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Temperature Sensor

» Errors exist in senor output;
» Manufacturing defect, noise, aging...
» Cost varies significantly.

Part Number | Temp. Range | Accuracy | Price
SMT172 —45 ~130°C | £0.25°C | $35.13
AD590JH —50~150°C | £0.5°C | $17.91
TMP100 —55~125°C | £2.0°C | $1.79
MCP9509 —40 ~ 125°C | £4.5°C | $0.88
LM335A —40 ~100°C | £5.0°C | $0.75
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Problem Formulation of Sensor Drift Calibration

P Several low-cost sensors are deployed to sense in-building temperatures;
» The sensor output deviates by a time-invariant drift.

Lous
o sensor 2 transfer function
ideal transfer function
sensor 1 transfer function
drift 2
drift 1

temperature

Sensor Drift Calibration

Given the measurement values sensed by all sensors during several time-instants, drifts will -
be accurately estimated and calibrated. tg@
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Basic Model

Spatial Correlation Model:

» Defines a linear correlation among different temperature values;

k k
Y ~ 7:1#,'“1',/?%( " ba, k=12, ,m.

0

> drift-with model: )Acl(k) +& D &,-J(fc](

» drift-free model: x

+6j)—|—&,’70, k=1,2,--- ,m.

I
Input:
> fcl(k): the measurement value sensed by ith sensor at kth time-instant.
> a;;: the drift-free model coefficient.
Output:
P> ¢;: atime-invariant drift calibration. g@
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Further Assumption

Likelihood:
00 N~ N0 ~ W) -
P(x|a, €) x exp —EZ X +e— Z aij (%" + &) — aiol)-
i=1 k=1 J=1j#i

Prior for all model coefficients (Bayesian Model Fusion [Wang+,TCAD15]):

ocexp( Z Z a,J a,J)z).

i=1 j= Oﬁél
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Mathematic Formulation based on MAP

Maximum-a-posteriori:

n n

min 5022 ) e Z ai (% ()+€J)—alo]
i=1 k=1 Jj=1y#i

Z — (s = @) +5 Ze.

#i a’J

Challenges:
» How to handle this Formulation

> How to determine hyper-parameters
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Overall Flow

8/19

Drift-free Measurements
Model Coefficients

v

CMeasurementS with Drift>—>

Hyper-parameters Induction Option 1:

Cross-validation

Model Optimization:

Alternating-based Optimization

Hyper-parameters Induction Option 2:

EM with Gibbs Sampling

( Drift Calibration )4—




Alternating-based Optimization
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Require: Sensor measurements X, prior a and hyper-parameters \, dg, de.

1
2
3
4
5k
6
7
8

. Initialize a «— a and € < 0;
: repeat

fori < 1tondo

Fix €, solve linear equations (1) using Gaussian elimination to update a;;
end for
Fix a, solve linear equations (2) using Gaussian elimination to update ¢;

: until Convergence
: return a and e.

it

3o Z v 4 [Z aij(x Rt €) + a; o] + Ai(ai”a; i) =0,

m

5022 {a,,l Zau —|—e, —I—a,o)] + 06, =0

i=1 k=1



Estimation of Hyper-parameters

Comparison of Estimation for Hyper-parameters

> Unsupervised Cross-validation:
simple, accurate but time-consuming.

> Monte Carlo Expectation Maximization:
fast, flexible but no-accurate.
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Unsupervised Cross-validation

Runl Run2 Run3 Run4 Runn

l ...... )
l ...... B
l ...... i

sdnoin u

model training

D ...... l - error estimation

n n n
Training Set:  min 6022[1(’“)4-5, 3 @Pre) a2y Y o (a,J ;)2 +6e Ze

i=1 k=1 i=Lj#i =1 =0 i i=1

o : |
Validation Set: Z SEP e D a0 + ) —aio)
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Monte Carlo Expectation Maximization

Maximum Likelihood Estimation:

max  P(X;d0, A, Oe).

€,00,A
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Expectation Maximization

E-Step
0(Q]0°M) = / / P4, e[f; ) In PR, &, €; Q)dade
1 L
S = ZlnP(f{, al) €. )
=1
M-Step

L
1
_E 2. a® 0.0
max Ll,l InP(x,a', e"; Q).
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Benchmark
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Benchmark: (a) Hall; (b) Secondary School.
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Accuracy
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Drift variance is set to (a) 2.25; (b) 2.78; Benchmark: (a,b) Hall;.
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Accuracy
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Runtime
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Runtime vs. # sensor (a) Hall; (b) Secondary School.
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Conclusion
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A sensor spatial correlation model has been proposed to perform drift calibration
MAP estimation is then formulated as a non-convex problem with three
hyper-parameters, which is handled by the proposed alternating-based method.
Cross-validation and EM with Gibbs sampling are used to determine
hyper-parameters, respectively.

Experimental results show that on benchmarks simulated from EnergyPlus, the

proposed framework with EM can achieve a robust drift calibration and better trade-off
between accuracy and runtime.
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