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ABSTRACT
As the feature size of semiconductor technology nodes con-
tinues to scale down, multiple patterning lithography (MPL)
has emerged as a key solution for the advanced lithography,
e.g., triple patterning lithography (TPL) for 14/11nm, and
quadruple patterning lithography (QPL) for sub-10nm. In
this paper, we propose a generic and robust QPL layout de-
composition framework, which can be further extended to
handle any general K-patterning lithography (K>4). Our
framework is based on the semidefinite programming (SDP)
formulation with novel coloring encoding. Meanwhile, we
propose a linear algorithm and achieve significant speedup.
The experimental results demonstrate the effectiveness of our
framework.

1. INTRODUCTION
As the minimum feature size further decreases, multiple

patterning lithography (MPL) has become one of the most vi-
able solutions to sub-14nm half-pitch patterning [1, 2]. Last
few years have seen extensive researches on MPL technol-
ogy such as double patterning [3], and triple patterning [4].
Quadruple patterning lithography (QPL) is a natural exten-
sion along the paradigm of double/triple patterning. In the
QPL manufacturing, there are four exposure/etching pro-
cesses, through which the initial layout can be produced.
Compared with triple patterning lithography, QPL introduces
one more mask. Although increasing the number of pro-
cessing steps by 33% over triple patterning, there are sev-
eral reasons/advantages for QPL. Firstly, due to the delay or
uncertainty of other lithography techniques, such as EUVL,
semiconductor industry needs CAD tools to be prepared and
understand the complexity/implication of QPL. Even from
theoretical perspective, studying the general multiple pat-
terning is valuable. Secondly, it is observed that for triple
patterning lithography, even with stitch insertion, there are
several common native conflict patterns. As shown in Fig.
1 (a), contact layout within the standard cell may generate
some 4-clique patterns, which are indecomposable. This con-
flict can be easily resolved if four masks are available (see
Fig. 1 (b)). Thirdly, with one more mask, some stitches may
be avoided during manufacturing. By this way it is potential
to resolve the overlapping and yield issues derived from the
stitches.

The process of QPL brings up several critical yet open de-
sign challenges, such as layout decomposition, where the orig-
inal layout is divided into four masks (colors). Triple pattern-
ing layout decomposition with conflict and stitch minimiza-
tion has been well studied for full-chip layout [4, 5, 6, 7, 8,
9] and cell based design [10, 11, 12]. The problem can be
optimally solved through expensive integer linear program-
ming (ILP) [4]. To overcome the long runtime problem of
ILP solver, some speedup techniques, e.g., semidefinite pro-
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Figure 1: (a) A common native conflict from triple
patterning lithography; (b) The conflict can be re-
solved through quadruple patterning lithography.

gramming (SDP) [4, 7], and heuristic coloring assignment
[5, 6] have been proposed. However, how to effectively solve
the quadruple patterning, or even general multiple patterning
problems, is still an open question.

In this paper, we deal with the quadruple patterning lay-
out decomposition (QPLD) problem. Our contributions are
highlighted as follows. (1) To our best knowledge, this is the
first layout decomposition research for QPLD problem. We
believe this work will invoke more future research into this
field thereby promoting the scaling of technology node. (2)
Our framework consists of holistic algorithmic processes, such
as semidefinite programming based algorithm, linear color as-
signment, and novel GH-tree based graph division. (3) We
demonstrate the viability of our algorithm to suit with gen-
eral K-patterning (K≥4) layout decomposition, which could
be advanced guidelines for future technology.

2. PRELIMINARIES
Given input layout which is specified by features in polyg-

onal shapes, a decomposition graphs [4] is constructed. Now
we give the problem formulation.

Problem 1 (QPLD). Given an input layout which is spec-
ified by features in polygonal shapes and minimum color-
ing distance mins, the decomposition graph is constructed.
Quadruple patterning layout decomposition (QPLD) assigns
all the vertices into one of four colors (masks) to minimize
conflict number and stitch number.
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Figure 2: Proposed layout decomposition flow.

The overall flow of our layout decomposition is summarized
in Fig. 2. We first construct decomposition graph to trans-
form the original geometric patterns into a graph model. To



reduce the problem size, graph division techniques are ap-
plied to partition the graph into a set of components. Then
the color assignment problem can be solved independently
for each component, through a set of algorithms discussed in
Section 3.

3. COLOR ASSIGNMENT IN QPLD
Given decomposition graph G = {V,CE, SE}, color as-

signment would be carried out to assign each vertex into one
of four colors (masks), to minimize both the conflict number
and the stitch number. In this section, we propose two color
assignment algorithms, i.e., semidefinite programming (SDP)
based algorithm, and linear color assignment.

