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Background



. Introduction -

Microarchitecture Design Space exploration:

Microarchitecture determines the detailed structures of a microprocessor.

Microarchitecture design space exploration involves finding different configurations
with desired performance, power and area (PPA).

Two major challenges:

Complexity of design spaces growing rapidly: number of potential configurations,
inter-feature interactions, mixed-type parameters.

Getting desired evaluation metric reports for one microarchitecture configuration
through VLSI integration flow is timing consuming.
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. Previous Solutions and Limitations B

Previous solution

In industry:
¢ Manually configure design parameters by computer architects.

¢ Limitation: Requires both sufficient domain knowledge and a large amount of
human labor for computer architects.

In academia:
¢ Machine learning-based process simulation models or surrogate models.

¢ Limitations: Effectiveness depdends on quality of training data and model
granularity.
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. Historical Configurations are Useful 3

Two facts:

Different generations of microprocessors are developed based on a common baseline
microarchitecture. Minor improvements are applied across consecutive
microarchitecture generations.

Some general relations exist for design features due to the similar microarchitecture
design paradigm.

ANN-TL!: Leveraging historical configurations for new tasks with cross-domain
mixup and Artificial Neural Network (ANN) feature.

Limitation: ignores intricate feature interactions, lacks interpretability, presumes
identical design spaces for source and target tasks.

l]ianwamg Zhai, Yici Cai, and Bei Yu (2023). “Microarchitecture Power Modeling via Artificial
Neural Network and Transfer Learning”. In: 2023 28th Asia and South Pacific Design Automation
Conference (ASP-DAC), pp. 1-6. 6/30



. Motivation tc

The characteristics of certain design features have similar or even identical effects
on PPA values in different generations of a microarchitecture design.

Extract the relationship that is approximately invariant among different historical
source design tasks, even equipped with different design spaces.

Transfer domain knowledge from different source tasks to the target design space
exploration task.
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. Invariant Risk Minimization (IRM)? 3

Prediction function f' : X — Y = ¢,(-): feature extractor; h(+): regressor.
u, w: parameter.

IRM: 5
min Z R (u,w),
ww @)
s.t. w € argmin R°(u, w’),

wS

R (u,w) = Exs ys[L(f'(X®), Y?)]: risk under s-th source task.
L(+): the loss function.
Simplified IRMv1:

S
min 3" RS, ) + X[ VR (u, ) 2 @
u,w

s=1

*Martin Arjovsky et al. (2019). “Invariant risk minimization”. In: arXiv preprint arXiv:1907.02893.10/30



. Problem Definition (1) 3

Source Task

Previously explored microarchitecture designs tasks.
Composed of the explored sample dataset D° containing n, parameter vectors
X =[x],...,x;]" € R"*% and the evaluated PPA vectors Y* = [y5,...,y; ] € R">3,

Target Task

The new microarchitecture design space exploration task with only the set of legal
parameter configuration vectors X! = [x},...,x!,]T € R"*% available.

Pareto Optimality

For a multi-objective minimization problem with M objectives, x; is deemed to dominate
solution x; (x1 = xp) if
fm(xl) gfm(xz), Vm € {13 ---7M}7

fk(xl) <fk(x2),3k € {1, ,M}

Pareto-optimal set: The collection of solutions that remain non-dominated by others.

)
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. Problem Definition (2) 3

Microarchitecture Transferring Design Space Exploration

Given S source tasks with explored datasets {D! D?,..., D5 and the target sample D',
the objective is to utilize the information from historical source tasks and improve the
efficiency of finding a series of microprocessor design configurations X in the target task
that forms the Pareto optimality among the associated subset of Y C ), so that

X ={x|x = x,vx' € X'}, Y = {f(x)|X € X'}
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IT-DSE Algorithm
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Workflow of proposed IT-DSE.

