A Practical Split Manufacturing Framework for Trojan

Prevention via Simultaneous Wire Lifting and Cell Insertion

Meng Lil, Bei Yu?, Yibo Linl, Xiaoqing Xul, Wuxi Lil, David Z. Panl

IElectrical & Computer Engineering,
University of Texas at Austin

TEXAS 2Computer Science & Engineering,

The Unive: f Texas at A . . .
e ety ot feasacfustn The Chinese University of Hong Kong

ASPDAC 2018 - Jan 22, 2017 - Jeju Island, Korea

Motivation
®00

Motivation: Hardware Trojan

@ Trojans inserted by untrusted foundries threaten system security

» Malicious modifications to the original design
> Ultra lightweight but can completely ruin the system security mechanisms

@ Inserted stealthily to prevent post-silicon testing

> Require strict conditions to trigger the Trojans

2/20

Motivation
®00

Motivation: Hardware Trojan

@ Trojans inserted by untrusted foundries threaten system security

» Malicious modifications to the original design
> Ultra lightweight but can completely ruin the system security mechanisms

@ Inserted stealthily to prevent post-silicon testing

> Require strict conditions to trigger the Trojans

Cells with rare circuit
events are more vulner-
able to Trojan insertion

Trojan Ckt.

2/20

Motivation
oceo

What is Split Manufacturing?

@ Target at preventing Trojan insertion by untrusted foundries

> Front-end-of-line (FEOL): cells and wires in lower metal layers, untrusted foundries
> Back-end-of-line (BEOL): wires in higher metal layers, trusted foundries

@ Wire connections in BEOL layers are hidden from the attackers

> Incur overhead for the wires in the BEOL layers

Design House

BEOL FEOL
BEOL Q g

: Layers
; Trusted Foundry and
Assembler I <:] Untrusted Foundry l

FEOL Assembled Chip |
Layers

Motivation of-the-Art
ocoe

Why Split Manufacturing Deters Trojan Insertion?

@ Assume attackers have the original netlist and a full control of FEOL

» Determine logic signals used to trigger the Trojan based on the original netlist
> Determine the target locations to insert Trojans in the FEOL layers

@ Critical nodes can still be protected under such a strong attack model

Attacker’s Info

Whether gate B or D in
the FEOL layers

implements gate 2 in
the original netlist?

Original Netlist FEOL

BEOL

4 /20

State-of-the-Art
®00

Previous Split Manufacturing Framework [Imeson+-, Usenix'13]

@ Regard FEOL layers and the original netlist as graphs
» The FEOL graph must be a subgraph of the original netlist

@ An attacker can identify the physical implementation by subgraph isomorphism relation

Orig. Netlist: Subgraph:
V\@D D ‘\@ Isomorphic Relation:
FEOL: D

5/ 20

State-of-the-Art
{1 Yo}

@ Different isomorphism relations lead to multiple possible physical implementations
@ Previous security criterion: k-security

» For one cell in the original netlist, require k different possible implementations
> For the netlist, require each cell to be at least k secure

Orig. Netlist: Subg1:

6/ 20

State-of-the-Art

oeo

@ Different isomorphism relations lead to multiple possible physical implementations
@ Previous security criterion: k-security

» For one cell in the original netlist, require k different possible implementations
> For the netlist, require each cell to be at least k secure

Orig. Netlist: Subg1: Subg2:

® o O—®
o gL
© ® ® ®

6/ 20

State-of-the-Art

oeo

@ Different isomorphism relations lead to multiple possible physical implementations
@ Previous security criterion: k-security

» For one cell in the original netlist, require k different possible implementations
> For the netlist, require each cell to be at least k secure

Orig. Netlist: Subg1: Subg2: Subg3:

o @ ¢ e & e

®© & &® 06 6 6
®

FEOL: [©) ® @—|® D
® o< @O-—® @ <@
& ® ©— Q<©®
@ ® @ |©
© ® ® ® O—1©®)

6/ 20

State-of-the-Art

oeo

@ Different isomorphism relations lead to multiple possible physical implementations
@ Previous security criterion: k-security

» For one cell in the original netlist, require k different possible implementations
> For the netlist, require each cell to be at least k secure

Orig. Netlist: Subg1: Subg2: Subg3: Subg4:

o @ & & e e

®© & &® 06 6 6
®

FEOL: [©) ® @—|® D
® o< @O-—® @ <@
& ® ©— Q<©®
@ ® @ |©
© ® ® ® O—1©®)

6/ 20

State-of-the-Art
{1 Yo}

Previous Split Manufacturing Framework [Imeson+-, Usenix'13]

@ Different isomorphism relations lead to multiple possible physical implementations

@ Previous security criterion: k-security

» For one cell in the original netlist, require k different possible implementations
> For the netlist, require each cell to be at least k secure

Orig. Netlist:

Nodes 1, 2, 3, 4 are 2-secure.
Node 5 is 1-secure.
The netlist is 1-secure.