3.1 SDP Based Color Assignment
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Figure 3: Four vectors correspond to four colors.

Semidefinite programming (SDP) has been successfully ap-
plied to triple patterning layout decomposition [4, 7]. Here
we will show that SDP formulation can be extended to solve
QPLD problem. To represent four different colors (masks),
as illustrated in Fig. 3, four unit vectors are introduced [13]:
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We construct the vectors in such a way that inner product
for any two vectors ~vi, ~vj satisfying: ~vi · ~vj = 1 if ~vi = ~vj ;
~vi · ~vj = − 1

3
if ~vi 6= ~vj .

Based on the vector definition, the QPLD problem can be
formulated as the following vector programming:
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where the objective function is to minimize the conflict num-
ber and the stitch number. α is a user-defined parameter,
which is set as 0.1 in this work. After relaxing the discrete
constraints in (1) and removing the constant in objective
function, we redraw the following semidefinite programming
(SDP) formulation.

min
∑

eij∈CE

~vi · ~vj − α
∑

eij∈SE

~vi · ~vj (2)

s.t. ~vi · ~vi = 1, ∀i ∈ V

~vi · ~vj ≥ −
1

3
, ∀eij ∈ CE

After solving the SDP, we get a set of continuous solutions
in matrix X, where each value xij in matrix X corresponds
to vi · vj . If xij is close to 1, vertices vi, vj are tend to be
in the same mask (color). A greedy mapping algorithm [4]
can be directly applied here to get color assignment solution.
However, the performance of greedy method may not be good.

Algorithm 1 SDP + Backtrack

Input: SDP solution xij , threshold value tth;
1: for all xij ≥ tth do
2: Combine vertices vi, vj into one larger vertex;

3: Construct merged graph G′ = {V ′, CE′, SE′};
4: BACKTRACK(0, G′);
5: return color assignment result in G′;

6: function BACKTRACK(t, G′)
7: if t ≥ size[G′] then
8: if Find a better color assignment then
9: Store current color assignment;

10: else
11: for all legal color c do;
12: G′[t]← c;
13: BACKTRACK(t+ 1, G′);
14: G′[t]← −1;

To overcome the limitation of the greedy method, in our
framework a backtrack based algorithm (see Algorithm 1) is
proposed to consider both SDP results and graph informa-
tion. The backtrack based method accepts two arguments of
the SDP solution {xij} and a threshold value tth. In our work
tth is set as 0.9. As discussed above, if xij is close to be 1,
two vertices vi and vj tend to be in the same color (mask).
Therefore, we scan all pairs, and combine some vertices into
one larger vertex (lines 1 − 3). After the combination, the
vertex number can be reduced, thus the graph has be simpli-
fied (line 4). The simplified graph is called merged graph [7].
On the merged graph, BACKTRACK algorithm is presented
to search an optimal color assignment (lines 7− 19).

3.2 Linear Color Assignment
Backtrack based method may still involve runtime over-

head, especially for complex case where SDP solution cannot
provide enough merging candidates. Therefore, an efficient
color assignment is required. Here we propose an efficient
color assignment algorithm. Note that our method is target-
ing general graph, not just planar graph. In addition, differ-
ent from classical four coloring method that needs quadratic
runtime [14], our color assignment is a linear runtime algo-
rithm.

Algorithm 2 Linear Color Assignment

Input: Decomposition graph G = {V,CE, SE}, Stack S;
1: while ∃vi ∈ V s.t. dconf (vi) < 4 & dstit(vi) < 2 do
2: S.push(vi);
3: G.delete(vi);

4: Construct vector vec;
5: C1 = SEQUENCE-COLORING(vec);
6: C2 = DEGREE-COLORING(vec);
7: C3 = 3ROUND-COLORING(vec);
8: C = best coloring solution among {C1, C2, C3};
9: POST-REFINEMENT(vec);

10: while !S.empty() do
11: vi = S.pop();
12: G.add(vi);
13: c(vi)← a legal color;

The details of linear color assignment are summarized in
Algorithm 2, which involves three stages. The first stage is
iteratively vertex removal. For each vertex vi, we denote its
conflict degree dconf (vi) as number of conflict edges incident
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Figure 4: (a) Decomposition graph; (b) Greedy col-
oring with one conflict; (c) a is detected as color-
friendly to d; (d) Coloring considering color-friendly
rules.

to vi, while its stitch degree dstit(vi) as number of stitch
edges. The main idea is that the vertices with conflict degree
less than 4 and stitch degree less than 2 are identified as non-
critical, thus can be temporarily removed and pushed into
stack S (lines 1-4). After coloring remaining vertices, each
vertex in stack S would be pop up one by one and assigned
one legal color (lines 11-15). This strategy is safe in terms of
conflict number. In other words, when a vertex is pop up from
S, there is always one color available without introducing new
conflict.

