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Optimality across EDA stages

Architectural
Synthesis

Logic
Synthesis

Physical
Design

No 1-1 mapping between metrics across various EDA stages.

I Optimality at one stage doesn’t guarantee the same in another stage
I Data-driven methodology, such as machine learning, becomes imminent
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Binary Adder Design

I Primary building blocks in the datapath logic of a microprocessor
I A fundamental problem in VLSI industry for last several decades

What is still unsolved?

Closing the gap across adder design stages
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Parallel Prefix Adders

Parallel Prefix Adders
→ Flexible delay-power trade-off

Regular Adders
→ Sub-optimal

Custom Adders
→ High TAT

This Work:
Automatic Cumtom Adders
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Architectural Level: Mapped to Prefix Structures

g7,p7 g0,p0g1,p1

a0 b0a1 b1a7 b7
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s7 s0s2

c1
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Parallel Prefix 
Structure

Pre-processing

Post-processing
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Prefix Graph Problem

Carry-computation can be mapped to prefix graph problem

yi = xi − 1 o xi−1 o xi−2 o . . . x1 o x0

y5

x5 x4 x3 x2 x1 x0

Size (s) = No. of prefix nodes = 7
Level (L) = maximum logic level = 3

Max-Fanout (mfo) = 2
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Classifying Prefix Graph Synthesis

Can be classified based on the solution#

Category 1: Limited number of solutions

I Example: [Matsunaga+,GLSVLSI’07], [Liu+,ICCAD’03], [Zhu+,ASPDAC’05],
[Roy+,ASPDAC’15]

- Not suitable for exploring data-driven methodologies
- No analytical model to physical design stage

Category 2: Innumerable solutions

I Example: [Roy+,TCAD’14]

- Not scalable for bounded fan-out
- Computationally expensive to run all solutions through full physical design flow
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Gap between Prefix Structure and Physical Design
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(a) Architectural solution space; (b) Physical design space.

I G1 (less fan-out and high size); G2 (high fan-out and low size)
I When mapped to physical solution space

- Correlation between size and area
- Not completely reliable, G1 and G2 get mixed up in physical solution space

What We Want to Search For:
All Pareto Frontier points with low area, low power, and low critical delay.
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Task 1: Prefix Adder Solution Exploration
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[Roy+,TCAD’14]– Summary

G2 G3

G3 G4

Gn+1Gn

I Gn = set of prefix graphs of bit-width n
I Prefix graphs of higher order generated in bottom-up fashion
I Several pruning strategies during Gn → Gn+1 for scaling
- For bounded fan-out, these strategies compromises in size-optimality
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Enhancement 1: Imposing Semi-regularity

I The concept is derived from regular adders such as Brent-Kung, Sklansky.
I xi and xi+1 combined to form prefix nodes, where i is even.
I This regularity for only L = 1
I For L > 1, regularity compromises size optimality (Forbidden).
I Observation: this semi-regularity doesn’t degrade size-optimality.

x7 x6 x5 x4 x3 x2 x1 x0
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Enhancement 2: Level restriction in Non-trivial Fan-in

I Trivial fan-in having same MSB
I x4 and i1 are trivial and non-trivial fan-in of i2
I Level (non-trivial fan-in) ≥ level (trivial fan-in)
I Reduces search space without degrading size-optimality

y5

i2

i1

x5x5 x4 x3 x2 x1 x0
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Comparison at Prefix Graph Stage

mfo Our Approach [Roy+,TCAD’14]
size Run-time (s) size Run-time (s)

4 244 302 252 241
6 233 264 238 212
8 222 423 - -
12 201 193 - -
16 191 73 192 149
32 185 0.04 185 0.04

I Table is for 64 bit adders
I [Roy+,TCAD’14] cannot get solutions for all fanouts.
I Our solutions are always more size-optimal.
I Runtimes are comparable, adder synthesis is one-time.
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Physical Solution Space Comparison
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Our solutions cover wider space in physical domain

I 7000 random samples from [Roy+,TCAD’14] vs. 3000 samples from us
I Reason: TCAD’14 misses solutions for bounded fanout in a few cases
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Task 2: Pareto Frontier Driven Learning
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Quasi-Random Data Sampling

I Hundreds of thousands of solutions
I How to choose training data?

- Cannot run too many architectures as physical design flow costly.
- Too few will degrade model accuracy.

Quasi-Random Sampling
Create architectural bins based on mfo and s.

I Capture all architectural bins
I Select solutions from each bin randomly

s=244 s=245 s=246

s=233 s=234 s=235

mfo=4

mfo=6

Bin of solutions with s=246 and 
mfo=4
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Feature Selection and Learning Model

I Architectural attributes: s, mfo, sum-path-fanout (spfo)
I Tool settings: Target delay
I Best model fitting by support-vector-regression (SVR) with RBF kernel
I Including spfo improves MSE score for delay from 0.232 to 0.164
I Note: linear models not sufficient for modeling delay

i1 y1

x0x1x2x3 spfo(y1) = spfo(x0) + spfo(x1) + fo(x0) + fo(x1) =
0 + 0 + 1 + 1 = 2

spfo(i1) = spfo(x3) + spfo(x2) + fo(x3) + fo(x2) =
0 + 0 + 1 + 2 = 3

spfo(y3) = spfo(i1) + spfo(y1) + fo(i1) + fo(y1) =
3 + 2 + 1 + 2 = 8
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Pareto Frontier Driven Learning

I Conventional learning focusses on prediction accuracy
- Model accuracy improvement doesn’t guarantee Pareto-frontier improvement

- Need for learning integrated Pareto-frontier exploration

I Scalarization or α-sweep
- Learning output is a linear sum of delay and power (α×Power + Delay)

- Model-fitting done with different values of alpha

- Sweeping alpha from 0 to a large positive number
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Experimental Setup

Synthesis and placement/routing of adders
I Tools: Design Compiler/ IC Compiler
I Library: Non-linear-delay-model (NLDM) in 32nm SAED cell-library
I Tool settings: Target delay = 0.1ns, 0.2ns, 0.3 ns

Programming Language
I C++ for prefix adder synthesis
I Python based machine learning package scikit-learn

Machine Configurations
I 72GB RAM UNIX machine
I 2.8GHz CPU
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Pareto-frontier Comparison
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Predicted pareto-frontier almost matches actual pareto-frontier

I Training set is randomly selected from 300 samples.
I Rep. adders are quasi-random sampled from other 3000 samples
I Predicted frontier is from best 150 solutions (predicted)
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Comparison with Other Adders

Pareto-points derived from our approach beats other solutions in all metrics
(delay, area, power)

Method Delay (ps) Area (µm2) Power (mW)
Kogge-Stone 347.9 2563.7 8.78
Ours (P1) 340.0 2203.3 7.72
Sklansky 356.1 1792.5 6.1
Ours (P2) 353.0 1753.0 5.9

[Roy+,ASPDAC’15] 348.7 1971.4 6.98
Ours (P3) 346.0 1848.6 6.67
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Conclusion

Machine learning guided design space exploration
I For power-efficient high-performance adders

I Bridge the gap between architectural and physical solution space

I Provide near-optimal power vs. delay trade-off

Our methodology excels

I State-of-the-art adder synthesis algorithms in power/delay/area metrics

I Readily adoptable for any cell-library
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Thank You

Subhendu Roy (subhroy@cadence.com)
Yuzhe Ma (yzma@cse.cuhk.edu.hk)
Jin Miao (jmiao@cadence.com)
Bei Yu (byu@cse.cuhk.edu.hk)
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