0.07%) | 0.010
Gaa 16 | 5 225 5 5 5 108.19 (0.71%) | 3519.16 5 5 108.19 (0.71%) | 3519.16 7 5 123.18 (0.81%) | 0.016
Gas 1815 329 5 NA | NA NA >3600 NA | NA NA >3600 5 5 72.01 (0.26%) | 0.016
Gos | 23| 6 467 6 NA | NA NA >3600 NA | NA NA >3600 6 6 45.99 (0.12%) | 0.027
Gor | 24| 6 550 6 NA | NA NA >3600 NA | NA NA >3600 6 6 30.65 (0.08%) | 0.034
Gog | 25| 7 524 7 NA | NA NA >3600 NA | NA NA >3600 7 7 24.65 (0.06%) | 0.037
TABLE III

EFFECT OF C ON S-TSV NUMBERS AND MAXIMUM
PORT NUMBER OF MULTIPLEXERS

Benchmark ¢ =2 ¢ =3
#s-TSV [#Port | #s-TSV | #Port

ami33 52 4 46 4
ami4d9 80 8 66 6

n50 108 7 98 7
nl00 181 8 169 7
n200 267 7 250 7
n300 395 8 381 6

and the ratio of IWire to the sum of net wirelength of all f-
TSVs is listed in “ratio.” “RT” reports the total computational
time in seconds. “NA” represents that the K-fault tolerance
structure cannot be achieved within the time limit (3600 s). As
shown in Table II, the ILP method in [15] generates the fault-
tolerance structure only on two smallest graphs. However,
the proposed ILP formulation can achieve the fault-tolerance
structure on six graphs.

Second, we show the efficiency of the proposed heuristic
method. Table II also compares the proposed heuristic method
with the proposed ILP method. It can be noticed that, on
small graphs G11—-G16 and G21—Ga4, the fault-tolerance struc-
ture generated by ILP has smaller maximum port number of
multiplexers and used less s-TSV numbers than that generated
by the heuristic method. Therefore, for small TSV replaceable
relation graphs, ILP can achieve an optimal solution, which
can be used to verify the accuracy of the solution gener-
ated by the heuristic method. But since ILP is an NP-hard
problem, its runtime increases dramatically with the size of
TSV replaceable relation graphs. As shown in Table II, the ILP
method cannot generate the fault-tolerance structure on large
graphs G17—-G13 and Gos5—Gog within the time limit (3600 s).
Therefore, for large TSV replaceable relation graphs, the ILP-
based method is very time consuming, which can indirectly
demonstrate the efficiency of the proposed heuristic method.

In addition, the parameter C in edge cost func-
tions (10) and (11) is also set through experimental results.

The experiment is performed on MCNC and GSRC bench-
marks. In the experiment, if C is set to 4, some edge cost
values are out of bound, which cannot be solved by MCMF-
based model. And we also set C to 2 and 3, the number of used
s-TSVs and the maximum port number of multiplexers varied
with C, which is shown in Table III. Columns “#s-TSV” and
#Port list the total number of allocated s-TSVs and the max-
imum port number of multiplexers among all f-TSV groups.
We noticed that compared with C = 2, C = 3 can achieve a
fault tolerance structure with less number of used s-TSVs and
smaller maximum port number of multiplexers. Therefore, in
the experiment, we set C to 3.

B. Comparison With Previous TSV Fault Tolerance
Planning Work

We use simulated annealing-based multilayer floorplan-
ning [23] to generate the block floorplan and the f-TSV
planning method in [15] to generate f-TSV planning result
as the input to the proposed fault-tolerance TSV planning
framework. Based on the same f-TSV planning result, we
run the flow in [14] and [15], and the proposed heuristic-
based framework, respectively. The experiment is tested on
MCNC and GSRC benchmarks, including two MCNC circuits
(ami33 and ami49), and four GSRC circuits (n50, n100,
n200, and n300). We adopt one more industrial 2-D design,
which contains 403 266 cells and 448 514 nets. hMetis [22] is
adopted to partition the design into several blocks for floor-
planning. Based on different block numbers, two benchmark
cases, t337 and t469, are generated. That is, t337 has 337
blocks and 1836 nets, while t469 has 469 blocks and 5479
nets. Since the square has the smallest perimeter among all
the rectangles with the same area [24], here the shapes of all
the blocks are set to square. The experiment is executed 20
times independently for each benchmark.

