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FPGA Targeted DNN Accelerator Design Flow

Dataflow
HLS M 1 :
DNN Model i Design Space
Description .
Exploration

FPGA
Architecture
Design

» Design power efficient dataflow with limited latency loss
» Enabled by proposed power modeling and a hierarchical strategy
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Dataflow Optimization

Basic Techniques for Loop Nest Optimization

for to in range (0, M):
for row in range(0, H):
for col in range(0, W):
for ti in range (0, N):
for k1l in range(0, K):

for k2 in range (0, K):
OUTto, row,col+=WTto, ti, k1,6k2
X INti,row+kl,col+k2

A 6-level loop
convolutional layer
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Notations:

N: # input channel
M: # output channel
K: kernel size

H: height of feature
W: width of feature




Dataflow Optimization

Basic Techniques for Loop Nest Optimization

I’for to in range(0, M, OC) 2!

| for tolin range (0, OC):

for row in range (0, H)
for col in range(0, W):
for ti in range(0, N):
for k1 in range (0, K):
for k2 in range(0, K):
OUTtol+to, row,col+=WTtol+to, ti ki1, k2
X INti,row+kl,col+k2

Loop Tiling
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conv_group (BIN[IC] ,BWT[OC] [IC],BOUT[OC]) :

conv_group (BIN[IC],BWT[OC] [IC],BOUT[OC]) :
-9 P for to in range(0, M, OC):
for L1 in range(0, OC):

for row in range(0, H, PH):

for col in range(0, W, PW):

load_output (BOUT[OC] [PH] [PW] ,DOUT)

for ti in range(0, N, IC):

for L1 in range(0, OC): load_input (BIN[IC] [PH] [PW] ,DIN)

( convolution (BINo,BWTL1,0,BOUTLI) | load_weight (BWT[OC] [IC] [K] [K] ,DWT)
] conv_group (BIN[IC],BWT[OC] [IC],
BOUT[OC])

I

I

I convolution (BIN1,BWTL1,1,BOUTL1) I
: store_output (BOUT[OC] [PH] [PW] ,DOUT)

'convolutlon(BINIc-l BWTL1,1IC-1 BOUTu)

Loop Unrolling Output Data Reuse




Typical FPGA Architecture for DNN
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Architecture Design

Input BRAM
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Output BRAM

Systolic Array




To Combine: Layer Fusion
Reduce Data Transfer

Weight
BRAM 1

Systolic | |

Systolic

Pooling

| ReLU

PU1

Weight
BRAM 2

|| Systolic |

Systolic

Pooling

r ReLU

N Extra
BRAM

Hardware arch. of fusing 2 layers. Outputs of the first

PU2

layer are the inputs of the second layer.
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Output
BRAM 2

for tol in range(0, Mi, OC1i):
for rowl in range(0, Hi, PHi):

for coll in range(0, Wi, PW1):

for til in range(0, Ni, ICi1):
load_input (BINi[IC1] [PH1] [PW1],DIN1)
load_weight (BWT1[OC1] [IC1] [K1] [K1] ,DWT1)

systolic_group_ 1 (BINi[IC1],BWT1[OC1][IC1],
BOUT1[OC1],U1)
prepare_for_ layer2 (BOUT1[OC1] [PH1] [PW1],
extra_buffer)

for to2 in range(0, M2, OC2):
load_output (BOUT2[OC2] [PH2] [PW2] ,DOUT2)
load_weight (BWT2[OC2] [OC1] [K2] [K2] ,DWT2)

systolic_group_ 2 (BOUT1[OC1] ,BWT2[OC2] [OC1],
BOUT2[0C2] ,U2)

store_output (BOUT2[OC2] [PH2] [PW2] ,DOUT2) \
3
A

Pseudocode of fusing 2 layers.
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Power Minimization
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TABLE I List of Parameters

Name  Definition
oC; # of output channels per feature block in fused layer ¢
1C; # of input channels per feature block in fused layer %
PH;  Feature height of feature block in fused layer ¢
PW,;  Feature width of feature block in fused layer 7
Th; row # of PEs in one systolic array in fused layer ¢
Tw; column # of PEs in one systolic array in fused layer ¢
U; # of instantiated systolic arrays in fused layer %
> Notations:

N;: # of input channels in layer i
M;: # of output channels in layer i
H;: height of features in layer i

W;: width of features in layer i

K;: kernel size in layer i

PS;: block stride in layer i

Input Features
PH; — K; 11 x PW; - K;

0 — ( 75, 1) x( T +1)
PH, —) K2 x IC;
PW;
Kernels
(e’ K? x IC;
-9 =
ocC; oc,

From convolution blocks to matrices (systolic array).
Matrices will be further decomposed to feed into
systolic array.




Modeling the Energy

» Energy is decomposed as Data Transfer and Computation
» Energy per unit data access is considered as a constant for each memory level

» Data transfer energy inside systolic array is considered as computation energy for
atomic nature
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Modeling the Energy

Data Transfer Energy

> Energy (layer 1):
(03] (%)
ED; = PH; PW;
i Oci+PHi><PWi+a3 it oy i
Qs (67 Q7
+ PH; + PW; * IC;’

» {ay,..., a7} are model-specific pre-characterized constants
» (a1 /0C;) and (a7/IC;) refers to input and output. (an/(PH; x PW;)) for weights
» Other items are for data preparation process used in layer fusion
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Modeling the Energy
Computation Energy

» Systolic array has (Th; x Tw;) PEs which are all active in computation

» Denote K,2 x IC; as D;. (D; + Th; + Tw; — 2) cycles are needed to compute each pair
of inputs and weights sub-matrices.

