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Moore’s Law to Extreme Scaling
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Challenge 1: Failure (Hotspot) Detection
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Challenge 2: Optical Proximity Correction (OPC)
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Why Deep Learning?

» Feature Crafting v.s. Feature Learning
Although prior knowledge is considered during manually feature design, information
loss is inevitable.
Feature learned from mass dataset is more reliable.

> Scalability
With shrinking down circuit feature size, mask layout becomes more complicated.
Deep learning has the potential to handle ultra-large-scale instances while traditional
machine learning may suffer from performance degradation.

> Mature Libraries
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Outline

Hotspot Detection via Machine Learning

OPC via Machine Learning

Heterogeneous OPC
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Outline

Hotspot Detection via Machine Learning
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Hotspot Detection Hierarchy

Increasing
verification
accuracy

Lithography Simulation

A

A\

(Relative) CPU runtime at each level

» Sampling (DRC Checking):
scan and rule check each region

» Hotspot Detection:

verify the sampled regions and report potential hotspots
> Lithography Simulation:

final verification on the reported hotspots
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Early Study of DNN-based Hotspot Detector

> Total 21 layers with 13 convolution layers and 5 pooling layers.
> A RelU is applied after each convolution layer.
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*Haoyu Yang, Luyang Luo, et al. (2017). “Imbalance aware lithography hotspot detection: a deep learning ﬁﬁtm
approach”. In: JM3 16.3, p. 033504.
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What Does Deep Learning Learn?
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The Biased Learning Algorithm [DAC’17]7

Training Set
MGD: Update ¢
end-to-end yn=[0,1]
training Yo=[1-¢, €]

Yes

Trained Model
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tHaoyu Yang, Jing Su, et al. (2017). “Layout Hotspot Detection with Feature Tensor Generation-and Deep
10/22 Biased Learning”. In: Proc. DAC, 62:1-62:6.
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Optimizing AUC [ASPDAC’19]1t

Threshold
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PHL ®ppr(z) = max(1 —z,0)
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IWei Ye et al. (2019). “LithoROC: lithography hotspot detection with explicit ROC optimization”. In: ﬁrzﬁ
Proc. ASPDAC, pp. 292-298.
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Conventional Clip based Solution
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% Hotspot
= Conventional —
Hotspot Detector

Non-
| Hotspot

Clips

P A binary classification problem.
» Scan over whole region.
» Single stage detector.

P Scanning is time consuming and single stage is not robust to false alarm.
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Region based approach [DAC’19]

Hotspot Core

Region-based
Hotspot Detector

‘ Feature Extraction ‘
v

‘ Clip Proposal Network ‘
v

‘ Refinement ‘

» Learning what and where is hotspot at same time.
» Classification Problem -> Classification & Regression Problem.
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Ran Chen et al. (2019). “Faster Region-based Hotspot Detection”. In: Proc. DAC, 146:1=146:6.
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Outline

OPC via Machine Learning
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OPC Previous Work

Classic OPC

> Model/Rule-based OPC

[Cobb+,SPIE’02][Kuang+,DATE’15]
[Awad+,DAC'16][Su+,ICCAD'16]

1. Fragmentation of shape edges;

2. Move fragments for better printability.

» Inverse Lithography
[Pang+,SPIE’05][Gao+,DAC’14]
[Poonawala+,TIP’07][Ma+,ICCAD17]

1. Efficient model that maps mask to
aerial image;

2. Continuously update mask through
descending the gradient of contour
error.
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Machine Learning OPC
[Matsunawa+,JM3'16][Choi+,SPIE'16]
[Xu+,ISPD'16][Shim+,APCCAS'16]

1. Edge fragmentation;

2. Feature extraction;

3. Model training.
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Machine Learning-based SRAF Insertion
SRAF Insertion with Machine Learning [ISPD'16]q
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Tackling Robustness with Dictionary Learning [ASPDAC'19] |
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{Xiaoqing Xu et al. (2016). “A machine learning based framework for sub-resolution assist feature
generation”. In: Proc. ISPD, pp. 161-168.

| Hao Geng et al. (2019). “SRAF Insertion via Supervised Dictionary Learning”. In: Proc. ASPDAC,

pp. 406—411.
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Machine Learning Assists Model-based OPC [ASPDAC’19]x*x

Input Mask
Fragmentation
and SRAF

Output Mask

Intensity
Difference
Optimization

EPE
Violations
Minimization
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Checkpoints Intensity

Input mask ¢ Prediction Predicted
_—7 Intensity Value
Predicted EPE
violations

) EPE
| Pprediction

Feature Extraction

» Replace lithography simulation (slow) with machine learning-based EPE predictor
(fast) in OPC iterations.

x*kBentian Jiang et al. (2019). “A fast machine learning-based mask printability predictor for OPC ﬁﬁﬁ%
acceleration”. In: Proc. ASPDAC, pp. 412-419.
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GAN-OPC [DAC'18] 1t
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P Better starting points for legacy OPC engine and reduce iteration count. T

MESIEN
tTHaoyu Yang, Shuhe Li, et al. (2018). “GAN-OPC: Mask Optimization with Lithography-guided Generative H[:

Adversarial Nets”. In: Proc. DAC, 131:1-131:6.
17/22



Outline

Heterogeneous OPC
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An Observation of Previous OPC Solutions

Machine learning solutions rely on legacy OPC engines
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Legacy OPC engines exhibit different performance on different designs
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A Design of Heterogeneous OPC Framework
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We design a classification model that can determine the best OPC engine for a given

design at trivial cost.
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Training on Artificial Designs
P Training data comes from GAN-OPC and is labeled according to results of MB-OPC
and ILT.
» Test on 10 designs from ICCAD 2013 CAD Contest.
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Experimental Results
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Several Benefits
» Does not require extremely high prediction accuracy of the classification model.
> Take advantages of different OPC solutions on different designs. ﬁﬁtﬁ
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Conclusion and Discussion

So Far:
> Recent progress of deterministic machine learning model for hotspot detection
» State-of-the-art machine learning solutions for OPC and SRAF insertion
> A heterogeneous OPC framework guided by a classification engine
Future:
» Manufacturability issues.
» Classification challenge when more than two OPC engines are available.
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