In fault-tolerance structures, the multiplexers are used to
reroute signals, and the delay of a multiplexer is increased
along with the number of input ports. Besides the hardware
cost incurred by the fault-tolerance structure is related to the

958

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 38, NO. 5, MAY 2019

TABLE IV
COMPARISONS AMONG [14], [15], AND THE PROPOSED AFTS UNDER 3-FAULT TOLERANCE STRUCTURES (TARGET YIELD = 99.7%, p = 0.001)

Bench | #6.TsV \ [14] \ [15] \ AFTS (K<3) \ AFTS (maximum K) \
| #s-TSV [#gp [Yield | #s-TSV [#gp | #Port | K [Yield [#sTSV [#gp | #Port | K [Yield | #s-TSV [#gp [#Port [K | Yield |
ami33 55 48 16 100% 48 16 4 3 | 100% 31 2 3 3 | 100% 46 2 4 41 100%
ami49 130 7 24 100% 66 22 5 3| 100% 54 2 5 3 | 99.99% 66 2 6 5| 100%
n50 386 210 70 | 99.97% 204 68 7 3| 100% 82 5 6 2 | 99.96% 98 5 7 5 | 99.98%
n100 592 294 98 | 99.91% 291 97 7 3 | 99.94% 136 7 6 3| 99.91% 169 7 7 6 | 99.93%
n200 1127 396 132 | 99.86% 393 131 6 3 | 99.86% 179 8 5 3 | 99.85% 250 8 7 6 | 99.86%
n300 1232 501 167 | 99.81% 498 166 6 3 | 99.83% 246 9 5 3 | 99.78% 381 7 6 6 | 99.80%
£337 640 315 105 | 99.90% 309 103 4 3| 99.91% 158 8 5 3 | 99.88% 214 6 6 6 | 99.90%
t469 1546 600 200 | 99.71% 588 196 6 3 | 99.73% 313 11 6 3] 99.71% 412 9 7 7 | 99.72%
ave. 714 305 102 | 99.90% 300 100 6 3 | 99.91% 150 7 5 3 | 99.89% 205 6 7 6 | 99.90%
ratio - +48.78% | - - +46.34% | - - - - 26.83% | - - - - 1.00 - - - -
TABLE V
COMPARISONS AMONG [14], [15], AND THE PROPOSED AFTS UNDER 3-FAULT TOLERANCE STRUCTURES (TARGET YIELD = 99.5%, p = 0.01)
Bench | #£.TSV \ [14] ' [15] . \ AFTS (K<3) ' \ AFTS (maximum K) . |
| #s-TSV [#gp [Yield | #s-TSV [#gp [#Port | K [Yield [#sTSV [#gp | #Port | K [Yield | #s-TSV [#gp [#Port | K | Yield |
ami33 54 51 17 100% 51 17 4 3 | 100% 35 4 3 3 | 100% 48 4 4 4 | 100%
amid9 130 87 29 | 99.96% 81 27 5 3 | 99.96% 62 5 4 3 | 99.94% 73 5 5 4 | 99.95%
n50 388 231 77 | 99.89% 222 74 6 3 | 99.92% 102 8 5 3 | 99.88% 113 8 7 5 | 99.90%
n100 589 330 110 | 99.84% 324 108 6 3 | 99.87% 165 12 5 3 | 99.84% 194 11 7 6 | 99.87%
n200 1130 438 146 | 99.73% 435 145 7 3 | 99.74% 210 17 6 2 | 99.72% 280 15 7 6 | 99.73%
n300 1236 555 185 | 99.62% 549 183 6 3 | 99.63% 295 20 5 3 | 99.60% 426 20 6 5 | 99.61%
£337 637 342 114 | 99.82% 330 110 4 3 | 99.82% 184 13 4 3 | 99.78% 227 12 7 7 | 99.81%
t469 1553 645 215 | 99.55% 633 211 7 3 | 99.56% 352 25 6 3 | 99.52% 455 23 7 6 | 99.55%
avg. 715 335 112 | 99.80% 329 110 6 3 | 99.81% 176 13 5 3 | 99.79% 227 12 7 6 | 99.80%
ratio - +47.58% | - - +44.93% | - - - - 2247% | - - - - 1.00 - - - -

