ICML

Infernational Conference Conf eeeeee
On Machine Leal

BetterV: Controlled Verilog Generation with
Discriminative Guidance

Zehua Pei!, Hui-Ling Zhen?, Mingxuan Yuan?, Yu Huangz, Bei Yu!

The Chinese University of Hong Kong
ZNoah’s Ark Lab, Huawei, Hong Kong SAR

@ Backgroud & Preliminary
@® Method

© Experiments

2/15

LLMs based Verilog Generation K

Given the natural language descriptions as input, the large language models
(LLMs) try to output the Verilog code. The generated Verilog is expected to be
syntactically and functionally correct.

¢ Syntactic correctness. The Verilog obeys the rules and structure defined by the
Verilog language specification.

¢ Functional correctness. The Verilog satisfies the requirements from the natural

Natural language Large Language)
Description models Verilog Code

language descriptions.

The Flow of LLMs based Verilog Generation

3/15

Verilog generation Literature K

Existing Verilog generation works focus on fine-tuning the LLMs with customized

datasets and developing evaluation benchmarks.
Some problem-sets are constructed as requirements to the generation, and some

testbenches are used to evaluate the functionality!2.

‘Sandbox Environment

Natural Language
Problem Description

0y
Verilog Source Test Bench “f‘\{l) oiog Simuator
@ est Benches (C— Ty
® Pre-Trained g % — E =
O % IAccepted wo = UEEE

Training Corpus_®

o= —— —
éE_TZ Completi y ﬁ 0
ine- d Rejected
=

(a) NYU! (b) NVIDIA?

!Shailja Thakur et al. (2023). “Benchmarking Large Language Models for Automated Verilog RTL
Code Generation”. In: 2023 Design, Automation & Test in Europe Conference & Exhibition (DATE).
IEEE, pp. 1-6.

*Mingjie Liu et al. (2023). “VerilogEval: Evaluating Large Language Models for Verilog Code

Generation”. In: arXiv preprint arXiv:2309.07544. 4/15

Existing Challenges b

Three challenges need to be addressed to enhance the performance and
practicability of LLM based Verilog generation:

* Complicated requirements of Hardware designs: The complex and strict
requirements of hardware designs restrain LLMs from learning and understanding
the knowledge related to Verilog.

¢ Limited Verilog resources: There are limited Verilog resources available globally,
which often leads to problems of overfitting and data bias during LLM fine-tuning.

* EDA downstream tasks: The Electornic Design Automation (EDA) downstream
tasks should be further considered. However, it is difficult for LLM to understand
the downstream tasks, which involve customized and complex definitions.

5/15

Our solutions K

In this work, we attempt to address these challenges by proposing a framework,
BetterV.

* Code Knowledge Transfer: We design a novel instruct-tuning process to aligns
Verilog to C, which helps transfer the knowledge of LLMs on general code to Verilog.

¢ Discriminative Guidance: We utilize a generative discriminator to guide the LLMs
to generate or modify Verilog implementations directly from natural language,
towards specific optimization on downstream tasks.

¢ Data Augmentation: We implement a simple but effective solution to augment data
for Verilog scarcity.

6/15

Framework Overview

- - - - -"-—F-""-"-"""F"-"""-"">""""""=" """ ""="-""="”- """ ""="""=""="="="="—"—-—=- N
- E Verilog-C E
Dat . Open-source Filtering ' g ! Customized
ata-processing Verilog — ': - ! Dataset
1 1 | Definition-Bodly | |
| [i
: e Data Augmentation

\/

]
|
|
|
|
|
|
|
|
|
|

Instruct-tuning |
|
|
|
|
|
|
|
|
|
|
|

. (Code Knowledge Transfer J
Pre-trained

Model

Fine-tuned
Model

\/

Discriminator training !

(Verilog Autocompletion)

E Desired Verilog E
EDA-Tools j ;
i| Undesired Verilog i

The overview of BetterV

Guidance

Generative
Discriminator

7/15

Code Knowledge Transfer-1 K

We firstly use the tool V2C to convert the Verilog into C. Then the Verilog-C pairs
are used as dataset for LLMs instruct-tuning, which drives the alignment from C
to Verilog.

Open-source Instruct-tuning

LLM

—
C

The pipeline of Code Knowledge Transfer

8/15

Code Knowledge Transfer-2

(System Prompt:
You are an experienced Verilog engineer.

