ASP-DAC 2024,

29t Asja and South Pacific Design Automation Conference

LSTP : A Logic Synthesis Timing Predictor

Haisheng Zhengl, Zhuolun Hel?, Fangzhou Liul?,
Zehua Peil?, Bei Yu?

1Shanghai Al Laboratory, Shanghai, China
2The Chinese University of Hong Kong

Jan. 25,2024

Outline

@ Introduction

@ Algorithm

© Experiments

2/28

Introduction

Background

Logic Synthesis is critical:

¢ Architecture exploration relies on the acquisition of metrics reported by logic
synthesis!

® Logic synthesis quality determines the best possible design space of subsequent
procedure?

!Chen Bai et al. (2021). “BOOM-Explorer: RISC-V BOOM microarchitecture design space
exploration framework”. In: Proc. ICCAD.
2Ceyu Xu et al. (2022). “SNS’s Not a Synthesizer: A Deep-Learning-Based Synthesis Predictor”.
In: Proc. ISCA. 4/28

Background

Logic Synthesis is critical:

¢ Architecture exploration relies on the acquisition of metrics reported by logic
synthesis

* Logic synthesis quality determines the best possible design space of subsequent
procedure

Can we efficiently predict the desired metrics without actually running expensive
logic synthesis?

5/28

Obtain the Physical Characteristics of a Circuit

Previous Works

] Work \ Estimation | Algorithm |
D-SAGE? Timing GNN
Yu et al.* Timing, Area LSTM
PowerNet® Dynamic IR Drop CNN
GRANNITE® Power GNN
Deep H-GCN’ | Analog Circuit Degradation (i.e., aging) GNN
De et al.® Timing ML methods
SNS Timing, Area, Power Transformer

3Ecenur Ustun et al. (2020). “Accurate operation delay prediction for FPGA HLS using graph neural
networks”. In: Proc. ICCAD.

4Cunxi Yu et al. (2020). “Decision making in synthesis cross technologies using LSTMs and transfer learning”.
In: Proc. MLCAD.

5Zhiyao Xie et al. (2020). “PowerNet: Transferable dynamic IR drop estimation via maximum convolutional
neural network”. In: Proc. ASPDAC.

Yanqing Zhang et al. (2020). “GRANNITE: Graph neural network inference for transferable power
estimation”. In: Proc. DAC.

"Tinghuan Chen et al. (2021). “Deep H-GCN: Fast analog IC aging-induced degradation estimation”. In: [EEE
TCAD.

8Sayandip De et al. (2022). “Delay Prediction for ASIC HLS: Comparing Graph-based and Non-Graph-based
Learning Models”. In: [EEE TCAD. 6/28

Logic Synthesis Recipes are NOT One-size-fits-all

(a) Top 1% (b) Top 5% (c) Top 10%

* OpenABC-D? has pointed out quantitatively that the similarity between the best
synthesis recipes for a set of benchmark circuits is less than 30%.

° Animesh Basak Chowdhury et al. (2021). “OpenABC-D: A large-scale dataset for machine
learning guided integrated circuit synthesis”. In: arXiv preprint arXiv:2110.11292. 7/28

Optimization Sequence Quality Improvement

Previous Works

* Yu et al.'% propose to train a CNN to predict the quality of an optimization sequence.

* Reinforcement Learning (RL) is leveraged!!'12 to generate fixed-length optimization
sequences.

%Cunxi Yu et al. (2018). “Developing synthesis flows without human knowledge”. In: Proc. DAC.
""Winston Haaswijk et al. (2018). “Deep learning for logic optimization algorithms”. In:
Proc. ISCAS.
2Keren Zhu et al. (2020). “Exploring logic optimizations with reinforcement learning and graph
convolutional network”. In: Proc. MLCAD. 8/28

Problem Formulation

Logic Synthesis Timing Prediction

Given a gate-level netlist as an And-Inverter Graph (AIG) representing a set of Boolean
functions and a sequence of subgraph optimization procedures for the AIG graph, design
a novel learning methodology that automatically predicts the final timing after
applying the optimization procedures to the AIG.

9/28

Algorithm

LSTP Overall Flow

Design | — 1
(*.vhdl, *.v, *.sv) RTL Analyser
|

(Optimaztion Sequence} SegEncoder
|
CPredicted Timing)

|
¢ RTL-Analyzer compiles the input design and transforms it into an
And-Inverter-Graph (AIG) representation.

11/28

LSTP Overall Flow

Design | — 1
(*.vhdl, *.v, *.sv) RTL Analyser
|

(Optimaztion Sequence} SegEncoder
|
CPredicted Timing)

|
¢ RTL-Analyzer compiles the input design and transforms it into an
And-Inverter-Graph (AIG) representation.