number of s-TSVs. In this experiment, we compare the num-
ber of s-TSVs and the maximum port number of multiplexers
of [14] and [15], and the proposed TSV planning framework
under 3-fault tolerance structures. The layer number is set to
3. The target chip yield is set to 99.7% and the TSV defect
probability p is set to 0.001. The yield results in experiment
are accurate to the fourth decimal place. 3 s-TSVs are assigned
to each f-TSV group in [14] and citexu2017clustered, that is,
the maximum number of tolerant faults K equals to 3.

Table IV lists the statistic results averaged over 20 indepen-
dent experiments. All results listed in table satisfy the target
chip yield. Column “#f-TSV” represents the total number of f-
TSVs. Since the three frameworks are run on the same f-TSV
planning result, the number of f-TSVs is the same. Columns
#s-TSV, “#gp,” and “Yield” list the total number of allocated
s-TSVs, the number of groups, and the chip yield, respec-
tively. Besides, column #Port provides the maximum port
number of multiplexers among all groups, while column K
gives the number of tolerant faults in that group, respectively.
Since the generation of fault-tolerance structure is not con-
sidered in [14], the maximum port number of multiplexers
is not listed. As shown in Table IV, the number of f-TSV
groups is greatly reduced in the proposed method. Compared
with [14] and [15], the proposed fault tolerance TSV plan-
ning framework can reduce the number of used s-TSVs by
48.78% and 46.34% on average, respectively. In addition, in
the proposed framework, if the maximum K is used for each
group, it will cause larger multiplexers. Because the maximum
number of tolerant faults (K) in AFTSs is often much greater
than that of [15], which is fixed at 3. As a result, the maxi-
mum port number of multiplexers is increased accordingly in
the generated fault-tolerance structures.

To reduce the size of required multiplexers, we also run the
proposed fault tolerance TSV planning framework with K < 3,
that is, we set K to 3 if the maximum number of tolerant faults
K in a group is greater than 3. As shown in Table IV, com-
pared with [15], the proposed fault tolerance TSV planning
framework with K < 3 has comparable maximum port num-
ber of multiplexers. But the required s-TSVs are surprisingly
reduced by 50% on average under the same target yield, as
shown in Table IV.

The TSV defect probability p in [13] ranges from 0.001 to
0.01. In order to see the impact of p on performance, we also
execute the experiment when p is set to 0.01 under 3-fault
tolerance structures. The layer number is set to 3. The target
chip yield is set to 99.5%. Table V lists the statistic results
averaged over 20 independent experiments. All results listed in
table satisfy the target chip yield. Based on the same f-TSV
planning result, we run the flow in [14] and [15], and the
proposed heuristic-based framework, respectively. Compared
with [14] and [15], the proposed fault tolerance TSV planning
framework can reduce the number of used s-TSVs by 47.58%
and 46.34% on average, respectively. In order to reduce the
size of required multiplexers, we also run the proposed fault
tolerance TSV planning framework with K < 3. As shown
in Table V, compared with [15], the proposed fault tolerance
TSV planning framework with K < 3 has comparable max-
imum port number of multiplexers. But the required s-TSVs
are reduced by 46.50% on average under the same target yield,
as shown in Table V.

