Sensor Drift Calibration via Spatial Correlation Model in Smart Building

Tinghuan Chen¹ Bingqing Lin² Hao Geng¹ Bei Yu¹

¹Chinese University of Hong Kong, Hong Kong ²Shenzhen University, China

Smart Building and Cyber-Physical System

Temperature Sensor

- Errors exist in senor output;
- ► Manufacturing defect, noise, aging...
- Cost varies significantly.

Part Number	Temp. Range	Accuracy	Price
SMT172	$-45\sim130~^{\circ}\mathrm{C}$	±0.25 °C	\$ 35.13
AD590JH	$-50\sim150{ m ^{\circ}C}$	±0.5 °C	\$ 17.91
TMP100	$-55\sim 125~^{\circ}\mathrm{C}$	±2.0 °C	\$ 1.79
MCP9509	$-40\sim 125~^\circ extsf{C}$	±4.5 °C	\$ 0.88
LM335A	$ -40\sim100~{ m ^{\circ}C}$	±5.0 °C	\$ 0.75

Problem Formulation of Sensor Drift Calibration

- Several low-cost sensors are deployed to sense in-building temperatures;
- ► The sensor output deviates by a time-invariant drift.

Sensor Drift Calibration

Given the measurement values sensed by all sensors during several time-instants, drifts will be accurately estimated and calibrated.

Basic Model

Spatial Correlation Model:

- Defines a linear correlation among different temperature values;
- lacktriangle drift-free model: $x_i^{(k)} pprox \sum_{j=1, j \neq i}^n a_{i,j} x_j^{(k)} + a_{i,0}, \qquad k=1,2,\cdots,m_0.$
- $lack ext{drift-with model: } \hat{x}_i^{(k)} + \epsilon_i pprox \sum_{j=1, j
 eq i}^n \hat{a}_{i,j} (\hat{x}_j^{(k)} + \epsilon_j) + \hat{a}_{i,0}, \qquad k=1,2,\cdots,m.$

Input:

- $\hat{x}_i^{(k)}$: the measurement value sensed by *i*th sensor at *k*th time-instant.
- $ightharpoonup a_{i,j}$: the drift-free model coefficient.

Output:

 $ightharpoonup \epsilon_i$: a time-invariant drift calibration.

Further Assumption

Likelihood:

$$\mathcal{P}(\hat{\mathbf{x}}|\hat{\mathbf{a}},\boldsymbol{\epsilon}) \propto \exp(-\frac{\delta_0}{2}\sum_{i=1}^n\sum_{k=1}^m[\hat{x}_i^{(k)} + \epsilon_i - \sum_{j=1,j\neq i}^n \hat{a}_{i,j}(\hat{x}_j^{(k)} + \epsilon_j) - \hat{a}_{i,0}]^2).$$

Prior for all model coefficients (Bayesian Model Fusion [Wang+,TCAD15]):

$$\mathcal{P}(\hat{\mathbf{a}}) \propto \exp\left(-\sum_{i=1}^n \sum_{j=0, j \neq i}^n \frac{\lambda}{2a_{i,j}^2} (\hat{a}_{i,j} - a_{i,j})^2\right).$$

Mathematic Formulation based on MAP

Maximum-a-posteriori:

$$\min_{\hat{\mathbf{a}}, \epsilon} \quad \delta_0 \sum_{i=1}^n \sum_{k=1}^m [\hat{x}_i^{(k)} + \epsilon_i - \sum_{j=1, j \neq i}^n \hat{a}_{i,j} (\hat{x}_j^{(k)} + \epsilon_j) - \hat{a}_{i,0}]^2 \\ + \lambda \sum_{i=1}^n \sum_{j=0, j \neq i}^n \frac{1}{a_{i,j}^2} (\hat{a}_{i,j} - a_{i,j})^2 + \delta_{\epsilon} \sum_{i=1}^n \epsilon_i^2.$$

Challenges:

- How to handle this Formulation
- How to determine hyper-parameters

Overall Flow

Alternating-based Optimization

Require: Sensor measurements $\hat{\mathbf{x}}$, prior \mathbf{a} and hyper-parameters λ , δ_0 , δ_{ϵ} .

