® (&) THE CHIPS
t TO SYSTEMS

JUNE 23-27, 2024

MOSCONE WEST CENTER
SAN FRANCISCO, CA, USA

Xinyun Zhang*, Binwu Zhu*, Fangzhou Liu, Ziyi Wang,
Peng Xu, Hong Xu, Bei Yu

Department of Computer Science & Engineering
Chinese University of Hong Kong

ooooo
10401

. Outline

@ Introduction

@ Algorithm

@ Experimental Results
@ Conclusion

THE CHIPS
%m SYSTEMS

Introduction

. Pre-routing Timing Prediction

¢ Pre-routing timing prediction method directly estimates the timing information
without the need for time-consuming routing.

¢ This “look-ahead” mechanism provides preliminary feedback for timing
optimization, potentially expediting the chip design process.

&l rue cHips
P. TO SYSTEMS

. Typical Pre-routing Timing Prediction Methods

* Before the machine learning era, we can use traditional timing prediction model,
e.g., Elmore’s model!, with only placement results and its accuracy is unsatisfactory
due to the absence of routing information.

° With the development of machine learning, many methods®® rely on deep neural
networks to extract timing path features and make predictions.

!Jorge Rubinstein, Paul Penfield, and Mark A Horowitz (1983). “Signal delay in RC tree
networks”. In: TCAD.

?Zizheng Guo et al. (2022). “A timing engine inspired graph neural network model for
pre-routing slack prediction”. In: DAC.

*Ziyi Wang et al. (2023). “Restructure-Tolerant Timing Prediction via Multimodal Fusion”. In:

5/ 26

. Switching to New Technology Node

However, collecting many data from the advanced node will be time-consuming.
Training with limited data results in poor performance. To solve this issue, we
propose a transfer learning framework that leverages data from previous node to
enhance the performance for the target node.

(@)

(a) Trained on limited 7nm netlist data; (b) Trained on both limited 7nm netlist data and 130nm
netlist data.

. Potential Challenges

* Netlist data consists of two kinds of knowledge: node-dependent and
design-dependent. These two kinds of knowledge are highly intertwined in the
netlist graph, making it difficult to leverage the common and transferable parts
across different nodes.

® The arrival time values of different timing paths can vary dramatically, even by one
or two orders of magnitude, which poses significant challenges for the ML-based
regression model.

¢ The limited target node data makes the timing predictor susceptible to overfitting the
training designs, which hinders the broad application of the learned model.

SN THE cHIPS
[oSip 1o systems

|
i

o
,

Method

. Overall Architecture

Feature Bayesian-based
Disentangle Timing Prediction

I Feature
. Alignment

¢ Timing Path Feature Extractor
¢ Timing Feature Disentanglement and Alignment

¢ Bayesian-based Timing Prediction

&l rue cHips
P. TO SYSTEMS

. Multimodal Timing Path Feature Extractor

Endpoint- Endpoint-

Netlist wise Netlist wise Layout Layout
Embeddings Embeddings

Message

Passing Feature

Concat

* Inspired by Wang et. al.*, we first collect two types of input: the netlist graph H and
the layout image set X

¢ The netlist # is constructed as a heterogeneous graph with two types of edges: the
net edge connecting a net’s drive pin and one of its sink pins, and the cell edge
connecting one of a cell’s input pins and its output pin.

® We first use a GNN and CNN to extract features from netlist and layout, respectively,
and then concatenate them.
#Ziyi Wang et al. (2023). “Restructure-Tolerant Timing Prediction via Multimodal Fusion”. In:
DAC.

. Disentangle Intertwined Features
Us ug
{E' . E} —{8-B8
H{l'u'%;l}

LR R

¢ Each netlist contains two parts of information: the functionality information encoded
in the design specification and the standard cell information.

¢ For any path feature u, we further adopt two MLPs to disentangle the equal-sized
node-dependent features #" and design-dependent features u? by:

u" = MLP, (u) € R"2, u? = MLP,;(u) € R"/2.