¢ ACCNN is a trained graph neural network (GNN) for node sampling and feature
extraction of the AIG circuit.

11/28

LSTP Overall Flow

Design — 7
(*.vhdl, *.v, *.sv) RTL Analyser
|
|
(Optimaztion Sequence)—li» SegEncoder
|
CPredicted Timing)

|
¢ RTL-Analyzer compiles the input design and transforms it into an
And-Inverter-Graph (AIG) representation.

¢ ACCNN is a trained graph neural network (GNN) for node sampling and feature
extraction of the AIG circuit.

* SeqEncoder is a trained Transformer encoder for optimization sequence features
extraction.

11/28

LSTP Overall Flow

Design
(*.vhdl, *.v, *.sv) RTL Analyser —>
(Optimaztion Sequence)—> SeqEncoder

CPredicted Timing

¢ RTL-Analyzer compiles the input design and transforms it into an
And-Inverter-Graph (AIG) representation.

¢ ACCNN is a trained graph neural network (GNN) for node sampling and feature
extraction of the AIG circuit.

* SeqEncoder is a trained Transformer encoder for optimization sequence features
extraction.

® MLP aggregates both the optimization sequence features and the circuit diagram
features to predict the timing of the input design.

11/28

—
Q
wn
2
(¢}
<
<
=
~

And-Inverter-Graph (AIG)

HDL Code

[3:0] ino,
[3:0] in1,
[3:0] out
= in@ - inl;

assign out
endmodule

12/28

Asynchronous Cascaded-Cone Neural Network (ACCNN) o

¢ The delay of a circuit depends on the number of hops on the longest path from the
primary inputs(PIs) to the primary outputs (POs).

¢ We wish to design an algorithm to effectively exploit the characteristics of graph
representation for the longest path in AIG.

13/28

ACCNN: Netlist Feature Extraction

A visual illustration of sampling cascaded cones.

o
oo
4

G

A random walk-based approach to sample cascaded cones within the circuit

¢ Each "path’ originate from primary input (PI) and end at primary output (PO)
¢ The output of flip-flop — PI
¢ The input of flip-flop — PO

14/28

ACCNN: Netlist Feature Extraction

I1 2 N1 N2 N3 C1 O1

T=1 v v
o Lt T=2 v oY
@94 Q T=3 v

\ 1 CONSTANT

A visual illustration of ACCNN.

¢ We aim for a model that similar to logic simulation, efficiently propagating
information step-by-step along the sampled paths

* ABGNN? serves this purpose well

BZhuolun He et al. (2021). “Graph Learning-Based Arithmetic Block Identification”. In:
Proc. ICCAD. 15/28

ACCNN: Netlist Feature Extraction

Il 2 N1 N2 N3 C1 O1

v v

O LUT

’

\ \I CONSTANT

== -
Il
W N =
(\
\

1 1
1 1
]]
1 1
I N !
) Y 5 !
| (::)N‘“.(::) .._. 2 @ riveo
: N3® H
1 1
1 1
]]
1 1
]]

A visual illustration of ACCNN.

uf[’;?p(i’v):H} = AGGREGATE({h* Dy : u € N(i)}) 1)

h(k)

_ (k) 1,(0)
(iD(0)=a—k = COMBINE(a;™, 1) (2)

16/28

ACCNN: Netlist Feature Extraction

I1 2 N1 N2 N3 C1 O1

T=1 oV
./, Lot T=2 oV
@@4 Q T=3 v

\ 1 CONSTANT

A visual illustration of ACCNN.

Node Type

PI PO CONSTANT LUT Ox1 LUT 0x2 LUT 0x8

17/28

Squncoder: Optimization Sequence Feature Extraction

Delay
A
Feasible
7 () designs
(b)
5 —
44 () \g—m—..-..
(d)
[— > Area
789
() A=8D=5 (dA=9,D=4 (e)

(a)-(d) Equivalent factored forms; (e) Area/delay trade-off for the trees.!

* Boolean expression ab + acd + acef + acegh

¢ Assume zero arrival time for all PIs, unit area (A = 1), unit delay (D = 1)

“Kanwar Jit Singh et al. (1988). “Timing optimization of combinational logic.”. In: Proc. [CCAD. 18/28

Squncoder: Optimization Sequence Feature Extraction

Delay
A
Feasible
7 () designs
5 -
4 4 \C) \@—....
(d)
[— > Area
789
() A=8D=5 (d)A=9,D=4 (e)

(a)-(d) Equivalent factored forms; (e) Area/delay trade-off for the trees.

¢ It is hardly possible for designers to determine the effect of optimization sequences
for different designs.