6/ 20

State-of-the-Art
ooe

Previous Split Manufacturing Framework [Imeson+-, Usenix'13]

@ Greedy split manufacturing flow [Imeson-+, Usenix'13]

> Start by lifting all wires to BEOL layers and add them back iteratively
> Greedily select wires with the maximized netlist security

@ Poor scalability due to repetitive subgraph isomorphism checking

Original: SLamng Point: First Iter: Second Iter: Third Tter: Final FEOL:

2¢ Do om@ @oo @oof’ﬁ f@i

®©®® 66 6 66 6

Sec. Ivl=2 Sec. Ivl=2 Sec. Ivl=2 Sec. Ivl=1 Sec. Ivl=2

® @
— Selected Edge . . ‘ . ‘ ‘

- --> Trial Edge
®-e® 6-® 6-©

Sec. Ivl=1 Sec. Ivl=1 Sec. Ivl=1

720

of-the-Art Framework
[Jelelelolote}

Overview of Our Proposed Solution

@ Besides scalability, [Imeson+, Usenix'13] cannot always achieve required security levels
@ New solution: allowing the dummy node/wire insertion together with wire lifting

> Only allow inserting wires pointing to dummy nodes
Orig. Netlist: FEOL: Orig. Netlist: FEOL:
. 6
@ oh@& ® & ohe e
o o ® © ®

@ However, still need to resolve two new issues

> How to define the security criterion since FEOL is not a subgraph of the original netlist
» How to enhance the scalability and allow concurrent node/wire insertion

8/ 20

of-the-Art Framework
] Telelolole}

Generalized Security Criterion

@ Invariant relations between the FEOL layers and the original netlist

Relation One
Each node in the original netlist has exactly one actual implementation in FEOL

@ For example, one of nodes B and D in FEOL must implement node 2

Orig. Netlist: FEOL:

® ©.__-®

o od & e

9/20

Motivation State-of-the-Art Framework Experiments
000 000] Telelolole}

Generalized Security Criterion

@ Invariant relations between the FEOL layers and the original netlist

Relation Two

If a node in FEOL is the actual physical implementation of a certain node in the
original netlist, none of edges pointing to the node can be dummy

@ Recall inserting dummy wires pointing to the actual physical implementation is not allowed

@ For example, if F is the implementation of 5, then (D, F) and (B, F) are not dummy

Orig. Netlist: FEOL:

\@Dg

&—0 © &

9/20

of-the-Art Framework
00®0000

Generalized Security Criterion

@ Now, define new security criterion to accommodate node/wire insertion

@ To identify the possible implementation, build Subgraph Isomorphism Relation between
> Spanning subgraph of the original netlist and induced subgraph of FEOL

@ k-security can be defined based on the subgraph isomorphism relation

Orig. Netlist: Spanning Subg:
® ®
‘\@> D d \@ Isomorphic Relation:
® O ©
FEOL Induced Subg
© ®

10 / 20

e-of-the-Art

Framework
feleleY Yolole}

Sufficient Condition for Security Criterion

@ New security criterion does not help with scalability

» Graph isomorphism checking is still required to determine security
@ Sufficient condition based on k-isomorphism [Cheng+, SIGMOD'10]:

> A graph composed of k disjoint isomorphic subgraphs is k-isomorphic

> A k-isomorphic FEOL graph guarantees k security

@ Avoid isomorphism checking by achieving the sufficient condition

Orig. Netlist: FEOL Layers:

If A is the candidate
node of 1, then D
must be the candidate
node of 1 as well.

11/ 20

Motivation
000

State-of-the-Art

Framework
000

MILP based FEOL Generation

Experiments
[elelele] Tole}

Problem Formulation

Generate FEOL that satisfies the sufficient condition for the required security level, i.e.
k-isomorphism, and minimizes the introduced overhead.

@ Insert nodes into the subgraphs iteratively and guarantee isomorphism simultaneously

riginal Grap : st Iteration: o n g-oili T on: @\
Lol @\y @f; @ _o—®
@’--‘? G o—0 O —O

A & ®-@ @
o @11 ~@el 1] @ee [

Ii

@ [[[] »@@ |][] »~C0@ | |

12 /20

MILP based FEOL Generation

Framework
000000

Experiments

4th Iteration:
=Y204

Graph after 3rd Iteration:

Y21+

‘ H;o o220~ Hs H2a1—
-v = =
cee | | Cog 1 |

@/ 0 i eas

@g—-»@—»@ fogcucs

P
x4}:,/15v1
/ Eso ,<’ “ sy

-
e

RES, = RESy =
INy = 1INy =

{(4,9)}, RESs = {(3,8)}

{0}, OUT40 = OUT4 =0
INso = {2}, INs1 =
INg1 = {2}, INgg =

OUTsy = OUTs; =0
OUTgy = OUTg; =0

—@

' Currem Locatlon
Oih location a

(3rd location)

