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Background: DL Compiler Stack
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Background: AutoTuner with Machine Learning
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Method: Problem Formulation

We describe a DNN model as a computation graph and then define some
important terminologies.

Computation Graph G is partitioned into a set of subgraphs S based on the graph-level
optimizer.

Hierarchical Search Space

A tensor program, denoted by p, represents an implementation of the subgraph using
low-level primitives that are dependent on the hardware platform. Each tensor program
can be considered as a candidate in the search space. We define the hierarchical search
space ¢1 2, which decouples high-level structures ¢; from low-level details ¢,, allowing for
the efficient exploration of potential tensor candidates during the tuning process.
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Method: Problem Formulation

Each search task is extracted from an independent subgraph S; on a specific
hardware platform H. Thus, we define search task Q as follows:

Qnisio) = { Qsyiey Lsuiorr -+ sl (1)

where 7 is the number of subgraphs in G. Note that each subgraph S; contains a
computation-intensive operator o and o € S;. Here, we can transform a tuning
problem into an optimization problem that explores the potential tensor programs
in a hierarchical search space.

Given code generation function 9, high-level structure generation parameters ¢,
low-level detail sampling parameters ¢,, computation-intensive operator o and
operator setting k (e.g., kernel size), our goal is to use ¢1 > to build a hierarchical
search space and generate tensor program p to achieve the optimal prediction
score y* on a specific hardware platform H.

¢, = argmaxy,
' ¢ 2)
y = fu(0(¢1, ¢2lo.k)).
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Method: Search-based Framework
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The overview of a search-based framework with computation graph, cost model, and search space.
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Performance Model: Hierarchical Features

High-level Structure:
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Hierarchical features of Conv2D with a full tensor program representation in the search space.
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Performance Model: Model Architecture
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The performance model’s architecture includes two attention blocks that extract coarse and
fine-grained features of the tensor program, as well as a lightweight MLP layer for directly
predicting the score.
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Performance Model: Transfer Learning Across Devices
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Transfer learning among different platforms.
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Evaluation: End-to-End Execution
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End-to-end performance comparison of cost models across DNNs and normalized by the XGBoost.
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Evaluation: Transfer Learning

cost model XGBoost LightGBM LST™M TabNet MHA ATFormer-1L ATFormer ATFormer-M
(ms/s) latency time | latency time | latency time | latency time | latency time | latency time | latency time | latency time
ResNet-18-2080Ti 147 573 1.58 770 1.29 604 1.52 748 1.32 687 1.25 706 1.04 787 1.23 762
TenSet-50 0.86 535 0.98 527 1.02 614 113 583 1.01 595 1.00 602 0.97 600 1.00 611
TenSet-100 0.96 533 0.98 526 1.07 615 0.82 596 0.87 602 1.00 602 0.85 594 0.84 611
TenSet-200 0.99 536 0.86 525 1.07 611 0.88 582 0.83 602 0.82 612 0.82 604 0.82 632
TenSet-300 0.89 538 0.85 526 1.02 622 0.83 583 0.85 600 0.81 609 0.89 612 0.87 607
TenSet-500 0.96 530 0.81 529 1.03 622 0.82 574 0.83 593 0.87 598 0.84 612 0.79 615
ResNet-18-3090 1.07 589 1.11 676 1.24 762 1.64 741 111 658 0.97 661 1.02 677 3.01 665
TenSet-50 0.70 537 0.74 524 0.88 593 0.75 581 0.75 610 0.77 605 0.78 599 0.79 604
TenSet-100 0.71 540 0.73 526 0.83 599 0.67 620 0.65 607 0.68 601 0.66 606 0.69 614
TenSet-200 0.78 534 0.68 526 0.87 582 0.70 589 0.65 612 0.73 599 0.64 596 0.66 611
TenSet-300 0.70 536 0.68 531 0.83 616 0.66 585 0.64 617 0.67 595 0.71 607 0.66 613
TenSet-500 0.72 535 0.67 540 0.85 618 0.69 587 0.67 591 0.68 581 0.67 607 0.63 609

RTX 2080Ti
Transfer

RTX 3090
Transfer

Table: Transferable adaptation evaluation between different GPU platforms on ResNet-18.

MHA
latency time

ATFormer-1L
latency time

ATFormer
latency time

ATFormer-M
latency time

XGBoost
latency time

LSTM
latency time

cost model
performance (ms / s)

RTX 2080Ti Traditional Learning 1.26 1026 1.02 1487 1.03 1172 120 1269 1.02 1382 171 1124
Transfer Learning 1.23 281 1.05 348 0.99 261 115 264 0.99 271 0.93 266

RTX 3090 Traditional Learning | 0.96 1004 1.03 1235 079 1125 0.87 1141 0.74 2054 0.94 2018
Transfer Learning 0.98 287 1.02 270 0.77 261 0.83 269 0.76 267 0.65 264

Table: Pre-trained models on TenSet-500 via transfer learning with converged latency.
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Evaluation: Transfer Learning

‘ M ‘ ResNet-18 ‘ MobileNet-V2 ‘ Bert-Tiny ‘
ethods
(@) (b) (c) (d) (e) (f) |(a) (b) (c) (d) (e) (f) | (a) (b) (c) (d) (e) (f)
mask? v v v v v v
pre-trained? v v v v v v
RMSE Loss? v v v
Rank Loss? v v v v v v v v v v v v v v v
AutoTVM? v v v
total latency (ms)

search time (s)

142 104 123 081 083 192|053 051 076 039 040 1.29 | 418 341 397 232 246 507
781 787 762 620 611 3274 | 962 1000 958 617 604 2996 | 1127 1141 1150 818 816 3826

Table: Total latency and tuning time of different methods, using ResNet-18, MobileNet-V2

and Bert-Tiny networks for end-to-end evaluation. The relative gains obtain for batch size
=1 with 300 measurement trials.
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Conclusion

This paper introduces ATFormer, a novel and effective design for optimizing
tensor programs.

¢ ATFormer employs hierarchical features with varying levels of granularity to model
the end-to-end compilation.

¢ Self-attention blocks are utilized to explore global dependencies of a complete tensor
program for high-quality evaluation.

¢ Through transfer learning, ATFormer achieves faster-converged latency and superior
transferability across different hardware platforms, outperforming previous
state-of-the-art benchmarks.

18/19



THANK YOU!



	Background
	Method
	Evaluation
	Conclusion