¢ Accommodate varying design spaces: FT-Transformer ensemble

* Knowledge fusion and warm start new task: pre-training with invariant risk
minimization paradigm
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. Customized Surrogate Model with Transformer -
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(a) FT-Transformer architecture. Firstly, Feature Tokenizer transforms input parameters into

embeddings. The embedding is then processed by the Transformer module. (b) One Transformer
layer.

tlnum _ x?um . w?um + b?um’ (4)
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. Pre-training on Multiple Source Tasks 3

Comprehensive union of extracted features:

Source task 1: x' = [x1, xp], source task 2: 2 = [x2, X3, x4],
Embedding weight: W = [w1, wy, w3, wy] T € R,
Embedding bias: B = [by, by, b3, bs] " € R*x4,

Transformed embeddings: T! = stack([CLS1,#,t), T? = stack([CLS1, t2, t3, t4).
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. Bayesian Invariant Risk Minimized Feature Extraction 3

Focusing more on task-invariant features.

For s-th source task, original data: D° = {X*,Y*} = {x},y’}}* ,
transferred data: 7° = {¢y(x}), ¥},

collection of transformed datasets of all S source tasks: 7¢ = US_; T°.

Objective for Bayesian IRM:

max > By, [np(T°|w, )] + X (Egu(w) lnp(T°|w, u)]
— ng‘(ws)[lnp(ﬁlws,u)]) . (7)
Su(w) =~ p(w|T°), & (w*) =~ p(w®|T?).

First term: Encouraging u to retain information for data distribution fitting.

Second term: Requires transformed data distribution to be stable among different
tasks with feature extractor ¢,(-).
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. Adaptive Solution of Bayesian IRM 3

The actual posterior p(w|7°) and p(w®|7T°) are hard to estimate in large models.
Variational inference: approximate the posterior distributions by maximizing the
evidence lower bound (ELBO).

$u(w?) = argmax Eg [np(T"lw, u) — D (¢ lIpo(w))) ®
4
S
gu(w) = argmax Y Egeglln p(T*[w, u) — D (8'|lpo(w))]; ©)
g s=1

Assume g, (w) = N (p, X), &5 (w®) approaches g, (w) when more task-invariant
features are extracted:

$u(W’) = N(p = Vg, w0y Inp(T°|w,u), 3), (10)
Use Monte Carlo samples to estimate penalty term in Equation (7):

w=p+eX, w=p +ex’. (11)
18/30



. Algorithm of Bayesian IRM 3

Algorithm Feature extraction with Bayesian IRM

Require: Feature extractor ¢,, regressor h, collection of data from S source task {D* sS=1
Ensure: the learned task-invariant feature extractor ¢,,, regressor h,.
1: Initialization: prior ¢y <— N (0, o1).
2: repeat
3: forsinl,...,Sdo
Sample a batch of data (X}, Yj,q) from D*;
Transform data 7,7, < (6u(Xipen)> Yiaian)s
end for
Update g, (w); > Equation (9)
forsinl,...,Sdo
Update g5 (w°); > Equation (10)
10: end for
11: Sample g, (w) and g, (w®); > Equation (11)
12: Update u to maximize objective; > Equation (7)
13: until Training finished.
14: Return ¢y, hy,;
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Target Task DSE in Feature Space: Deep Ensemble Surrogate )
Model
Given n evaluated samples Dt = {X!, f ’ (Xt)} from target task,

FE)={F D) ()T, (@)} e RS,
For new point x%, posterior distribution p(y.|x!) is approximated as a Gaussian
distributions:

tad) 2
p(y.lx.) =N (Nyilf'(xf)ﬂfyg[f/(xt)) ) (12)

The posterior mean and variance:

1
i (xt) = 3 > o, (&), (13)

m=1
% oy = = D — 1o, (1))
yilf () T pp 2 Pl x) T Hon
m=1
1 M
—I-MZa'gm(xt
m=1

(14)
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Target Task DSE in Feature Space: Pareto EHVI Acquisition )

Function®
Hypervolume given an approximate Pareto frontier P(y):

HVy,.(P()) = \m(Uyepe) Y Yrer)), (15)

[, Yrer]: hyperrectangle bounded by y and reference point y,.s.
Hypervolume improvement (HVI) for a new given point y, given P(y):

HVI(Y«|P(Y), Yref) = Vi, (P(y Uys)) — V. (P(y)). (16)

EHVI Monte Carlo integration approximation with K sampling times:

EHVI(%) = Ep(pr(z,)p) (HVI(' (X)|P (), Yrer))

K . 17
~ LS HVIGEPG).vog) a7
k=1

flé: k-th function evaluation from distribution p(f' (x| D)).