@ Objective function: minimize overhead for the current iteration
min az |RES;|x; — Bk z/:(y, + 2) +7AZ d;
i J

> Area of dummy cells to insert
» Number of wires to lift to BEOL
» Number of wires to add back to FEOL

13/ 20

tivation of-the-Art Framework Experiments
00000®0

MILP based FEOL Generation

Graph after 3rd Iteration: 4th Iteration:

‘ Hspo
e T &
@/ o~

R
J«so 3

<x4}—@ @1@(70 ©
C ‘ Om location Current Locauon
A

‘ (3rd location)

RESy = RESy = {(4,9)}, RESs = {(3,8)}
INg = INgy = {0}, OUTy = OUT4; =0
INgo = {2}, INg; = OUTsy = OUTs; =0
INg; = {2},INgy = OUTgy = OUTg; =0

@ Constraints: node selection, subgraph selection, and edge insertion
k—1
Zx;w,-:l,Zx,j:x;, Vi, ZX,-J-—l—dj:l, Vjie{0,....,k—1}
i j=0 i

yi < ZX;J’ Lie; + dj, 7 < ZXU “Licout; Vi, 1

i i
@ y; and z can be relaxed to continuous variables without impacting the solution optimality

13/ 20

otivation e-/ Framework Experiments
[elelelelolo) } c

k-Secure Layout Refinement

@ Guarantee k-security in the placement stage
@ Previous method: ignore interconnections in BEOL layers

> Suffer from large overhead since cells are floating in FEOL layers

@ Our method: insert virtual nets in the placement stage

1

>®e %0 @&%o

~

0.9 ® ©g®

14 / 20

f-the-Art Experiments
[Jelelolole}

Experimental Setup

@ Benchmarks: ISCAS 85 and OpenSPARC T1
@ Program implemented in C4++
@ MILP solver: GUROBI

@ To protect a subset of circuit nodes, we select the nodes considering Trojan insertion
strategies used in TrustHub

15 / 20

Experiments

otivation of-the-Art Framey
c 0®0000

Experimental Results: Runtime Comparison

@ Comparison with [Imeson+-, Usenix'13] on FEOL generation:

> Achieve 10-security and protect 5% nodes
» a=05,4=20,and 7y =10.8

| Bench | # Protect [# Nodes | Prev (s) [Ours (s) |

c432 23 214 140.8 0.5
c880 19 355 979.6 3.2
c1908 24 519 >100000 8.1
c3540 49 1012 >100000 37.0
c5315 73 1864 >100000 135.0
c6288 90 2568 >100000 297.9
Shifter 84 2579 >100000 273.9
Norm 293.9 1.0

16 / 20

of-the-Art Experiments

00e000

Experimental Results: Overhead Comparison

@ Comparison with [Imeson+, Usenix'13] on routed wirelength

» For the FEOL generation strategy, on average 59.1% wirelength overhead reduction with
less than 4% area overhead increase

> For the placement refinement, on average 49.6% wirelength overhead reduction

; ;
R -14.5 = Original 4150
E F 25 [Previous .
=] o = —0urs M IS
o 2f 14 < | — =
= g S 2 =
= 2 = 0o F
= =1 = 15f g
) 435 ~— 0 o
= 15 < = 3
%j —— Wire (Ours) g T 1r 50 2
& — Wire (Prev) ||, =% £ \ e
= -®- Area (Ours) | |° = osp =
1 - Area (Prev)
o A .\mlo 0
2 4 6 8 10 12 14 1908 3540 5315 c6288 Shft
Security Level Benchmark

17 / 20

Experiments

000e00

@ Comparison with [Imeson-+, Usenix'13]

» Distance between protected nodes and their candidates
» For all benchmarks, none of correct connections can be recovered

Probability Density

| |
—1 05 0 05 1
Distance Difference

18 / 20

Thank you for your attention!

Backup: Overhead Dependency

@ Overhead dependency on

Portion

> Security level

» Number of protected nodes

> MILP coefficient

T T
—- Dummy Cell
—A— Lifted Edge

04

0.2 -

Security Level

30

Portion

0.5
0.4
0.3
0.2

0.1

T T
—- Dummy Cell
—A— Lifted Edge

Protected Node (%)

Portion

0.6

0.4

0.2

Experiments
[e]elelolo] }

T
—- Dummy

Cell

—A— Lifted Edge

|
0.8 1

1.2

Coeflicient ~y

20 / 20

	Motivation
	State-of-the-Art
	Framework
	Experiments

