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ABSTRACT

The rapid evolution of the electronics industry, driven by Moore’s law and the proliferation of integrated cir-

cuits, has led to significant advancements in modern society, including the Internet, wireless communication, and

artificial intelligence (AI). Central to this progress is optical lithography, a critical technology in semiconductor

manufacturing that accounts for approximately 30% to 40% of production costs. As semiconductor nodes shrink

and transistor numbers increase, optical lithography becomes increasingly vital in current integrated circuit (IC)

fabrication technology. This paper introduces an open-source differentiable lithography imaging framework that

leverages the principles of differentiable programming and the computational power of GPUs to enhance the

precision of lithography modeling and simplify the optimization of resolution enhancement techniques (RETs).

The framework models the core components of lithography as differentiable segments, allowing for the implemen-

tation of standard scalar imaging models, including the Abbe and Hopkins models, as well as their approximation

models. The paper introduces a computational lithography framework that optimizes semiconductor manufac-

turing processes using advanced computational techniques and differentiable programming. It compares imaging

models and provides tools for enhancing resolution, demonstrating improved semiconductor patterning perfor-

mance. The open-sourced framework represents a significant advancement in lithography technology, facilitating

collaboration in the field. The source code is available at https://github.com/TorchOPC/TorchLitho.
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1. INTRODUCTION

The evolution of the electronics industry, catalyzed by Moore’s law and the proliferation of integrated circuits,

has engendered profound paradigm shifts within modern society. Innovations such as the advent of the Inter-

net, the ubiquity of wireless communication, and state-of-the-art (SOTA) advancements in artificial intelligence

(AI) can be attributed to the formidable computational capacities inherent in IC processors. At the core of

the semiconductor manufacturing industry, optical lithography holds a substantial share of around 30% to 40%

in production costs.1 The progression and efficacy of lithography significantly shape the reduction of critical

dimensions in integrated circuits, influencing transistor speed and silicon real estate. As advanced semiconductor

nodes shrink feature sizes, transistor numbers surge, thrusting optical lithography into a paramount role within

current IC fabrication technology. As illustrated in Figure 1, a common optical lithography setup comprises

four primary elements: 1 An adjustable illumination system, as presented in Figure 1(a). 2 The photomask

setup with a basic binary design made of see-through and non-see-through sections. 3 An exposure mecha-

nism. 4 A resist station to yield the end product – the wafer, as illustrated in Figure 1(b). The numerical

aperture (NA) is a fundamental non-dimensional metric that indicates the span of angles from which the optical

setup can receive or radiate light. It determines the light-absorbing capacity and the clarity of optical setups.

When light strikes a photomask, it experiences a process termed as diffraction. These diffracted beams are then

gathered by precision-designed projection lenses and directed towards the surface layered with photoresist. The

resulting chemical reactions in the photoresist, primarily after heating, make certain areas of the resist dissolve in

particular developer solutions, marking the essential chemical phase of the lithographic process. Computational
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Figure 1: (a) Different representations of illuminator source, conventional source, annular source, dipole source,

ans quasar source. (b) Core components of forward lithography process.

lithography utilizes comprehensive mathematical theories, including inverse problems, mathematical refinement,

and computational imaging, to forge optimization-driven resolution improvement methods for optical lithogra-

phy. The discipline of lithography, deeply anchored in optical and chemical principles, can be thoroughly defined

through complex mathematical models. In today’s lithography landscape, computational approaches are crucial.

With the advancement of GPU and machine learning technologies, a series of works have emerged that utilize

GPU2,3 or machine learning (ML)4–10 to accelerate lithography. They entail the use of advanced computa-

tional resources to imitate, and more critically, enhance both the optical and chemical mechanisms inherent to

lithography. The aim goes beyond merely mirroring actual processes, aiming to promote growth in lithographic

simulation and define the best processing parameters.

Differentiable programming, introduced as “Differentiable Functional Programming” in 2015,11 has been

gaining traction in recent times. It’s quickly establishing itself as a significant domain and is frequently consid-

ered the future of software design. It takes forward the ideas of deep learning, inspired by the rising popularity of

machine learning frameworks like TensorFlow,12 PyTorch,13 and JAX.14 In essence, differentiable programming

is a programming style that involves software made of differentiable and adjustable units (or a computation

graph). These units undergo automatic differentiation and are fine-tuned to execute a particular function.15

These programs can even adjust sections of their own code based on gradient information. This coding phi-

losophy has proven its worth in various research areas,16–20 especially in imaging, showcasing its potential in

resolving challenges faced by current computational lithography techniques.21 As depicted in Figure 2, two

modes exist for performing automatic differentiation: forward and backward (or reverse). The differentiation

between these methods lies in the sequence in which the derivatives are determined using the chain rule. The

forward method computes numerical derivatives concurrently with function evaluation, progressing from input to

result. In contrast, the backward method expands on the forward computation graph, determining the gradient

by navigating the graph in the opposite direction, from result to input.
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Figure 2: Automatic differentiation flow.