. Align Node-based Features

Z/{g cap
'8, B Lh&
>£CLR -——> | 7nm standard cell Node—)
{I : 'I} Feature
uz : :

* Motivation: The netlist on the same node should share the same standard cells,
including the gate structures and their characteristics. On the other hand, the
node-dependent features should be distinguishable for netlists in different nodes.

. Node-based Contrastive Loss

n
MS cap:
{I. . .I} j 9216 46.08
> LCLR -=r | ... 7nm standard cell Node— .
{I) .I} Feature
uz : :

¢ Denote the set of all the node-dependent features as A = Ug UU7. Given any
node-dependent feature set /" (U or U7), the contrastive loss for the feature set can
be defined as:

Loulld Z Z exp(u-m/1)

uetr =1 "' U etmuy Zeaca\(uy XD - a/ 7)’
1
Lcir = |Z/l”\ Lot (US) +] o Lset (Ur).

. Align Design-based Features

’_I:

Minimize Design-based
Y= ab + cd Feature Discrepancy

{H SE}> Lo ——» h:7
{H.L;d.H} y=abed |

¢ Motivation: The design-dependent features represent the abstract logical
functionality of each netlist. For each design, we can opt for different technology
nodes for synthesis.

. Design-based Discrepancy Loss

Minimize Design-based
y= ab + cd Feature Discrepancy

¢ To align the design-dependent features, we optimize the Central Moment
Discrepancy (CMD) between the feature sets from different nodes, which can be
formulated as:

)

Lo, th) = =~ [E@d) - B + Y o et — ecesd|
k=2

where [a,] is the interval that bounds U¢ and U4, E(-) denotes the expectation and
ck(+) is the k-th order moment.

. Bayesian-based Timing Prediction

Asival Time Distributions of Two 7am Desigas Aurival Time Distributions of Two 130nm Designs
0.0035 1 . il
I 0 jpeg 0.00014 N‘ 0 jpeg
00030 /\U‘\‘ chacha 0.00012 (\ Al [sha3
500025 | | 2 0.00010 I | |
2 g |
g 0.0020 } ‘. £ 0.00008 ‘ |/ |
B |
2 0.0015 , | & 0.00006 | \‘ | /|
0.0010 \'\ [“ 0.00004 “ A
‘ ! | | |
00005 A\ 0.00002 J M
A — P\
0.0000 0.00000 —= h
6 500 1000 1500 2000 6 10000 20000 30000 40000
Arrival Time (ps) Aurival Time (ps)

(a) (b)

¢ To predict highly variable timing information and prevent overfitting, we propose a
Bayesian-based timing prediction model that can be formulated as:

log p(y1 ', ') = log / P(yIG . W)p(WIA AW,

where N represents the overall distribution for all the timing paths and W denotes
the model parameters.

D

. Evidence Lower Bound

* With a variational posterior distribution 4(W|G’) only conditioning on single timing
path input, we can derive the evidence lower bound (ELBO) by:

logp(y1g",) =log [plg', Wip(WIN)W

10g/P wlg',\w w:g{;q(wlg)Jaw
=logE, {P(yIQC W)W

> &, [logp(y|G", W)] — KL(g(W|G")|[p(WIN))).

where the first term is the log-likelihood with the variational posterior, while the
second term is the KL divergence between the variational posterior and the prior

distribution.
17 / 26

. Approximated by Gaussian Distribution

@ Concatenation
{H H © Monte Carlo Sampling

* We use Gaussian distribution to approximate the variational posterior:
W, ~ N(u([u",u")), S([u", u)).
¢ In addition, the prior distribution is modeled as:
W, ~ N(u(@\), Z(@N))),

where #2(N) € R" is a dummy timing path feature that represents the true
distribution of all the timing paths within the whole technology node N.

D

. Training Objective

d

Wl WK
u /’L() g 4 @ Concatenation
- {E H}—l (© Monte Carlo Sampling
E() MatMul—>{g1"~gK}—>y
L)

¢ To construct a representative i, we can simply use the mean of all the
node-dependent features to represent the node information.

¢ For the design-related information, we can collect all the design-dependent features
in both the source preceding technology node and the target advanced technology
node.

