
LSTP : A Logic Synthesis Timing Predictor

Haisheng Zheng1, Zhuolun He1,2, Fangzhou Liu1,2,
Zehua Pei1,2, Bei Yu2

1Shanghai AI Laboratory, Shanghai, China
2The Chinese University of Hong Kong

Jan. 25, 2024

1 Introduction

2 Algorithm

3 Experiments

Outline

2/28

Introduction

Logic Synthesis is critical:
• Architecture exploration relies on the acquisition of metrics reported by logic

synthesis1

• Logic synthesis quality determines the best possible design space of subsequent
procedure2

1Chen Bai et al. (2021). “BOOM-Explorer: RISC-V BOOM microarchitecture design space
exploration framework”. In: Proc. ICCAD.

2Ceyu Xu et al. (2022). “SNS’s Not a Synthesizer: A Deep-Learning-Based Synthesis Predictor”.
In: Proc. ISCA.

Background

4/28

Logic Synthesis is critical:
• Architecture exploration relies on the acquisition of metrics reported by logic

synthesis

• Logic synthesis quality determines the best possible design space of subsequent
procedure

Can we efficiently predict the desired metrics without actually running expensive
logic synthesis?

Background

5/28

Previous Works

Work Estimation Algorithm
D-SAGE3 Timing GNN
Yu et al.4 Timing, Area LSTM

PowerNet5 Dynamic IR Drop CNN
GRANNITE6 Power GNN

Deep H-GCN7 Analog Circuit Degradation (i.e., aging) GNN
De et al.8 Timing ML methods

SNS Timing, Area, Power Transformer
3Ecenur Ustun et al. (2020). “Accurate operation delay prediction for FPGA HLS using graph neural

networks”. In: Proc. ICCAD.
4Cunxi Yu et al. (2020). “Decision making in synthesis cross technologies using LSTMs and transfer learning”.

In: Proc. MLCAD.
5Zhiyao Xie et al. (2020). “PowerNet: Transferable dynamic IR drop estimation via maximum convolutional

neural network”. In: Proc. ASPDAC.
6Yanqing Zhang et al. (2020). “GRANNITE: Graph neural network inference for transferable power

estimation”. In: Proc. DAC.
7Tinghuan Chen et al. (2021). “Deep H-GCN: Fast analog IC aging-induced degradation estimation”. In: IEEE

TCAD.
8Sayandip De et al. (2022). “Delay Prediction for ASIC HLS: Comparing Graph-based and Non-Graph-based

Learning Models”. In: IEEE TCAD.

Obtain the Physical Characteristics of a Circuit

6/28

(a) Top 1% (b) Top 5% (c) Top 10%

• OpenABC-D9 has pointed out quantitatively that the similarity between the best
synthesis recipes for a set of benchmark circuits is less than 30%.

9Animesh Basak Chowdhury et al. (2021). “OpenABC-D: A large-scale dataset for machine
learning guided integrated circuit synthesis”. In: arXiv preprint arXiv:2110.11292.

Logic Synthesis Recipes are NOT One-size-fits-all

7/28

Previous Works

• Yu et al.10 propose to train a CNN to predict the quality of an optimization sequence.

• Reinforcement Learning (RL) is leveraged11,12 to generate fixed-length optimization
sequences.

10Cunxi Yu et al. (2018). “Developing synthesis flows without human knowledge”. In: Proc. DAC.
11Winston Haaswijk et al. (2018). “Deep learning for logic optimization algorithms”. In:

Proc. ISCAS.
12Keren Zhu et al. (2020). “Exploring logic optimizations with reinforcement learning and graph

convolutional network”. In: Proc. MLCAD.

Optimization Sequence Quality Improvement

8/28

Logic Synthesis Timing Prediction

Given a gate-level netlist as an And-Inverter Graph (AIG) representing a set of Boolean
functions and a sequence of subgraph optimization procedures for the AIG graph, design
a novel learning methodology that automatically predicts the final timing after
applying the optimization procedures to the AIG.

Problem Formulation

9/28

Algorithm

RTL Analyser

$&&116HT(QFRGHU

Predicted Timing

Optimaztion Sequence

Design
(*.vhdl, *.v, *.sv) AIG

MLP

• RTL-Analyzer compiles the input design and transforms it into an
And-Inverter-Graph (AIG) representation.