> A single call of the systolic array consumes energy:
(Th,' X TW,') X (D,‘ + Th; + Tw; — 2) X ec,

where ec is the energy constant consumed by each PE per cycle
» Denote the energy of computing each pair of inputs and weights blocks as eb

> Total computation energy of layer i is EC;:
EC,‘ :|VNL/IC,-| X |VH,'/PH,'—| X [W,/PWL—‘ X [M,/OCJ X eb
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Modeling the Latency

Data Transfer Latency

> Latency (layer i):

B B2
LD; = PH; PW;
i 0Ci+PHj><PWi+/83 z+ﬁ4 i
Bs Be | B
+ PH,; + PW; + IC;’
» {5i,..., 7} are model-specific pre-characterized constants

P Other terms are following similar notation convention as used in energy formulation
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Modeling the Latency

Computation Latency

> A single call to the systolic array needs (D; + Th; + Tw; — 2) cycles

» Denote the latency of computing each pair of inputs and weights blocks as Ic which
includes multiple calls to systolic arrays

» Total computation latency of layer i is LC;:

LC,' = {(N,/IC,—I X (H,'/PHI'-‘ /U[‘ X (Wl'/PWiil X [M,' / OC[I x lc
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Constrained Power Minimization

» Constrained by memory and DSP resources, i.e. Buffer,y,; and DSPp41
» Constrained by latency upper bound Ly,

» Formulation

. Etoml
min ,
total

S.t. Buﬁerused < Buﬁertotala
DSPuxed < DSPtotala

Liorar < Luppera
where Ey = .7 (ED; + EC)), Ligat = 3., (LD; + LC;), Z is the total number of

layers in model

» The formulation is of non-convex, non-linear, integer constrained

14/22

U0



Solution Exploration
A Two-Step Hierarchical Strategy

Deployment

Model-based
-based
Exploration

Exploration
L_ Candidates Set 1
""""""" \ /

|

' | |
: | : { Front-end Synthesis & Select } |
I . " v |
| { Enumerate Configurations } (N |
I v " Candidates Set 2 1
1 " 1
. | :
: I : { Back-end Synthesis & Select } ]
[ e )
|

{ Estimate Power Performance } I + ——————

L I ! Final Design

» Model-based exploration

» Deployment-based exploration
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Solution Exploration

Model-based exploration

» Narrow configuration search space with empirical constraints
» Enumerate solutions
» Exclude invalid solutions violating resource and latency constraints

> Estimate power-performance using the proposed power model and prune
suboptimal ones

Deployment-based exploration

> Verify surviving configurations by HLS further excluding FPGA incompatible solutions
> Synthesize further in back-end for real power-performance metrics
» Choose final configuration

Bne
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Experiments

—o— BRAM size = 18
—a— Non-Fixed BRAM —2— BRAM size = 36
—e— Fixed BRAM —=— BRAM size = 72

1.7k !
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1.4 | | |

1 5 9 13 17

# Input Feature BRAM # Computation Engines
(@) (b)

Total Power (W)

» (a) Non monotonic relation on BRAM size vs power consumption

» (b) Deploying 2 x 2 convolutions on PYNQ-Z1. Power increases with the number of

computation engines and BRAMSs.
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Experiments

I Measured Power [ 1Estimated Power
1 1
0.8 0.8
2 0.6 0.6
& 0.4 0.4
0.2 0.2
0

C1C2C3C4C5¢C6 C1C2C3C4C5¢C6

(a) (b)
Fig. 7 Model fidelity analysis: (a) AlexNet; (b) VGG16.

P Model fidelity analysis on AlexNet and VGG16
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Experiments

I Baseline [ 1Optimized
5 &
z 5
L 3
X -
g £
o —-
Z z
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C1C2C3C4C5C6 C1C2C3C4C5Co

(2) (b)

» Corresponding performance analysis.

» By sacrificing little latency performance, at most 6.5%, we can achieve more than 10%
power benefits, with best up to 31%.
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Further Discussions — Design Space Exploration

Current Solutions

» Most existing efforts explore the design space by defining white-box models to
approximate HLS results

» Still need lots of time to verify the results
» May lose good designs because of low model accuracy

Possible Directions

» Some machine learning models can be used, e.g. Bayesian Optimization in analog
circuit design

> Multi-fidelity algorithms, use cheap but inaccurate HLS results to help build the more
accurate back-end implementation models
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Further Discussions — Timing Closure

Current Solutions

» More and more complicated designs would impose difficulties on timing closure
> Some arts were proposed by tuning parameters in logical and physical synthesis

» Performance benefits are limited, by only considering back-end parameters tuning or
P&R methods selection

Possible Directions

> Take HLS code revision into consideration

> Revising HLS code, tuning back-end parameters and customizing FPGA
placement/routing methods can be considered in a uniform framework

U
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