Besides, in [7], 1-fault tolerance structures are generated
using minimum spanning tree-based method. However, it is
difficult to apply the method to the fault-tolerance struc-
ture using more than one spare TSVs. In addition, the delay

CHEN et al.: ADAPTIVE 3D-IC TSV FAULT TOLERANCE STRUCTURE GENERATION 959

TABLE VI
COMPARISONS AMONG [7], [14], [15], AND THE PROPOSED AFTS UNDER 1-FAULT TOLERANCE STRUCTURES (TARGET YIELD = 99.5%)

Bench | #£-TSV ua) 7] A [15] A AFTS (K=1)
#s-TSV [#gp [Yield #s-TSV_ [#gp [#Port | Yield #s-TSV [#gp [#Port | Yield | #s“TSV [#gp | #Port [Yield
ami33 52 16 16 | 99.99% 16 16 4 | 99.99% 16 16 3 [99.99% 13 2 2 [99.99%
amid9 124 28 28 | 99.95% 25 25 5 | 99.96% 25 25 4 | 99.96% 2 3 3| 99.95%
ns0 383 74 74 | 99.84% 68 68 8 | 99.87% 68 68 4 | 99.87% 53 8 3| 99.84%
n100 596 108 108 | 99.65% 95 95 8 | 99.68% 95 95 5 | 99.68% 78 12 4 | 99.64%
n200 1126 141 141 | 99.61% 132 132 | 8 | 99.64% 132 132 | 6 | 99.64% | 110 22 5 | 99.61%
n300 1230 197 197 | 99.51% 183 183 | 9 | 99.53% 183 183 | 6 | 99.53% | 158 31 5 | 9951%
£337 639 124 124 | 99.65% 113 113 | 8 | 99.67% 113 13| 6 | 99.67% 91 16 5 | 99.64%
£469 1551 252 252 | 99.50% 236 236 | 8 | 99.52% 236 26 | 6 | 99.52% | 214 40 5 | 99.50%
avg. 713 118 118 | 99.71% 109 109 | 8 | 99.73% 109 109 | 5 | 99.73% 93 17 4 [99.71%
ratio - +26.88% | - - +1720% | - - +1720% | - - - 1.00 - - -
—— [14] —e— [15] ——Ours significantly reduced by the proposed framework for all target
360 — ‘ ‘ | chip yields.
270 - 8
7
= 1801 M VIII. CONCLUSION
72
* 90l | In this paper, we focus on the generation of adaptive TSV
fault-tolerance structure. An ILP-based model and an effi-
0 — ‘ ‘ ‘ ‘ cient MCMEF-based heuristic method are proposed to generate
0.991 0.993 0.995 0.997 0.999 pased heut Prop g
Tareet Yield the AFTSs in minimizing both the multiplexer delay over-
arget Yie
g head and the used s-TSV number. In the end, a fault-tolerance
Fig. 7. Number of required s-TSVs under various target yields. TSV planning methodology is also proposed to provide yield

overhead introduced by the multiplexers, which are used for
rerouting signals in the generated fault-tolerance structures, is
not considered. In the worst-case the input port number of a
multiplexer could be the number of f-TSVs in the group if the
tree is a star structure, which introduces large delay overhead.
In this experiment, we consider I-fault tolerance structures
case, that is, the maximum number of tolerant faults K equals
to 1. Since the chip yield is lower under 1-fault tolerance
structures, the target chip yield is set to 99.5% and the TSV
defect probability p is set to 0.001. We compare [7], [14], [15],
with our proposed heuristic-based model under 1-fault toler-
ance structures. One s-TSV is assigned to each f-TSV group
in [14] and [15]. We also set K to 1 in the proposed fault
tolerance TSV planning framework, if the maximum number
of tolerant faults K in a group is greater than 1. Based on the
TSV planning method in [15], we run the minimum spanning
tree method in [7]. Therefore, the s-TSV numbers and the chip
yield of [7] and [15] are same in the experiment.

Table VI lists the statistic results averaged over 20 indepen-
dent experiments. As shown in Table VI, compared with [7]
and [15], the proposed fault tolerance TSV planning frame-
work can reduce the number of s-TSVs and the maximum
port number of multiplexers when generating 1-fault tolerance
structures.

Fig. 7 shows the required s-TSV numbers under various tar-
get yields, in comparison among [14], [15], and our proposed
framework. The experiment is performed on n100 benchmark.
Each data point in the figure is an average of 20 independent
experiments. It can be observed that the number of required
s-TSVs increases along with increasing target yield and is

awareness in TSV planning. Experimental results show that,
compared with state-of-the-art, the proposed fault tolerance
TSV planning methodology can effectively reduce the number
of s-TSVs used for fault tolerance structures.