• ACCNN is a trained graph neural network (GNN) for node sampling and feature
extraction of the AIG circuit.

• SeqEncoder is a trained Transformer encoder for optimization sequence features
extraction.

• MLP aggregates both the optimization sequence features and the circuit diagram
features to predict the timing of the input design.

LSTP Overall Flow

11/28

RTL Analyser

$&&116HT(QFRGHU

Predicted Timing

Optimaztion Sequence

Design
(*.vhdl, *.v, *.sv) AIG

MLP

• RTL-Analyzer compiles the input design and transforms it into an
And-Inverter-Graph (AIG) representation.

• ACCNN is a trained graph neural network (GNN) for node sampling and feature
extraction of the AIG circuit.

• SeqEncoder is a trained Transformer encoder for optimization sequence features
extraction.

• MLP aggregates both the optimization sequence features and the circuit diagram
features to predict the timing of the input design.

LSTP Overall Flow

11/28

RTL Analyser

$&&116HT(QFRGHU

Predicted Timing

Optimaztion Sequence

Design
(*.vhdl, *.v, *.sv) AIG

MLP

• RTL-Analyzer compiles the input design and transforms it into an
And-Inverter-Graph (AIG) representation.

• ACCNN is a trained graph neural network (GNN) for node sampling and feature
extraction of the AIG circuit.

• SeqEncoder is a trained Transformer encoder for optimization sequence features
extraction.

• MLP aggregates both the optimization sequence features and the circuit diagram
features to predict the timing of the input design.

LSTP Overall Flow

11/28

RTL Analyser

$&&116HT(QFRGHU

Predicted Timing

Optimaztion Sequence

Design
(*.vhdl, *.v, *.sv) AIG

MLP

• RTL-Analyzer compiles the input design and transforms it into an
And-Inverter-Graph (AIG) representation.

• ACCNN is a trained graph neural network (GNN) for node sampling and feature
extraction of the AIG circuit.

• SeqEncoder is a trained Transformer encoder for optimization sequence features
extraction.

• MLP aggregates both the optimization sequence features and the circuit diagram
features to predict the timing of the input design.

LSTP Overall Flow

11/28

HDL Code And-Inverter-Graph (AIG)

 module Subtractor
 (
 input [3:0] in0,
 input [3:0] in1,
 output [3:0] out
);

 assign out = in0 - in1;

 endmodule

Yosys

PI PI PI PI

G G

PI PI PI PI

G G G G G G

G G G G

GG

GG

GG

G G

G G

G

G G

G

PO PO PO PO

RTL Analyser

12/28

• The delay of a circuit depends on the number of hops on the longest path from the
primary inputs(PIs) to the primary outputs (POs).

• We wish to design an algorithm to effectively exploit the characteristics of graph
representation for the longest path in AIG.

Asynchronous Cascaded-Cone Neural Network (ACCNN)

13/28

A visual illustration of sampling cascaded cones.

PI0 PI1 PI2 PI3

G0

PI4 PI5

G1 G2 G3 G4

G5 G6

G8G7

G10G9

G12G11

G13

PO0 PO1

PI4 PI5

G3 G4

G6G10

G12G11

G13

PO1

PI2 PI3

G1 G2

G5

G8

G10

G12G11

G13

PO1

PI0 PI1 PI2 PI3

G0

PI4 PI5

G1 G2 G3 G4

G5 G6

G8

G10

G12G11

G13

PO1

A random walk-based approach to sample cascaded cones within the circuit

• Each ’path’ originate from primary input (PI) and end at primary output (PO)

• The output of flip-flop→ PI

• The input of flip-flop→ PO

ACCNN: Netlist Feature Extraction

14/28

O1N3N1

I2

I1

C1

N2
CONSTANT

I1(0)I1(0)

I2(0)I2(0)

N1(1)N1(1)

N2(1)N2(1)

C1(2)C1(2)

N3(2)N3(2)
O1(3)O1(3)

PI / PO

LUT

I1 I2 N1 N2 N3 C1 O1
T = 0 X X
T = 1 X X
T = 2 X X
T = 3 X

A visual illustration of ACCNN.