In the second stage (lines 5-9), all remaining vertices would
be assigned colors one by one. However, color assignment
through one specific order may be stuck at local optimum
which stems from the greedy nature. For example, given a
decomposition graph in Fig. 4 (a), if the coloring order is
a-b-c-d-e, when vertex d is greedily selected grey color, the
following vertex e cannot find any color without conflict (see
Fig. 4 (b)). In other words, vertex ordering significantly
impacts the coloring result.

To alleviate the impact of vertex ordering, two strategies
are proposed. The first strategy is called color-friendly
rules, as in Definition 1. In Fig. 4 (c), all conflict neighbors
of pattern d are labeled inside a grey box. Since the distance
between a and d is within the range of (mins,mins + hp), a
is color-friendly to d. Interestingly, we discover a rule that
for a complex/dense layout, color-friendly patterns tend to
be with the same color. Based on these rules, during linear
color assignment, to determine one vertex color, instead of
just comparing its conflict/stitch neighbors, the colors of its
color-friendly vertices would also be considered. Detecting
color-friendly vertices is similar to the conflict neighbor de-
tection, thus it can be finished during decomposition graph
construction without much additional efforts.

Definition 1 (Color-Friendly). A pattern a is color-friendly
to pattern b, iff their distance is larger than mins, but smaller
than mins + hp. Here hp is the half pitch.

Our second strategy is called peer selection, where three
different vertex orders would be processed simultaneously,
and the best one would be selected as the final coloring solu-
tion (lines 6-8). Although color assignment is solved thrice,
since for each order the coloring is in linear time, the total
computational time is still linear.

In the third stage (line 10), post-refinement greedily checks
each vertex to see whether the solution can be further im-
proved.

For a decomposition graph with color-friendly information
and n vertices, in the first stage vertex removal/pop up can
be finished in O(n). In the second stage, as mentioned above
the coloring needs O(n). In post-refinement stage, all vertices
are traveled once, which requires O(n) time. Therefore, the
total complexity is O(n).

4. GENERAL K-PATTERNING LAYOUT DE-
COMPOSITION

In this section, we demonstrate that our layout decompo-
sition framework is generalizable to K-patterning layout de-
composition, where K > 4.

Theorem 1: SDP formulation in (3) can provide vi ·vj pairs
for K-patterning color assignment problem.

min
∑

eij∈CE

(~vi · ~vj +
1

k − 1
) + α

∑
eij∈SE

(1− ~vi · ~vj) (3)

s.t. ~vi · ~vi = 1, ∀i ∈ V

~vi · ~vj ≥ −
1

k − 1
, ∀eij ∈ CE

We can see that if K = 4, formulation (3) equivalents to
(2). Rephrasing both the SDP formulation in (3) and back-
track method in Algorithm 1, the color assignment problem
for K-patterning can be resolved. In addition, the linear color
assignment algorithm in Section 3.2 can be extended to gen-
eral K-patterning problem as well.

5. EXPERIMENTAL RESULTS
We implemented the proposed layout decomposition algo-

rithms in C++, and tested on a Linux machine with 2.9GHz
CPU. We choose GUROBI [15] as the integer linear program-
ming (ILP) solver, and CSDP [16] as the SDP solver. The
benchmarks in [4, 5] are used as our test cases. We scale down
the Metal1 layer to 20nm half pitch. Both the minimum fea-
ture width wm and the minimum spacing between features sm
are 20nm. In our experiments, for quadruple patterning mins

is set as 2 ·sm +2 ·wm = 80nm, while for pentuple patterning
mins is set as 3 · sm + 2.5 · wm = 110nm. When larger mins

is applied, there are too many native conflicts in layouts, as
the benchmarks are not multiple patterning friendly.