2. ALGORITHM

Lithography imaging models. The scalar imaging equation under partially coherent illumination can be

stated as follows,

I(x, y) =

∫∫∫∫∫∫ ∞
−∞

J(f, g)O(f ′, g′)O∗(f ′′, g′′)H(f + f ′, g + g′)H∗(f + f ′′, g + g′′)

exp(−j2π((f ′ − f ′′)x+ (g′ − g′′)y)) df dg df ′ dg′ df ′′ dg′′,

(1)

where O is the object plane, the field of the photomask M in the lithography case. H is the projector transfer

function and J is the mutual intensity given by the propagation of all contributing source points of the illuminator.

I is the final aerial image intensity and (x, y), (f, g) are coordinates on spatial and frequency domain. Assuming

the Kohler illumination as our base, we’ve put into practice two popular models of partially coherent imaging, as

referenced in.22 The initial model is based on Abbe’s framework, while the subsequent one adopts the Hopkins

diffraction model. It’s noteworthy that the Hopkins diffraction model is essentially a streamlined and estimated

adaptation of the Abbe’s model. Concurrently, we’ve also introduced a comprehensive neural network-driven

model for lithography imaging. Abbe’s model can be mathematically expressed as the integration over the source.

I (x1, y1) =

∫∫ ∞
−∞

JC(f, g)

(∫∫∫∫ ∞
−∞

O (f ′, g′)O∗ (f ′′, g′′)H (f + f ′, g + g′)H∗ (f + f ′′, g + g′′)

exp (−i2π ((f ′ − f ′′)x1 + (g′ − g′′) y1)) df ′dg′df ′′dg′′) df dg.

(2)

By setting

A′(f,g) (f ′, g′) := H (f + f ′, g + g′)O (f ′, g′) , (3)

and perform inverse Fourier transformation, we obtain Abbe’s formulation,

I (x1, y1) =

∫∫ ∞
−∞

JC(f, g)
∣∣∣A′(f,g) (x1, y1)

∣∣∣2 df dg. (4)

Hopkins’ diffraction model is a simplified and approximate version of the Abbe’s model, where the integration

over the source is carried out before summing up the diffraction angles accepted by the lens.

I(x1, y1) =

∫∫∫∫ ∞
−∞
T (f ′, g′; f ′′, g′′)O(f ′, g′)O∗(f ′′, g′′)

exp(−j2π((f ′ − f ′′)x1 + (g′ − g′′)y1))df ′dg′df ′′dg′′,

(5)
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Figure 3: Comparison of Abbe’s and Hopkins’ imaging.

where T is the transmission cross-coefficients (TCC) given by:

TCC(f ′, g′; f ′′, g′′) =

∫∫ ∞
−∞

J(f, g)H(f + f ′, g + g′)H∗(f + f ′′, g + g′′)dfdg. (6)

To simplify the computational complexity of the Hopkins imaging equations, a method known as the Sum of

Coherent Source (SOCS) has been developed. This technique involves breaking down the TCC spectrum using

Singular Value Decomposition (SVD). The process is mathematically represented as:

TCC (f ′, g′; f ′′, g′′) =

∞∑
q=1

κqΦq (f ′, g′) Φ∗q (f ′′, g′′) . (7)

In this equation, κq and Φq represent the q’th eigenvalue and eigenvector of the TCC, respectively. Given the

rapid decrease of the eigenvalue κq with increasing q, it’s feasible to retain only the Q largest eigenvalues to

expedite the calculation process. By integrating Equation (7) into Equation (5) and applying the Inverse Fast

Fourier Transform (IFFT), the SOCS can be reformulated for spatial positioning as shown in Equation (8):

I(x, y) =

Q∑
q=1

κq |φq(x, y)⊗M(x, y)|2 . (8)

Here, φq(x, y) and M(x, y) denote the spatial distributions of Φq and M , respectively.