• We aim for a model that similar to logic simulation, efficiently propagating
information step-by-step along the sampled paths

• ABGNN13 serves this purpose well

13Zhuolun He et al. (2021). “Graph Learning-Based Arithmetic Block Identification”. In:
Proc. ICCAD.

ACCNN: Netlist Feature Extraction

15/28

O1N3N1

I2

I1

C1

N2
CONSTANT

I1(0)I1(0)

I2(0)I2(0)

N1(1)N1(1)

N2(1)N2(1)

C1(2)C1(2)

N3(2)N3(2)
O1(3)O1(3)

PI / PO

LUT

I1 I2 N1 N2 N3 C1 O1
T = 0 X X
T = 1 X X
T = 2 X X
T = 3 X

A visual illustration of ACCNN.

a(k)
{i:D(i,v)=∆−k} = AGGREGATE({h(k−1)u : u ∈ N(i)}) (1)

h(k)
{i:D(i,v)=∆−k} = COMBINE(a(k)

i , h(0)
i) (2)

ACCNN: Netlist Feature Extraction

16/28

O1N3N1

I2

I1

C1

N2
CONSTANT

I1(0)I1(0)

I2(0)I2(0)

N1(1)N1(1)

N2(1)N2(1)

C1(2)C1(2)

N3(2)N3(2)
O1(3)O1(3)

PI / PO

LUT

I1 I2 N1 N2 N3 C1 O1
T = 0 X X
T = 1 X X
T = 2 X X
T = 3 X

A visual illustration of ACCNN.

Node Type

PI PO CONSTANT LUT 0x1 LUT 0x2 LUT 0x8

ACCNN: Netlist Feature Extraction

17/28

∗
a +

b ∗
c +

d ∗
e +

f ∗
g h

(a) A = 7,D = 7

∗
a ∗

+
∗

c +

d e

b
+

+
f ∗

g h

+
b d

(b) A = 9,D = 5
∗

a +
+

b ∗
c d

∗
∗

c e
+

f ∗
g h

(c) A = 8,D = 5

+
∗

+

b ∗
c d

a
∗

∗
e ∗

a c

+

f ∗
g h

(d) A = 9,D = 4

Area

Delay

7 8 9

4
5

7

(d)

(a)

(c)

(b)

Feasible
designs

(e)

(a)–(d) Equivalent factored forms; (e) Area/delay trade-off for the trees.14

• Boolean expression ab + acd + acef + acegh

• Assume zero arrival time for all PIs, unit area (A = 1), unit delay (D = 1)

14Kanwar Jit Singh et al. (1988). “Timing optimization of combinational logic.”. In: Proc. ICCAD.

SeqEncoder: Optimization Sequence Feature Extraction

18/28

∗
a +

b ∗
c +

d ∗
e +

f ∗
g h

(a) A = 7,D = 7

∗
a ∗

+
∗

c +

d e

b
+

+
f ∗

g h

+
b d

(b) A = 9,D = 5
∗

a +
+

b ∗
c d

∗
∗

c e
+

f ∗
g h

(c) A = 8,D = 5

+
∗

+

b ∗
c d

a
∗

∗
e ∗

a c

+

f ∗
g h

(d) A = 9,D = 4

Area

Delay

7 8 9

4
5

7

(d)

(a)

(c)

(b)

Feasible
designs

(e)

(a)–(d) Equivalent factored forms; (e) Area/delay trade-off for the trees.

• It is hardly possible for designers to determine the effect of optimization sequences
for different designs.

• We need a model that takes into account optimization sequence ordering and
position.

SeqEncoder: Optimization Sequence Feature Extraction

19/28

 balance rewrite balance . . . resub restructure refactor

· · · · · ·

· α1 + · α2 + · α3 + … + · α18 + · α19 + · α20

Keys

Values

Query

=

Sequence Feature

• Transformer15 is one of such models

Attention(Q,K,V) = softmax(
QK>√

dk
)V (3)

15Ashish Vaswani et al. (2017). “Attention is all you need”. In: Proc. NIPS.

SeqEncoder: Optimization Sequence Feature Extraction

20/28

 balance rewrite balance . . . resub restructure refactor

· · · · · ·

· α1 + · α2 + · α3 + … + · α18 + · α19 + · α20

Keys

Values

Query

=

Sequence Feature

Optimization Methods

Balancing, Reconfiguration, Replacing and Rewriting.