® We need a model that takes into account optimization sequence ordering and

position.
19/28

SeqEncoder: Optimization Sequence Feature Extraction

I I IQ

1
! Sequence Feature

15

* Transformer™ is one of such models

Attention(Q, K, V) = softmax(Q

V&

4 ®)

15 Ashish Vaswani et al. (2017). “Attention is all you need”. In: Proc. NIPS. 20/28

SeqEncoder: Optimization Sequence Feature Extraction

-Ielele Belel
111

| balance rewrite balance ... resub restructure refactor I:Sequence Feature

Optimization Methods

Balancing, Reconfiguration, Replacing and Rewriting.

21/28

I I I @ I I I @
Values
Qi+ s Q2 + B+ ...+ - Qs + © Qe + + Q2o =

| balance rewrite balance ... resub restructure refactor ‘:Sequence Feature

SeqEncoder supports extracting features of optimization sequences of length 20 or less

When the length of the optimization sequence is less than 20
® Zero padding — ‘empty optimization’

° [empty, rewrite, balance, . .., resub, restructure, refactor]

22/28

Experiments

Experimental Setup

¢ Developed the timing prediction framework in Python

¢ Tools: Yosys, ABC
¢ Libraries: Pytorch Geometric, PyTorch, networkx

¢ Dataset: open-source designs

\ P \

Type \ Train [Valid/Test |
i2¢, spi usb_phy
ethernet, wb_dma ss_pcm
Bus protocol . A
simple_spi, pci sasc
wb_conmax
Controller ac97_ctrl, bp_be mem_ctrl
vga_led
aes_secworks aes
Crypto aes_xcrypt des3_area
sha256
DSP fir, iir, jpeg dft, idft
dynamic_node .
Processor picosoc, tv80 fpu, tinyRocket

¢ Mean Absolute Percentage Error (MAPE)

100% <
MAPE = - Z

i=1

Y;

(4)

24/28

erformance of LSTP

Table: Evaluation Accuracy (MAPE)

‘ Name ‘ # PI ‘ # PO ‘ # Node ‘ # Level ‘ SNS ‘ Runtime [s] ‘ LSTP ‘ Runtime [s] ‘

aes 683 529 39215 44 50.21% 2.85 25.44% 3.38
des3_area | 303 64 7766 47 53.84% 2.16 20.29% 0.70
dft 37597 | 37417 | 488165 83 86.90% 27.18 33.56% 55.53
fpu 632 409 55935 1522 | 26.11% 4.96 3.35% 6.97
idft 37603 | 37419 | 481184 82 5.07% 16.16 8.18% 54.04
mem_ctrl 1187 962 29814 56 23.21% 32.02 19.22% 3.71
sasc 135 125 1214 15 21.44% 2.38 2.48% 0.12
Ss_pcm 104 90 762 13 67.82% 2.30 6.46% 0.09
tinyRocket | 4561 | 4181 | 99775 156 37.31% 81.87 10.81% 11.86
usb_phy 132 90 893 16 14.4% 2.65 7.75% 0.10
Average 38.63% 17.45 13.75% 13.65

¢ Our proposed method greatly outperforms prior works on all the test cases except
for the idft.

25/28

LSTP for Optimization Sequence Generation

Table: Comparison of Timing minimums

| Name [Initial [ns] [resyn2-2 [ns] [Improve [%] | LSTP [ns] | Improve [%] |
aes 1.58 1.37 13.29% 1.24 21.52%
des3_area 2.66 3.74 -40.60% 3.33 -25.19%
dft 5.82 6.35 9.11% 4.94 15.12%
fpu 51 415 18.63% 40.34 20.90%
idft 5.82 6.35 9.11% 5.54 4.81%
mem_ctrl 6.74 3.03 55.04% 2.94 56.38%
sasc 0.89 0.69 22.47% 0.49 44.94%
ss_pcm 0.66 0.58 12.12% 0.48 27.27%
tinyRocket 78.1 12 84.64% 10.39 86.70%
usb_phy 0.41 0.42 2.44% 0.32 21.95%
Average 14.49% 27.44%

¢ LSTP can be used to find a better optimization sequence

26/28

Conclusion

¢ Various tasks from architectural exploration to physical design DSE have highlighted
the demand for fast logic synthesis result prediction
¢ In this paper, we proposed:

¢ A machine learning driven logic synthesis timing predictor

¢ A specialized GNN to sample and learn the intrinsic features of circuit AIG

® An appropriate neural model to model the complex interaction between
optimization passes and their effects on the input netlist

¢ We conducted comprehensive experiments on real-world circuit designs to evaluate
our methods

27/28

THANK YOU!

	Introduction
	Algorithm
	Experiments