Abbe vs. Hopkins As depicted in Figure 3, in the approach outlined by Hopkins (Equation (8)), the SOCS

is employed to reduce the computational load from a scale of O(n6) down to O(Q × n4). This technique is

notable for its separation of the mask from the optical system, enhancing its suitability for image simulation

in conjunction with mask optimization. Under fixed optical imaging conditions, Hopkins’ method demonstrates

superior efficiency over Abbe’s approach in terms of processing time, which has led to its preference in various MO

algorithms as cited in multiple studies.3,23–26 On the other hand, Abbe’s method, as detailed in Equation (4),

accumulates the effects of all source points to produce the final aerial image. This approach is naturally better

suited for optimizing the source owing to the discretization of the source. Therefore, for effective SO and SMO,

the foundation of a lithography simulator based on Abbe’s method is essential. A graphical comparison of the

imaging techniques of Hopkins and Abbe is provided in Figure 3.

Approximation models. Although the Hopkins diffraction model is more computationally efficient than

the Abbe’s model, the intensity distribution is tedious to evaluate. To reduce the computational complexity of the

Hopkins diffraction model, a set of approximation models of partially coherent imaging systems are implemented,

including singular value decomposition (SVD) model, Fourier series expansion (FSE) model, average coherent

approximation (ACA) model.
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Figure 4: The visualization of the differentiable lithography chain.

The Differentiable Computational Lithography Framework endeavors to harness the potential of the

differentiable programming paradigm and the parallel processing power of GPUs to enhance the precision of

lithography modeling and simplify the optimization of RETs. A nuanced comprehension of the individual com-

ponents constituting the encoding optical system is pivotal for crafting a more authentic model. The illumination

setup, comprising light sources and potential optical constituents, emits photons that traverse either directly or

by reflection, interacting with the intended object. Subsequently, the transmission and gathering optics, coupled

with electronic sensors, amass information about the object carried by these wave patterns. As illustrated in

Figure 4, each sub-process is characterized by its specific encoding function, denoted as f∗(·, θ), with θ symboliz-

ing an array of parameters. The illumination component is depicted as a function fi(·, θi), influenced by factors

like wavelength, coherence, and polarization. The projector’s transfer functionality can be presented as a differ-

entiable function fh(·, θh), governed by parameters like NA, reflection coefficient, focus, and intensity. Similarly,

a two-dimensional tensor can depict the mask’s function as fm(·, θm). Although typically this tensor appears as

a binary matrix with primarily 0 or 1 values, for the sake of ensuring differentiability in computation, a matrix

with continuous values, upon which an appropriate activation function is applied, is preferred. The resist model

gets represented by fr(·, θr). The comprehensive forward lithography model translates to a composite function

as:

f = η ◦ fi ◦ fh ◦ fm ◦ fr ⇒ Z = f(·, θ) + γ, (9)

where ◦ stands for the function composition mechanism, while Z, η, and γ denote final resist image, signal-

dependent and signal-independent noises, respectively. The intricacy of an authentic forward model in imaging

frameworks arises from each optical element’s input combined with uncertainties due to system flaws and noise.

Recognizing this complexity is crucial when fashioning image reconstruction methodologies or architecting imag-

ing systems. Given target image Zt, once a comprehensive differentiable lithography mechanism is formulated,

the model’s parameters can be fine-tuned using gradient descent, culminating in a more refined lithography

model as:

(θi opt, θh opt) := argmin
θi,θh

|f(·; θi, θh)− Zt|2. (10)

Adjoint back-propagation, is a memory-efficient technique used in the context of differentiable computa-

tional lithography systems. It is a method to compute gradients in a computational graph, which is particularly

useful when dealing with large-scale optimization problems, such as those involving complex optical systems

and their associated imaging and optimization algorithms. The standard back-propagation method in machine

learning involves computing the gradients of a loss function with respect to the model parameters by traversing

the computational graph from the output to the input. However, this can be memory-intensive, especially when

the graph is large or when dealing with millions of source or mask parameters in large scale VLSI. Adjoint



back-propagation, on the other hand, exploits the fact that the gradients can be computed in a more efficient

way by separating the computation into multiple stages. This separation allows for the computation of the gra-

dients without the need to store intermediate states from the forward pass, which significantly reduces memory

consumption. In the context of the differentiable lithography engine introduced in this paper, adjoint back-

propagation is used to optimize the source shape, lens design, mask optimization and resist modeling algorithms

jointly. The method is applied to compute the gradients of the error metric with respect to the source, lens, mask

parameters and the pluggable neural network modules. This enables end-to-end optimization of both the optical

system and the image processing algorithm, leading to improved image quality. The adjoint back-propagation

approach in differentiable lithography is particularly beneficial for computational lithography applications where

the merit function is in the image space, such as mask optimization or source mask co-optimization. By splitting

the computation into multiple passes, differentiable lithography can handle large numbers of source illumination

pixels and mask pixels, which is crucial for practical end-to-end computational lithography designs.