It should be noted that, the proposed TSV fault tolerance
planning is performed in floorplanning stage where we have
no accurate timing information. Therefore, we only use the
wirelength to reflect the wire delay in floorplanning stage.
In future we plan to evaluate the delay more accurately by
executing time-consuming routing.

ACKNOWLEDGMENT

The authors would like to thank the Information Science
Laboratory Center of USTC for hardware and software
services.

REFERENCES

[1] S.J. Souri, K. Banerjee, A. Mehrotra, and K. C. Saraswat, “Multiple Si
layer ICs: Motivation, performance analysis, and design implications,” in
Proc. ACM/IEEE Design Autom. Conf. (DAC), Los Angeles, CA, USA,
2000, pp. 213-220.

[2] J. W. Joyner, P. Zarkesh-Ha, and J. D. Meindl, “A global interconnect
design window for a three-dimensional system-on-a-chip,” in Proc.
IEEE Int. Interconnect Technol. Conf. (IITC), Burlingame, CA, USA,
Jun. 2001, pp. 154-156.

[3] (2008). ITRS. [Online]. Available: http://www.itrs.net

[4] T. Lu et al., “TSV-based 3-D ICs: Design methods and tools,” IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 36, no. 10,
pp. 1593-1619, Oct. 2017.

[5] L Loi, S. Mitra, T. H. Lee, S. Fujita, and L. Benini, “A low-overhead
fault tolerance scheme for TSV-based 3D network on chip links,” in
Proc. IEEE/ACM Int. Conf. Comput.-Aided Design (ICCAD), San Jose,
CA, USA, Nov. 2008, pp. 598-602.

[6] B. Yu et al., “Design for manufacturability and reliability in extreme-
scaling VLSL,” Sci. China Inf. Sci., vol. 59, pp. 1-23, Jun. 2016.

960

[7]

[8]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]
[20]
[21]

[22]

[23]

[24]

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 38, NO. 5, MAY 2019

Y.-G. Chen, W.-Y. Wen, Y. Shi, W.-K. Hon, and S.-C. Chang, “Novel
spare TSV deployment for 3-D ICs considering yield and timing con-
straints,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 34, no. 4, pp. 577-588, Apr. 2015.

Q. Xu, L. Jiang, H. Li, and B. Eklow, “Yield enhancement for 3D-
stacked ICs: Recent advances and challenges,” in Proc. IEEE/ACM Asia
South Pac. Design Autom. Conf. (ASPDAC), Sydney, NSW, Australia,
Feb. 2012, pp. 731-737.

H.-H. S. Lee and K. Chakrabarty, “Test challenges for 3D inte-
grated circuits,” IEEE Des. Test. Comput., vol. 26, no. 5, pp. 26-35,
Sept./Oct. 2009.

C. Ferri, S. Reda, and R. I. Bahar, “Strategies for improving the para-
metric yield and profits of 3D ICs,” in Proc. IEEE/ACM Int. Conf.
Comput.-Aided Design (ICCAD), San Jose, CA, USA, Nov. 2007,
pp. 220-226.

C.-W. Chou, Y.-J. Huang, and J.-F. Li, “Yield-enhancement techniques
for 3D random access memories,” in Proc. Int. Symp. VLSI Design
Autom. Test (VLSI-DAT), Apr. 2010, pp. 104-107.

L. Jiang, R. Ye, and Q. Xu, “Yield enhancement for 3D-stacked memory
by redundancy sharing across dies,” in Proc. IEEE/ACM Int. Conf.
Comput.-Aided Design (ICCAD), San Jose, CA, USA, Nov. 2010,
pp. 230-234.

L. Jiang, Q. Xu, and B. Eklow, “On effective TSV repair for 3D-stacked
ICs,” in Proc. IEEE/ACM Design Autom. Test Eurpoe (DATE), Dresden,
Germany, Mar. 2012, pp. 793-798.

S. Wang, M. B. Tahoori, and K. Chakrabarty, “Defect clustering-
aware spare-TSV allocation for 3D ICs,” in Proc. IEEE/ACM Int.
Conf. Comput.-Aided Design (ICCAD), Austin, TX, USA, Nov. 2015,
pp. 307-314.