We compare different color assignment algorithms for quadru-
ple patterning, and the results are listed in Table 1. “ILP”,
“SDP+Backtrack”, “SDP+Greedy” and “Linear” de-
note ILP formulation, SDP followed by backtrack mapping
(Section 3.1), SDP followed by greedy mapping, and linear
color assignment (Section 3.2), respectively. Here we imple-
ment an ILP formulation extended from the triple patterning
work [4]. The columns “cn#” and “st#” denote the con-
flict number and the stitch number, respectively. Column
“CPU(s)” is color assignment time in seconds. From Table
1 we can see that for small cases the ILP formulation can
achieve best performance in terms of conflict number and
stitch number. However, for large cases (S38417, S35932,
S38584, S15850) ILP suffers from long runtime problem that
none of them can be finished in one hour. Compared with
ILP, SDP+Backtrack can achieve near-optimal solutions, i.e.,
in every case the conflict number is optimal, while only in one
case 2 more stitches are introduced. SDP+Greedy method
can achieve 2× speedup against SDP+Backtrack. But the
performance of SDP+Greedy is not good that for complex de-
signs hundreds of additional conflicts are reported. The linear
color assignment can achieve around 200× speedup against



Table 1: Comparison for Quadruple Patterning

Circuit
ILP SDP+Backtrack SDP+Greedy Linear

cn# st# CPU(s) cn# st# CPU(s) cn# st# CPU(s) cn# st# CPU(s)
C432 2 0 0.6 2 0 0.24 2 0 0.02 2 1 0.001
C499 1 4 0.7 1 4 0.16 1 4 0.05 1 4 0.001
C880 1 0 0.3 1 0 0.02 1 0 0.02 1 2 0.001
C1355 0 4 0.6 0 4 0.1 0 4 0.04 0 4 0.001
C1908 2 3 1.0 2 3 0.28 2 3 0.09 2 4 0.001
C2670 0 6 1.1 0 6 0.16 0 6 0.1 0 7 0.001
C3540 1 3 1.1 1 3 0.09 2 2 0.05 1 3 0.001
C5315 1 13 2.8 1 13 0.6 2 12 0.24 1 15 0.002
C6288 9 0 2.3 9 0 0.36 9 0 0.17 9 1 0.001
C7552 2 13 3.4 2 13 0.6 3 12 0.22 2 18 0.003
S1488 0 6 0.7 0 6 0.05 4 2 0.01 0 6 0.001
S38417 20 549 1226.7 20 551 6.6 142 429 2.7 21 576 0.03
S35932 N/A N/A >3600 50 1745 28.7 460 1338 16.4 64 1927 0.15
S38584 N/A N/A >3600 41 1653 21.1 470 1224 10.4 47 1744 0.12
S15850 N/A N/A >3600 42 1462 18 420 1084 7.8 48 1571 0.11

avg. - - >802.7 11.5 364.0 5.14 101.2 274.7 2.56 13.3 392.2 0.03
ratio - - >156.3 1.0 1.0 1.0 8.83 0.75 0.49 1.15 1.08 0.005

Table 2: Comparison for Pentuple Patterning

Circuit
SDP+Backtrack SDP+Greedy Linear

cn# st# CPU(s) cn# st# CPU(s) cn# st# CPU(s)
C6288 19 2 2.4 19 2 0.49 19 5 0.005
C7552 1 1 0.3 1 1 0.05 1 4 0.001
S38417 0 4 1.45 0 4 0.21 0 4 0.001
S35932 5 20 8.11 5 20 0.62 5 25 0.009
S38584 3 4 1.66 7 3 0.3 3 6 0.008
S15850 6 5 2.7 7 5 0.4 5 15 0.007

avg. 5.7 6.0 2.77 6.5 5.83 0.35 5.5 9.8 0.005
ratio 1.0 1.0 1.0 1.15 0.97 0.12 0.97 1.64 0.002

SDP+Backtrack, while only 15% more conflicts and 8% more
stitches are reported.

We further compare the algorithms for pentuple pattern-
ing, that is, K = 5. To our best knowledge there is no
exact ILP formulation for pentuple patterning in literature.
Therefore we consider three baselines, i.e., SDP+Backtrack,
SDP+Greedy, and Linear. All the graph division techniques
are applied. Table 2 evaluates six most dense cases. We
can see that compared with SDP+Backtrack, SDP+Greedy
can achieve around 8× speedup, but 15% more conflicts are
reported. In terms of runtime, linear color assignment can
achieve 500× and 60× speedup, against SDP+Backtrack and
SDP+Greedy, respectively. In terms of performance, linear
color assignment reports the best conflict number minimiza-
tion, but more stitches may be introduced.

6. CONCLUSIONS
In this paper we have proposed the first layout decomposi-

tion framework for quadruple patterning and beyond. Exper-
imental evaluations have demonstrated that our algorithm is
effective and efficient to obtain high quality solution. As con-
tinuing scaling of technology node to sub-10nm, MPL may
be a promising manufacturing solution. We believe this pa-
per will stimulate more future research into this field, thereby
facilitating the advancement of MPL technology.
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