Objective functions. In optical lithography, light shines through a patterned mask onto a wafer. The

light alters the wafer’s light-sensitive photoresist layer, which is then partially dissolved by solvents. Historically,

computational lithography marked its inception in the 1980s, primarily serving as a supplementary mechanism.

However, with the onset of the 180nm technology node, where the device’s minimum line-width began to breach

the exposure wavelength, the optical proximity correction (OPC) emerged as an inextricable component, be-

coming an essential facet in photomask patterning. As lithographic techniques embarked on a trajectory toward

diminishing technology nodes, correction strategies witnessed iterative refinements. The subsequent epoch saw an

escalating reliance on resolution enhancement techniques (RETs),27–29 including but not limited to, the meticu-

lous optimization of illumination conditions, sub-resolution assist feature (SRAF), multiple patterning and OPC.

Pivotal breakthroughs, such as source mask optimization (SMO)30 and the avant-garde inverse lithography tech-

nique (ILT) that emerged around 2010, propelled computational lithography into an unprecedented echelon.

Notably, ILT, with its capacity to inferentially deduce mask patterns directly from wafer requisites, epitomizes

the sophistication computational lithography has attained. In the context of sub-32nm technology nodes, it is

unambiguous that computational lithography has burgeoned to occupy a central position in lithographic R&D

endeavors.

The framework has introduced a diverse array of objective function toolkits specifically designed to cater to

various RETs. Central to this framework is the utilization of forward lithography models, which are intricately

structured around composition functions. This approach not only enhances user interactivity but also fortifies

the system’s adaptability and flexibility. To elucidate the framework’s capabilities, we highlight two pivotal

applications: mask optimization, conventionally termed as OPC, and the SMO methodology. Given the forward

lithography modeling f , the objective function for OPC can be stated as

Mopt = argmin
θm

|f(·, θm)− Zt|2, (11)

whereMopt is the optimized mask and Zt is the design target. Since f is differentiable, Equation (11) can be solved

by gradient descent and various optimization methods. Furthermore, in the context of addressing the source mask

optimization (SMO) challenge, it is plausible to employ a methodology analogous to OPC approaches. However,

a salient differentiation arises within the SMO paradigm: there is an imperative to concurrently optimize both

the mask parameters, denoted as θm, and the source parameters, represented as θi. Conventionally, the iterative

process involves alternating the optimization endeavors between θm and θi,

(Mopt, Jopt) = argmin
θi,θm

|f(·; θi, θm)− Zt|2, (12)

where Mopt, Jopt are optimized mask and source, respectively.



Table 1: Comparison among different lithography imaging models

Model Layer Imaging model Configurable? GPU Acce. Neural Network

Via Metal Abbe Hopkins

LithoGAN31 ! % - - % ! GAN

DAMO21 ! % - - % ! DCGAN

DOINN32 ! ! - ! % ! FNO + CNN

ICCAD1333 % ! - ! % % %

Ours ! ! ! ! ! ! Composable

3. RESULTS COMPARISON

In the Table 1, we compare our method with the leading lithography imaging models found in academic re-

search. Using rigorous optical modeling, our approach is the first to support both the via layer and metal layer

simultaneously. We have incorporated both the Abbe and Hopkins models. We also offer support for various

approximation models. Ours is the only method that allows users to adjust optical parameters. Lastly, we have

integrated neural network technologies and provided support for GPU acceleration.

Table 2: Result Comparison with State-of-the-Art.