Instruction:
You are supposed to translate the
following Verilog into C program.

module d_latch(
input d,
input en,
input rstn,
output reg g
)i

always @ (en or rstn or d)

Answer:
#include <stdio.h>
#include <stdbool.h>

void d latch(
int d,
bool en,
bool rstn,
int *q) {

if (!'rstn) {

: *q = 0;
|
if (é{rifné_ } else if (en) {
= ; * = .
else) d d;
if (en) }
q <= d;
\ endmodule

An example of Instruction of Code Knowledge Transfer

9/15

Discriminative Guidance-1 K

We employ generative discriminator to guide LLMs on specific Electronic Design
Automation (EDA) tasks, which will give optimization on the Verilog
implementation.

EDA-Tools
Y

Generative

The pipeline of Discriminative Guidance

Training

10/15

Discriminative Guidance-2 K

The weighted decoding powered by Bayes rule is employed to guide the
generation.

“module” “” “d_latch”

—
Prefixing I — I E—

Generative
Discriminator

l l

pres polclans)
04 001 01 03 -eer 0.6 0.01 001 03 -
C I I I I]I I I T T Y
Vocab “(”) { 'Kl % “ wn o
Bayes rule ! \C—=3 Selected Tokens

i
I
07 001 001 02 - :I:I Desired code |
C I T T T 1 |E="3 Undesired code :

(e G “ wn o |

An example shows the guidance from generative discriminator

11/15

Experiment-1

Table: Comparison of functional correctness on VerilogEval.

VerilogEval-machine

VerilogEval-human

Model pass@l pass@5 pass@10 | pass@]l pass@5 pass@10
GPT-3.5 46.7 69.1 74.1 26.7 45.8 51.7
GPT-4 60.0 70.6 73.5 43.5 55.8 58.9
CodeLlama 43.1 47.1 47.7 18.2 22.7 24.3
DeepSeek 52.2 55.4 56.8 30.2 33.9 34.9
CodeQwen 46.5 54.9 56.4 22.5 26.1 28.0

ChipNeMo 43.4 - - 224 - -

Thakur et al. 44.0 52.6 59.2 30.3 43.9 49.6
VerilogEval 46.2 67.3 73.7 28.8 459 52.3
RTLCoder-Mistral 62.5 72.2 76.6 36.7 45.5 49.2
RTLCoder-DeepSeek | 61.2 76.5 81.8 41.6 50.1 53.4
BetterV-CodeLlama 64.2 75.4 79.1 40.9 50.0 53.3
BetterV-DeepSeek 67.8 79.1 84.0 459 53.3 57.6
BetterV-CodeQwen 68.1 79.4 84.5 46.1 53.7 58.2

12/15

Experiment-2

Table: Synthesis nodes reduction with discriminator.

Problem \ Ref BetterV-base BetterV Com Base Com Ref
ece241_2013_g8 657 333.5 255.3 23.44% 61.14%
m2041_g6 1370 692.7 685.6 1.03% 49.95%
counter_2bc 673 666.2 518.9 22.11% 22.89%
review2015_countlk | 487 493.4 402.6 18.44% 17.33%
timer 498 294.3 247.3 15.97% 50.34%
edgedetect2 58 189.9 47 .4 75.03% 18.27%
counterltol0 325 266.3 240.3 9.76% 26.06%
2013_g2afsm 826 308.8 296.6 3.95% 64.09%
dft8p 50 423 37.8 10.63% 24.4%
fsm3comb 844 167.9 104.4 37.82% 87.63%
rule90 6651 12435.6 4536.9 63.52% 31.79%
mux256tolv 2376 2439.6 557.2 77.16% 76.54%
fsm2 389 186.53 121.9 34.65% 68.66%
fsm2s 396 163.7 144.1 11.97% 63.61%
ece241_2013_qg4 2222 1789.5 897.4 49.85% 59.61%
conwaylife 43794 547400.3 27037.4 95.06% 38.26%
count_clock 3187 2497.5 2222.2 11.02% 30.27%
countbed 1589 932.0 849.3 8.87% 46.55%

13/15

Table: Verification runtime reduction with discriminator.

Design Ref BetterV-base BetterV Com Base Com Ref

(s) (s) (s)
b03 1.233 1.252 0.857 31.54% 30.49%
b06 0.099 0.083 0.078 6.02% 21.21%
Spinner 1.577 1.343 1.064 20.77% 32.53%
traffic_light_example | 0.583 0.497 0.480 3.42% 17.67%
Rotate 1.153 1.126 1.034 8.17% 10.32%

14/15

THANK YOU!

	Backgroud & Preliminary
	Method
	Experiments

