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Introduction



Outlier Activations K

Scaling up LLM beyond 6.7B parameters, systematic outliers with large
magnitude will emerge in activations!, leading to large quantization errors and

accuracy degradation.
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!Tim Dettmers et al. (2022). “Llm. int8 (): 8-bit matrix multiplication for transformers at scale”.

In: arXiv preprint arXiv:2208.07339. 4/19



Existing LLM Quantization Methods K

¢ Integer quantization is the mainstream

* LLM.int8()%: mixed precision, hard to implement efficiently on hardware
* SmoothQuant®: Int8, great effort needed to mitigate the outliers

* Block floating-point is a promising choice for LLM Quantization®

¢ combines the precision of floating-point with the efficiency of integer
¢ achieves negligible loss under W6A6 without any complex transformation

Towards lower-bit LLM quantization, a novel data format is needed to better fit in
the data distribution of LLM

“Tim Dettmers et al. (2022). “Llm. int8 (): 8-bit matrix multiplication for transformers at scale”.
In: arXiv preprint arXiv:2208.07339.
*Guangxuan Xiao et al. (2023). “Smoothquant: Accurate and efficient post-training quantization
for large language models”. In: Proc. ICML. PMLR, pp. 38087-38099.
*Cheng Zhang et al. (2023). “Revisiting Block-based Quantisation: What is Important for
Sub-8-bit LLM Inference?” In: Proc. EMINLP, pp. 9988-10006. 5/19



BFP is a special case of floating-point where numbers within a block share a

common exponent.
The data format of BFP includes three parts: shared exponent, private block

mantissa and sign bit.
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When using rounding to nearest scheme, the quantization error of block
floating-point has zero mean and variance o which is defined as®®

2 2L Ny

U D) me ) (1)

where L, is the bit length of the private block mantissa, p., is the probability mass
function (PMF) of the shared exponents 7; (i = 1,2,...N;). N, = 2Lt is the number

of available shared exponent levels, where L is the bit length of shared exponent.
To reduce the quantization error, we can

* increase the bit length of private block mantissa Ly,

¢ decrease the p,, of relatively large shared exponent +;

°Kari Kalliojarvi and Jaakko Astola (1996). “Roundoff errors in block-floating-point systems”. In:
IEEE TSP 44.4, pp. 783-790.

Zhourui Song, Zhenyu Liu, and Dongsheng Wang (2018). “Computation error analysis of block
floating point arithmetic oriented convolution neural network accelerator design”. In: Proc. AAAL
vol. 32. 1. 7/19



Methods



Design Details K

Bi-exponent block floating-point (BiE) is the proposed numerical representation.

Different from vanilla BFP, it contains two shared exponents, ¢, for normal part,
and ¢, for outlier part.

Threshold T is used to distinguish the normal and outlier parts, 1-bit type bit ¢;
indicates the component belongs to outlier part or normal part.
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Design Details K

Given a block X with N elements in FP16, we can obtain its BiE representation X’

as

0 |x| <T,
t, = |xl| - (2)

1 \xi] >T,
€y, = max ¢€;,6, = Imax ¢;, (3)

x| <T |xi|>T

mp=m; >> (en - (1 —t;) + - t; —€;), (4)
X! = oo (=tteoti ()5 .y ®)
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y It

The rationale is that bi-exponent can isolate the effect of a large shared exponent
on other small-exponent values in the block to reduce the quantization error
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Threshold Searching .

Threshold determination is rather critical before the BiE quantization flow.

We build an offline threshold searching strategy based on Bayesian Optimization.
The search space is defined as:

Q= {Tl,Tz, ...,TN}, N =N, + Ny;

T; € [Pio(X), Pri(X)]. (6)

Pj, and Py; are the lower-bound and higher-bound of the percentile. X is the
activations or weights in calibrations.

It is essential to determine the threshold value within the central region of the
magnitude distribution rather than selecting a large or small value to fully utilize
the superiority of bi-exponent.
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Hardware Implementation K

BiE systolic array consists of three parts: FP to BiE converter (encoder), processing
elements (PE) for BiE, and decoder (recover to FP).

