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Background and Motivation



Introduction

Knowledge distillation (KD) is a model compression method in which a
small model is trained to mimic a pre-trained, larger model (or ensemble of
models)!

* This method was first proposed by? then generalized by>

¢ This training setting is sometimes referred to as "teacher-student”, where the large
model is the teacher and the small model is the student.

¢ In distillation, knowledge is transferred from the teacher model to the student by
minimizing a loss function in which the target is the distribution of class probabilities
predicted by the teacher model.

'https://www.cse.cuhk.edu.hk/~byu/CMSC5743/2023Fall/slides/Mo5-KD.pdf.
2Cristian Bucilug, Rich Caruana, and Alexandru Niculescu-Mizil (2006). “Model compression”.
In: SIGKDD, pp. 535-541.
3Geoffrey Hinton, Oriol Vinyals, and Jeff Dean (2015). “Distilling the knowledge in a neural
network”. In: NeurIPS. 4/21



New Findings and Pilot Experiments

However, it is observed that the distillation performance may be disrupted
in the presence of significant distribution gaps.

Teacher Swin Swin Swin
94.48% 94.48% 94.48%
Student MobileNetV2 ResNetl8 ShuffleNetV2
84.04% 84.42% 76.86%
CRD 83.72% 84.26% 77.88%
-0.32 -0.16 +1.02

Table: Top-1 accuracies of teacher and student networks on ImageNet100.

¢ Table 1 shows that some conventional KD methods such as CRD yield only marginal
distillation improvement in large distribution gap distillation scenario.
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Mathematical insights

Feature-level KD mainly uses £, distance as the loss function. This loss
function is based on the assumption that the outputs conform to the
normal distribution. This assumption may pose a significant challenge
when confronting large distribution gaps.

@

. x
Lirans = — log p(xT|x°) o log & + (—A
202
¢ The objective is to predict the corresponding £ and 6.
¢ In the standard £, loss paradigm, variance is treated as a constant value.

¢ This assumption may pose a significant challenge when confronting large
distribution gaps.
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Motivations and Solutions

p(To|Tn)
student feature
Tn o teacher feature

(a) Classical KD —» transfer path
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(b) Diffusion KD

(a) Conventional feature-level distillation directly predicts teacher by student. (b) Our proposed
diffusion KD decouples the objective into multiple timesteps and transfer step by step.

¢ To address the problem, we propose to decompose the transfer objective into small
parts and optimize it progressively.

¢ Insipred by diffusion models, we aim to map student features to teachers features
step by step.

¢ Directly using diffusion models is heavy, we adopt structural-reparameterization to
overcome it.
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Method



Problem Formulation //.»

Generally, the objective of transfer learning is to align the teacher and student
distributions. We define P and Q are corresponding distributions, then the
conventional KL divergence between teacher and student distributions can be
defined as :

LIPIIQ) = 3 p(e") o ("§>, @

With regard to the maximum likelihood estimation approach, the transfer
objective can be defined as — log(gs(x"|x%)). By assuming the Markov chain for the
intermediate steps between teacher and student, the transfer objective can be
reformulated as:

—log (q0(xg i) -~ o (xi_ ) -~ o (x4 7). ®)
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Review Diffusion Process //.»

Assume we have a series student features xj, x] - - - x; which are sampled

independently from the standard Normal distribution. The diffusion forward
process can be given by:

xl = apx]_| + B} = cux] + B, 4)
we can write down the density function of any intermediate features x! by:
T(.T T. - .T A
q(x; |xg) = N (x; %atxo,ﬁtzl)- )
Assume we have a well-trained diffusion model 1y, x,fT_1 can be recovered by:

T 1 T 1_at

X, = x{ —
t—1 \/(71}( t m”@

(xf 1) + 0w} (6)
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Problems and Solutions /N

However, this basic design has several drawbacks.
¢ The conventional diffusion reverse process is time-consuming.

¢ Diffusion models rely on sampling multiple student features.

We introduce structural re-parameterization to overcome these issues. The insight
is leveraging the linear properties of a set of linear modules fy, f1, - - - ,f, which can
produce diverse outputs with a common input, i.e., fo(x), f1(x), ..., fu(x) without
further inference cost:

a1fo(x) + -+ anfu(x) = (arfo + - + anfu) (x). 7)

By introducing structural re-parameterization techiniques, we solve problems by
two sides:

¢ Introducing more student intermediate features.

¢ Combine them into inference stage without further inference cost.
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KDiffusion

T T
n

d z \—2t —3t x!
P N A
fx !

L I KL KL I KL I KL
S S S S S Reverse T S S
Lyt Tp_2t - Ty 3 Ty gy process q()(mn—Stlmnv T vmnfzt)
. ﬁ @ @ j Forward 1.1
weighted weighted weighted weighted weighted p(wn \’Eg )
sum sum sum sum sum process

Proposed knowledge transfer via re-parameterizing diffusion reverse progress.