¢ The final ELBO objective is formulated as:

Lepo(y, 6"\ N) = Kzlogp (YIg', W) — KL(9(WIG")[[p(WIN)).

i=1

Experimental Results

Benchmark Statistics

* Four 130nm netlists
and one 7nm netlist
for training, and five

Table: Statistics of the dataset (edp stands for endpoint, e, and
e. denote net edge and cell edge, respectively)

B Input information 7nm netlists for test.
enchmark -
tech node #pin #edp #e, #e, .
smallboom 7nm 694441 61764 488052 423344 ¢ All designs are from
ipeg 130nm 1527166 39783 1150173 749294 Freecores and
train linkruncca 130nm 186546 17796 151617 84393 Chipyard.
spiMaster 130nm 99507 4739 75718 44917
usbfﬁdevice 130nm 48104 4777 37557 21706 [Cadence Genus for
arm9 7nm 44469 2500 33065 29287 .
chacha Tnm 35687 1986 25117 23083 synthesis and
test hwacha Tnm 1357798 61313 985057 922085 Cadence Innovus for
or1200 7nm 1165114 172401 844443 658961 placement, timing
Sha.13 7nm 794720 60323 552021 485596 optimization, routing
Avg train 7nm&130nm 511153 25772 380623 264731 and static timin
test 7nm 679558 59705 487941 423802 g

analysis.

21/ 26

Comparison with SOTA timing prediction works

Table: The evaluation results on 7nm netlist data.

Baseline | DAC23-AdvOnly | DAC23-SimpleMerge | DAC23-ParamShare DAC23-PT-FT Ours
‘ R%?score runtime | R?score runtime | R?>score runtime | R?>score runtime | R?score runtime

arm9 0.603 2.546 -2.069 2.546 0.567 2.546 0.837 2.546 0.864 2.621

chacha 0.624 1.188 -1.983 1.188 0.568 1.188 0.726 1.188 0.890 1.234

hwacha 0.170 5.229 -2.203 5229 0.499 5.229 0.818 5.229 0.828 5.400

or1200 0.156 14.257 -6.037 14.257 0.240 14.257 0.209 14.257 0.682 14.793
sha3 0.425 1.690 -4.741 1.690 0.195 14.257 0.284 1.690 0.785 1.725

average 0.396 4.982 -3.407 4.982 0.414 4.982 0.575 4.982 0.810 5.154

¢ Our method outperforms all the baselines with a significant margin.

¢ Only training with limited 7nm data achieves poor performance, indicating the
necessity of massive training data belonging to the same distribution as the test data.

¢ Our method is effective in handling the distribution shifts in the 130nm and 7nm data
and is capable of transferring the knowledge to different technology nodes.

0.9

0.8

RZ 0.7

0.6

0.5

* Both modules are effective.

¢ These two modules lead to
different improvements on
different designs.

THE CHIPS
L) 10 sysTEms

Table: Ablation study on the number of
130nm designs. J, L S, and U denote jpeg,
linkruncca, spiMaster, and usbf_device,
respectively.

L

arm9

chacha

sha3

average

ENENENEN

v
v
v

0.496
0.312
0.564
0.864

0.394
0.773
0.821
0.890

0.631
0.599
0.673
0.785

0.507
0.554
0.679
0.810

When we increase the number of 130nm
data, the timing prediction performance
improves consistently.

Our method is effective in transferring
the knowledge in different nodes.

23 /26

Conclusion

. Conclusion

® We propose a novel transfer learning framework that leverages abundant data from
previous technology node to enhance learning on the target technology node.

¢ Our method first disentangles the timing path features into node- and
design-dependent parts and aligns them separately.

® We use a Bayesian machine learning-based model to predict the arrival time of each
timing path, which can handle its high variability and generalize to new designs in
the test set.

THE CHIPS
TO SYSTEMS

CONFERENC

SHAPING THE NEXT GENERATION OF ELECTRONICS

JUNE 23-27, 2024

MOSCONE WEST CENTER
SAN FRANCISCO, CA, USA

	Introduction
	Algorithm
	Experimental Results
	Conclusion