*Samuel Daulton, Maximilian Balandat, and Eytan Bakshy (2020). “Differentiable expected
hypervolume improvement for parallel multi-objective Bayesian optimization”. In: Advarnces in
Neural Information Processing Systems 33, pp. 9851-9864. 21/30




Experiments



. Experimental Settings -

¢ Experiments are performed on an in-house 64-bit high-performance commercial
microprocessor.

® VLSI flow is used to evaluate the PPA values of each microarchitecture configuration.
° Register-transfer-level (RTL) design: generated from Chisel*.

¢ Performance and power: obtained from the benchmark simulation after the physical
implementation.

¢ Area value: reported from the physical implementation tool.

¢ Due to the commercial confidentiality of microarchitecture, we normalize the original
PPA values.

*Jonathan Bachrach et al. (2012). “Chisel: Constructing Hardware in a Scala Embedded
Language”. In: ACM/IEEE Design Automation Conference (DAC), pp. 1216-1225. 23/30



. Transfer Design Space Exploration Experiment Setup

Table: Statistics of our microarchitecture design space

Module | # Linear #Pow # Categorical # Combinations
IFU 8 4 0 ~4x108
000 11 0 0 ~5x10°
IEX 12 0 3 ~1x10°
FSU 5 0 0 ~2x10°
LSU 6 3 0 ~1x107
L2C 1 2 0 ~ 8 x 102

Overall 43 9 3 ~3x 104

* 55 parameters with more than 3 x 10*’ combinations.

¢ Task A, task B, and Task C share the same design space, for task D, we can only tune

53 parameters out of 55 parameters listed.

e Task A, task B, task C, and Task D contain 1237, 377, 1835 and 3453 evaluated

samples, respectively.
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. Evaluation Metrics: -

w

Hypervolume:
HVy, . (P(y)) = Am(Uyep) [Y: Yref]): (18)

Average distance to reference set (ADRS):

ADRS(P*, P

|73*| Z IIllIllz (19)
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. Transferring Performance within Same Design Space )

Table: Comparison of transfer performance in same design space

A,B—C A, C—B B,C— A

Methodologies | ADRS HV | ADRS HV | ADRS HV

Ground Truth 0.0 00984 | 00 0.0684 | 0.0  0.0809
ANN-TL® 0.069 0.0891 | 0.045 0.0643 | 0.031 0.0749
Deep-Ens® 0.072 0.0840 | 0.066 0.0599 | 0.055 0.0727

ERM” 0.080 0.0877 | 0.064 0.0629 | 0.043 0.0742
IRMv18 0.025 0.0938 | 0.023 0.0667 | 0.027 0.0766
Ours 0.021 0.0944 | 0.017 0.0679 | 0.020 0.0796

5]ianwang Zhai, Yici Cai, and Bei Yu (2023). “Microarchitecture Power Modeling via Artificial
Neural Network and Transfer Learning”. In: 2023 28th Asia and South Pacific Design Automation
Conference (ASP-DAC), pp. 1-6.

%Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell (2017). “Simple and scalable
predictive uncertainty estimation using deep ensembles”. In: Advances in neural information
processing systems 30.

VN Vapnik (1992). Principles of risk minimization for learning theory, Advances in Neural Information
Processing NIPS 4 (pp. 831+£838).

$Martin Arjovsky et al. (2019). “Invariant risk minimization”. Tn: arXiv preprint arXiv:1907.02893. 27 /30
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Pareto-optimal sets using source task data from same design space. Left: performance versus area;
right: power versus area.
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. Transferring Performance within Different Design Space

To the best of our best knowledge, all previous methods cannot spread knowledge

across different design spaces.
This serves as an ablation study.

Table: Comparison of transfer performance in different design spaces

A, D-C A,C—-D

Methodologies | ADRS HV | ADRS HV
Ground Truth 0.0 0.0984 | 0.0 07792
w/o. Pre-train | 0.0533 0.0857 | 0.0853 0.7465
w/o. Ensemble | 0.0275 0.0892 | 0.0722 0.7531
w/o. IRM 0.0293 0.0910 | 0.0701 0.7569
w/. IRMv1 0.0232  0.0914 | 0.0687 0.7602
Ours 0.0217 0.0924 | 0.0641 0.7624
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