We construct both forward and reverse process like in diffusion models. The
intermediate features and update rules are based on diffusion theories.
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Diffusion Forward Process /N

We follow the same setting in* that assumes feature outputs follow normal
distributions. In this work, given multiple student features after a batch
normalization layer, we define they follow a complex normal distribution
N(0,02). We can obtain the probability distributions of each intermediate features
x! by:

q(x 1xg) = N (x/s dux, 7 0%).- )

*Sungsoo Ahn et al. (2019). “Variational information distillation for knowledge transfer”. In:
CVPR, pp. 9163-9171. 13/21



Diffusion Reverse Process

The diffusion reverse process can be formulated by:

T T T _q(lengt)q(x;{ft‘xg)
q(xn—t|xn7x0) = q(x,ﬂxg) . (9)

Equation (9) is also Gaussian, so the density function can be given as
Equation (10).

T T T T T T 2
q(xn—t|xn7x0) = N(xn—t; u(xn) + v(xO)’ w(US))a
5%—taf;2t T (xT) _ 67%21‘0‘”:th
g & (10)
P S .
w(aé) = nZtAzn tag? anZt — a ,\n 76321. - 1 - Oé%at.
2 _

where u(x]) =
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Transfer Objective Construction //..

We take one intermediate step x!_,, as an example. To reverse x._,,, we need to

predict x| ,, and x}. The transfer objective of the intermediate step can be defined
as:

D (p(xp_se s o, x0) 190 (X0 st 25—+ ). (11)

By re-parameterization trick, we can eliminate the variance term, the loss can be
given by:

| ey - 00d) — (s x5-00) + o) (12)
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Target guided diffusion training

Inspired by class guided diffusion®, which offers a practical solution on
conditional diffusion that considers class information (i.e., y), we can introduce y
into our formulation:

Ing(xg‘xga Tt ’xfuy) = IOgP(xg|xia e 7x§)

(13)
+(logp(y|xy) — logp(ylas, -+ ,x7)),

Assume the weights of next teacher layer is wy, for xg and predicted xg , we simply
use L, loss, that is:

~ 2
T
Eguided = on wt — xgwt H . (14)

°Prafulla Dhariwal and Alexander Nichol (2021). “Diffusion models beat gans on image
synthesis”. In: Advances in Neural Information Processing Systems 34, pp. 8780-8794. 16/21



Shuffle sampling strategy //.»

For each training iteration, we randomly shuffle all student features such that all
student features are forced to learn target features from different timesteps. The
setting of uniform weights is not trivial, since we assume all student features are
from the same complex normal distribution, the density function of uniformly
weighted of all student features is:

P54+ ) = N0, o) (15)
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Results on Cifar100

Teacher ResNet32x4 WRN40-2 VGG13 ResNet50 ResNet32x4
Distillation Acc 79.42 75.61 74.64 79.34 79.42
Manner Student  ShuffleNetV1 ShuffleNetVl MobileNetV2 MobileNetV2 —ShuffleNetV2

Acc 70.50 70.50 64.6 64.6 71.82

Multiple Layers AT 71.73 73.32 59.40 58.58 72.73
Multiple Layers VID 73.38 73.61 65.56 67.57 73.40
Multiple Layers OFD 75.98 75.85 69.48 69.04 76.82
Multiple Layers ~ Review 77.45 77.14 70.37 69.89 77.78
Single Layer Avgerage 75.01 75.32 66.45 67.56 75.46
Single Layer  Kdiffusion 76.62 75.83 69.14 69.20 76.87
Multiple Layer  Kdiffusion 77.90 76.83 69.91 69.95 77.34
+ Target Guide ~ Kdiffusion 78.14 77.26 70.49 71.14 77.84

Table: Results on CIFAR-100 with the teacher and student having different architectures.
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Results on ImageNet100

Teacher Swin Swin Swin Swin Swin

Distillation Acc 94.48 94.48 94.48 94.48 94.48
Manner Student  MobileNetV2 MobileNetV3 ResNetl8 ShuffleNetV1 ~ShuffleNetV2

Acc 84.04 84.98 84.42 74.74 76.86

Multiple Layers AT 84.70 85.86 85.23 77.26 76.74

Multiple Layers VID 85.42 86.46 85.12 77.56 79.46

Multiple Layers ~ Review 84.94 86.94 85.22 76.88 79.92

Single Layer  Kdiffusion 85.88 87.48 86.18 77.90 80.54

Multiple Layer ~ Kdiffusion 86.20 87.88 86.30 78.04 80.68

Table: Results on ImageNet-100 with the teacher and student having different
architectures.
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