SeqEncoder: Optimization Sequence Feature Extraction

21/28

 balance rewrite balance . . . resub restructure refactor

· · · · · ·

· α1 + · α2 + · α3 + … + · α18 + · α19 + · α20

Keys

Values

Query

=

Sequence Feature

SeqEncoder supports extracting features of optimization sequences of length 20 or less

When the length of the optimization sequence is less than 20

• Zero padding→ ‘empty optimization’

• [empty, rewrite, balance, . . . , resub, restructure, refactor]

SeqEncoder: Optimization Sequence Feature Extraction

22/28

Experiments

• Developed the timing prediction framework in Python
• Tools: Yosys, ABC
• Libraries: Pytorch Geometric, PyTorch, networkx

• Dataset: open-source designs

Type
IP

Train Valid/Test

Bus protocol

i2c, spi usb_phy
ethernet, wb_dma ss_pcm

simple_spi, pci sasc
wb_conmax

Controller
ac97_ctrl, bp_be

mem_ctrl
vga_lcd

Crypto
aes_secworks aes

aes_xcrypt des3_area
sha256

DSP fir, iir, jpeg dft, idft

Processor
dynamic_node

fpu, tinyRocket
picosoc, tv80

• Mean Absolute Percentage Error (MAPE)

MAPE =
100%

n

n∑
i=1

∣∣∣∣∣ Ŷi − Yi

Yi

∣∣∣∣∣ (4)

Experimental Setup

24/28

Table: Evaluation Accuracy (MAPE)

Name # PI # PO # Node # Level SNS Runtime [s] LSTP Runtime [s]
aes 683 529 39215 44 50.21% 2.85 25.44% 3.38

des3_area 303 64 7766 47 53.84% 2.16 20.29% 0.70
dft 37597 37417 488165 83 86.90% 27.18 33.56% 55.53
fpu 632 409 55935 1522 26.11% 4.96 3.35% 6.97
idft 37603 37419 481184 82 5.07% 16.16 8.18% 54.04

mem_ctrl 1187 962 29814 56 23.21% 32.02 19.22% 3.71
sasc 135 125 1214 15 21.44% 2.38 2.48% 0.12

ss_pcm 104 90 762 13 67.82% 2.30 6.46% 0.09
tinyRocket 4561 4181 99775 156 37.31% 81.87 10.81% 11.86
usb_phy 132 90 893 16 14.4% 2.65 7.75% 0.10
Average 38.63% 17.45 13.75% 13.65

• Our proposed method greatly outperforms prior works on all the test cases except
for the idft.

Performance of LSTP

25/28

Table: Comparison of Timing minimums

Name Initial [ns] resyn2-2 [ns] Improve [%] LSTP [ns] Improve [%]
aes 1.58 1.37 13.29% 1.24 21.52%

des3_area 2.66 3.74 -40.60% 3.33 -25.19%
dft 5.82 6.35 -9.11% 4.94 15.12%
fpu 51 41.5 18.63% 40.34 20.90%
idft 5.82 6.35 -9.11% 5.54 4.81%

mem_ctrl 6.74 3.03 55.04% 2.94 56.38%
sasc 0.89 0.69 22.47% 0.49 44.94%

ss_pcm 0.66 0.58 12.12% 0.48 27.27%
tinyRocket 78.1 12 84.64% 10.39 86.70%
usb_phy 0.41 0.42 -2.44% 0.32 21.95%
Average 14.49% 27.44%

• LSTP can be used to find a better optimization sequence

LSTP for Optimization Sequence Generation

26/28

• Various tasks from architectural exploration to physical design DSE have highlighted
the demand for fast logic synthesis result prediction

• In this paper, we proposed:

• A machine learning driven logic synthesis timing predictor
• A specialized GNN to sample and learn the intrinsic features of circuit AIG
• An appropriate neural model to model the complex interaction between

optimization passes and their effects on the input netlist

• We conducted comprehensive experiments on real-world circuit designs to evaluate
our methods

Conclusion

27/28

THANK YOU!

	Introduction
	Algorithm
	Experiments