Dataset
DAMO21 TEMPO34 DOINN32 Ours

mPA mIOU mPA mIOU mPA mIOU mPA mIOU

Benchmark133 95.2 91.1 94.6 88.7 99.19 98.32 99.45 99.21

Benchmark235 98.97 97.31 98.24 96.55 98.79 97.1 99.15 99.02

Benchmark335 99.11 93.56 99.06 93.28 99.21 98.41 99.59 99.34

Benchmark433,35 99.01 97.1 98.63 95.84 98.71 96.68 99.61 99.36

Average 98.07 94.77 97.63 93.59 98.98 97.63 99.45 99.23

Ratio 0.99 0.96 0.98 0.94 0.99 0.98 1 1

In this study, we utilized four benchmarks from the ICCAD33 and ISPD35 contests, employing Calibre to

derive the ground truth data essential for lithography simulation. These datasets, recognized for their com-

prehensive coverage and challenging nature, serve as a robust foundation for evaluating the performance of

lithography predictive models. Our comparative analysis extends across several leading-edge models in the do-

main of advanced lithography simulation, including DAMO, TEMPO,34 and DOINN, alongside our proposed

model. The results, as detailed in the accompanying table, underscore the superior performance of our model

across all benchmarks. Specifically, in terms of Mean Pixel Accuracy (mPA) and Mean Intersection Over Union

(mIOU), two critical metrics for assessing the fidelity of lithographic simulations, our model consistently out-

performs the competing approaches. As shown in Table 2, on Benchmark1,33 our model achieves an mPA of

99.45% and an mIOU of 99.21%, compared to the next best model, DOINN, which records 99.19% and 98.32%,

respectively. This trend of excellence is sustained across all datasets, culminating in an average mPA of 99.45%

and an mIOU of 99.23% for our model, compared to the averages of the competing models which lag behind,

highlighting the effectiveness and accuracy of our approach in simulating lithographic processes. Moreover, the

ratio of our model’s performance against the benchmarks further emphasizes its optimization and capability in

handling the intricacies of lithography simulation with unparalleled precision. Our model sets a new standard for

accuracy and reliability in the field, indicating a perfect alignment with the ground truth data obtained through

Calibre. These findings not only showcase the superior performance of our model over the state-of-the-art lithog-
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Figure 5: (a) The result comparisons on runtime; (b) The result comparisons on EPE.

raphy models but also highlight its potential to significantly improve the accuracy and efficiency of lithography

simulation processes, a crucial aspect for the advancement of semiconductor manufacturing technologies.

In our comparative analysis of runtime performance and EPE distribution, as detailed in Figure 5, our

methodology significantly outperforms traditional approaches in efficiency and precision. The runtime eval-

uation, presented in Figure 5(a), highlights our method’s superior processing speeds across all benchmarks,

with recorded times substantially lower than those of traditional methods, thereby underscoring its potential to

markedly decrease processing durations. This improvement in processing time is indicative of enhanced produc-

tivity and operational efficiency, particularly beneficial for applications demanding rapid processing capabilities.

Furthermore, the EPE distribution analysis, depicted in Figure 5(b), illustrates our method’s precision, espe-

cially within the critical 0-2 range where the majority of our results are concentrated, suggesting a high degree

of accuracy. This is in stark contrast to the traditional approach, which demonstrates a less favorable error

distribution, with a notable proportion of errors falling within higher ranges, thereby indicating lower precision.

The contrast in EPE distribution between our method and traditional approaches emphasizes the significant

reduction in average EPE achieved through our methodology. By focusing the majority of errors within the most

favorable 0-2 range, our approach not only affirms its accuracy but also its capacity to improve the reliability

and performance of precision-dependent applications, highlighting its superiority in both runtime efficiency and

error precision.

4. CONCLUSION

In summary, this paper introduces a novel differentiable lithography imaging framework, showcasing its transfor-

mative potential in computational lithography. Through the integration of differentiable programming principles,

our framework offers enhanced precision and efficiency in semiconductor manufacturing. Notably, it accurately

models standard scalar imaging models like the Abbe and Hopkins models, demonstrating superior performance

compared to existing approaches. Additionally, its capacity to handle large-scale optimization problems with

memory efficiency, facilitated by adjoint back-propagation, positions it as a robust tool for optical systems

optimization. The decision to open-source our models underscores our dedication to transparency and collabo-

rative research efforts, with the aim of cultivating an enriched environment for lithography research. While it

is anticipated that this framework will contribute to advancements in computational lithography, aiding in the

miniaturization of electronic devices and fostering the development of next-generation technologies, its precise

impact remains to be seen. Nevertheless, the introduction of this differentiable lithography imaging frame-

work marks a notable progression in computational lithography, holding potential for further advancements



in semiconductor manufacturing and supporting the pursuit of Moore’s law. The source code is available at

https://github.com/TorchOPC/TorchLitho.
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