- 1: Initialize $\hat{\mathbf{a}} \leftarrow \mathbf{a}$ and $\epsilon \leftarrow \mathbf{0}$:
- 2: repeat
- for $i \leftarrow 1$ to n do 3:
- Fix ϵ , solve linear equations (1) using Gaussian elimination to update $\hat{\mathbf{a}}_i$; 4:
- end for 5.
- Fix $\hat{\mathbf{a}}$, solve linear equations (2) using Gaussian elimination to update ϵ ;
- 7: until Convergence
- 8: **return** $\hat{\mathbf{a}}$ and $\boldsymbol{\epsilon}$.

$$\delta_0 \sum_{k=1}^{m} (\hat{x}_t^{(k)} + \epsilon_t) \left[\sum_{j=1}^{n} \hat{a}_{i,j} (\hat{x}_j^{(k)} + \epsilon_j) + \hat{a}_{i,0} \right] + \lambda \frac{(\hat{a}_{i,t} - a_{i,t})}{a_{i,t}^2} = 0, \tag{1}$$

$$\delta_0 \sum_{i=1}^n \sum_{k=1}^m \left[\hat{a}_{i,t} (\sum_{j=1}^n \hat{a}_{i,j} (\hat{x}_j^{(k)} + \epsilon_j) + \hat{a}_{i,0}) \right] + \delta_{\epsilon} \epsilon_t = 0, \quad (2)$$

Estimation of Hyper-parameters

Comparison of Estimation for Hyper-parameters

- Unsupervised Cross-validation: simple, accurate but time-consuming.
- Monte Carlo Expectation Maximization: fast, flexible but no-accurate.

Unsupervised Cross-validation

$$\begin{split} & \text{Training Set:} & \min_{\hat{\mathbf{a}},\epsilon} & \delta_0 \sum_{i=1}^n \sum_{k=1}^m [\hat{x}_i^{(k)} + \epsilon_i - \sum_{j=1,j \neq i}^n \hat{a}_{i,j} (\hat{x}_j^{(k)} + \epsilon_j) - \hat{a}_{i,0}]^2 + \lambda \sum_{i=1}^n \sum_{j=0,j \neq i}^n \frac{1}{a_{i,j}^2} (\hat{a}_{i,j} - a_{i,j})^2 + \delta_\epsilon \sum_{i=1}^n \epsilon_i^2. \end{split}$$

$$& \text{Validation Set:} & \sum_{i=1}^n \sum_{k=1}^m [\hat{x}_i^{(k)} + \epsilon_i - \sum_{j=1,j \neq i}^n \hat{a}_{i,j} (\hat{x}_j^{(k)} + \epsilon_j) - \hat{a}_{i,0}]^2 \blacktriangleleft \hat{a}_{i,j} \text{ and } \epsilon_i \end{split}$$

Monte Carlo Expectation Maximization

Maximum Likelihood Estimation:

$$\max_{\delta_{\boldsymbol{\epsilon}}, \delta_0, \lambda} \quad \mathcal{P}(\hat{\mathbf{x}}; \delta_0, \lambda, \delta_{\boldsymbol{\epsilon}}).$$

Expectation Maximization

E-Step

$$Q(\Omega|\Omega^{\text{old}}) = \int \int \mathcal{P}(\hat{\mathbf{a}}, \boldsymbol{\epsilon}|\hat{\mathbf{x}}; \Omega^{\text{old}}) \ln \mathcal{P}(\hat{\mathbf{x}}, \hat{\mathbf{a}}, \boldsymbol{\epsilon}; \Omega) d\hat{\mathbf{a}} d\boldsymbol{\epsilon}$$

$$\approx \frac{1}{L} \sum_{l=1}^{L} \ln \mathcal{P}(\hat{\mathbf{x}}, \hat{\mathbf{a}}^{(l)}, \boldsymbol{\epsilon}^{(l)}; \Omega)$$

M-Step

$$\max_{\Omega} \quad \frac{1}{L} \sum_{l=1}^{L} \ln \mathcal{P}(\hat{\mathbf{x}}, \hat{\mathbf{a}}^{(l)}, \boldsymbol{\epsilon}^{(l)}; \Omega).$$

Benchmark

Benchmark: (a) Hall; (b) Secondary School.

Accuracy

Drift variance is set to (a) 2.25; (b) 2.78; Benchmark: (a,b) Hall;.

Accuracy

Drift varians set to (a) 2.25; (b) 2.78; Benchmark: (a,b) Secondary School.

Runtime

Conclusion

- A sensor spatial correlation model has been proposed to perform drift calibration
- ► MAP estimation is then formulated as a non-convex problem with three hyper-parameters, which is handled by the proposed alternating-based method.
- Cross-validation and EM with Gibbs sampling are used to determine hyper-parameters, respectively.
- Experimental results show that on benchmarks simulated from EnergyPlus, the proposed framework with EM can achieve a robust drift calibration and better trade-off between accuracy and runtime.

Thank You