Compared with fixed point quantization, the encoder and decoder do not involve
costly floating-point multiplication.

¢ Encoder: two comparator trees are used for shared exponents and type bits
determination

¢ PE: obtains a partial sum of aligned mantissa products, and the max shared
exponents summation ey,

¢ Decoder: includes a leading-zero detector and a shifter to achieve normalization

13/19



Hardware Implementation K

Given two blocks X; and X; with N elements in BiE format, the dot product of
them can be formulated as
em = €, + €y, (7)
N-1
2N (1) B2y -y >> (em — €1 — €2,)) 8)
0

where ¢;, is the max exponent combination of the two blocks which is determined
by the summation of the two outlier shared exponents ¢, and e,,, e; ; and e; ;
represent the shared exponent used for the ith element of X; and X;.

In BiE arithmetic, it mainly involves INT multiplication, INT addition and
shifting, which are all efficient for hardware.
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Experiments



PTQ results on OPT

Table: BiE’s performance for OPT-30B and OPT-66B on other zero-shot tasks including
multiple choice, commonsense reasoning, etc.. We highlight our 4-bit BiE results that can
achieve nearly lossless quantization performance.

Model ‘ Method Config LAMBADA Arc_easy PIQA COPA  QNLI SST2 Average?t
FP16 / 71.45% 70.03%  77.64% 82.00% 51.78%  66.51% 69.90%
SmoothQuant WS8AS8 71.71% 69.61%  77.75% 84.00% 52.52% 66.63% 70.37%
SmoothQuant W6A6 0.54% 41.29%  57.94% 66.00% 51.44% 58.26% 45.91%
OPT-30B BFP W4A4 61.25% 68.18%  76.28% 85.00% 54.09% 66.51% 68.55%
BiE (Ours) W4A4 70.11% 69.15% 77.26%  85.00% 52.15%  67.66% 70.22%
BFP W3A3 7.45% 56.40%  66.43% 77.00% 50.92% 56.42% 52.44%
BiE (Ours) W3A3 65.11% 68.14%  75.84% 81.00% 52.19% 61.12% 67.23%
FP16 / 73.96% 71.12%  78.73% 86.00% 52.19%  68.58% 71.76%
SmoothQuant WB8AS8 73.26% 71.21%  78.35% 86.00% 51.84% 63.19% 70.64%
SmoothQuant W6A6 0.00% 2529%  53.32% 55.00% 50.67% 51.26% 39.26%
OPT-66B BFP W4A4 63.83% 68.86%  76.66% 86.00% 52.10%  64.68% 68.69%
BiE (Ours) W4A4 72.50% 70.58%  77.26% 85.00% 51.95%  70.07% 71.23%
BFP W3A3 3.22% 36.49%  55.44% 61.00% 51.09% 52.98% 43.37%
BiE (Ours) W3A3 11.97% 38.34%  56.04% 60.00% 49.68% 53.33% 44.89%
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PTQ on OPT K

Table: Comparison with different methods and different quantization configurations for
OPT-models on Wikitext2 (Perplexityl). We highlight our 4-bit BiE results which are
comparable with SmoothQuant W8AS.

Method ~ Config | 6.7B  13B  30B  66B

FP16 / 1064 991 933 9.12
SmoothQuant WS8AS8 | 11.33 12.79 9.35 9.62
SmoothQuant W6A6 | 13.16 13.75 8254 3383.21

BFP W4A4 | 1122 11.15 990 1416
BiE (Ours)  W4A4 | 1093 1039 937  9.82
BFP W3A3 | 1461 1385 13.83 137.72

BiE (Ours) W3A3 | 12.10 11.13 1001 3241
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Conclusion .

¢ BiE can be naturally adapted to the numerical distribution characteristics of the
LLMs and achieve negligible loss in 4-bit activations and weights quantization.

¢ BiE can balance precision and hardware efficiency.

¢ BiE is not limited to LLM quantization, it can be used in any model with any
distribution.
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