Q. Xu, S. Chen, X. Xu, and B. Yu, “Clustered fault tolerance TSV
planning for 3-D integrated circuits,” IEEE Trans. Comput.-Aided Design
Integr. Circuits Syst., vol. 36, no. 8, pp. 1287-1300, Aug. 2017.

Y. Chen, D. Niu, Y. Xie, and K. Chakrabarty, “Cost-effective integration
of three-dimensional (3D) ICs emphasizing testing cost analysis,” in
Proc. IEEE/ACM Int. Conf. Comput.-Aided Design (ICCAD), San Jose,
CA, USA, Nov. 2010, pp. 471-476.

B. Noia and K. Chakrabarty, Design-for-Test and Test Optimization
Techniques for TSV-Based 3D Stacked ICs. Cham, Switzerland: Springer,
2014.

L. Jiang, Q. Xu, and B. Eklow, “On effective through-silicon via
repair for 3-D-stacked ICs,” IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 32, no. 4, pp. 559-571, Apr. 2013.

A. Schrijver, Combinatorial Optimization: Polyhedra and Efficiency,
vol. 24. Heidelberg, Germany: Springer, 2002.

K. Mehlhorn and S. Naher, LEDA: A Platform for Combinatorial and
Geometric Computing. Cambridge, U.K.: Cambridge Univ. Press, 1999.
A. Makhorin. (2008). GLPK (GNU Linear Programming Kit). [Online].
Available: https://www.gnu.org/software/glpk/

G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar, “Multilevel hyper-
graph partitioning: Applications in VLSI domain,” [EEE Trans. Very
Large Scale Integr. (VLSI) Syst., vol. 7, no. 1, pp. 69-79, Mar. 1999.
S. Chen and T. Yoshimura, “Multi-layer floorplanning for stacked ICs:
Configuration number and fixed-outline constraints,” Integr. VLSI J.,
vol. 43, no. 4, pp. 378-388, 2010.

S. Chen and T. Yoshimura, “Fixed-outline floorplanning: Block-position
enumeration and a new method for calculating area costs,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 27, no. 5, pp. 858-871,
May 2008.

Song Chen (M’09) received the B.S. degree in
computer science from Xi’an Jiaotong University,
Xi’an, China, in 2000, and the Ph.D. degree
in computer science from Tsinghua University,
Beijing, China, in 2005.

He served with the Graduate School of
Information, Production and Systems, Waseda
University, Tokyo, Japan, as a Research Associate
from 2005 to 2009 and as an Assistant Professor
from 2009 to 2012. He is currently an Associate
Professor with the Department of Electronic Science
and Technology, University of Science and Technology of China, Hefei,
China. His current research interests include several aspects of very large
scale integration design automation, on-chip communication system, and
computer-aided design for emerging technologies.

Dr. Chen is a member of IEICE.

Qi Xu (S’17) received the B.E. degree in micro-
electronics from Anhui University, Hefei, China, in
2012. He is currently pursuing the Ph.D. degree
in electronic science and technology with the
University of Science and Technology of China,
Hefei.

His current research interests include physical
design automation and design for reliability for 3-D
integrated circuits.

Bei Yu (S’11-M’14) received the Ph.D. degree
from the Department of Electrical and Computer
Engineering, University of Texas at Austin, Austin,
TX, USA, in 2014.

He is currently an Assistant Professor with the
Department of Computer Science and Engineering,
Chinese University of Hong Kong, Hong Kong.

Dr. Yu was a recipient of Four Best Paper Awards
at the International Symposium on Physical Design
(ISPD) 2017, the SPIE Advanced Lithography
Conference 2016, the International Conference on
Computer Aided Design (ICCAD) 2013, and the Asia and South Pacific
Design Automation Conference (ASPDAC) 2012, and three additional Best
Paper Award nominations at DAC/ICCAD/ASPDAC, and four ICCAD/ISPD
contest awards. He has served in the editorial boards of Integration, VLSI
Journal and IET Cyber-Physical Systems: Theory and Applications.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZapfChancery-MediumItalic
 /ZapfDingBats
 /ZapfDingbatsITCbyBT-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

