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Abstract
Running time is a key metric across the standard
physical design flow stages. However, with the
rapid growth in design sizes, routing runtime has
become the runtime bottleneck in the physical de-
sign flow. To improve the effectiveness of the
modern global router, we propose a global rout-
ing framework with GPU-accelerated routing al-
gorithms and a heterogeneous task graph sched-
uler, called FastGR. Its runtime-oriented version
FastGRL achieves 2.489× speedup compared with
the state-of-the-art global router. Furthermore, the
GPU-accelerated L-shape pattern routing used in
FastGRL can contribute to 9.324× speedup over the
sequential algorithm on CPU. Its quality-oriented
version FastGRH offers further quality improve-
ment over FastGRL with similar acceleration.

1 Introduction
Routing is essential in the design flow of the modern very-
large-scale integration. Modern routing flow is divided into
global routing and detailed routing. Global routing produces
routing guidance for detailed routing by performing rough
routing on a coarse grid graph [Liu et al., 2020]. The effi-
ciency and efficacy of global routing are crucial to the design
closure due to its recurrent invocation and guiding role.

The literature has extensively explored shortest path
searching with GPU [Djidjev et al., 2015]. However, most
work only explores the basic single-source shortest path al-
gorithm. These algorithms are unsuitable for routing since
we must route millions of nets while considering numerous
objectives and limitations such as wirelength, number of vias,
and design rules. Regarding those modern routing challenges,
more appropriate GPU kernel algorithms should be designed.

In this work, we propose FastGR, a global routing frame-
work accelerated for CPU-GPU platforms. The framework
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leverages a GPU-friendly pattern routing algorithm and a task
graph scheduler for heterogeneous CPU-GPU systems. By
utilizing the processing resources of GPUs, we can further
increase the solution quality performance of our global rout-
ing framework while incurring a little runtime overhead. We
develop two variants of our global routing framework: the
runtime-oriented version FastGRL and the quality-oriented
version FastGRH. Experiments show that when compared
to the state-of-the-art global router [Liu et al., 2020], our
runtime-oriented version FastGRL can achieve 2.489× over-
all speedup without any quality degradation. The quality-
oriented version FastGRH [Liu et al., 2022b] reduces the
number of shorts by 27.855% over the runtime-oriented ver-
sion FastGRL [Liu et al., 2022a] while remaining 1.970×
faster than the most advanced global router [Liu et al., 2020].

2 Preliminaries
2.1 Problem Formulation
A grid graph G(V,E) is defined to formulate global routing
problem by considering each G-cell as a vertex (v ∈ V ) and
drawing an edge (e ∈ E) between all the pairs of adjacent
G-cells. Figure 1 illustrates the procedure of grid graph con-
struction. We map all the pins into G-cells according to the
pin position. In this sample, different colors represent differ-
ent metal layers. There is a preferred routing direction (hor-
izontal or vertical) for wire edges in each metal layer, repre-
sented as the colored solid lines. The black dotted lines mean
the via edges in our grid graph. With the grid graph G con-
struction, the global routing problem can be formulated as the
minimum accumulated cost path searching problem on G for
all the nets defined in VLSI designs.

2.2 Modern Global Router
Pattern routing [Kastner et al., 2002] plays an important role
in the modern global routing framework due to its efficiency.
Two popular patterns are shown in Figure 2. We illustrate
the L-shape and Z-shape pattern routing paths on 2D and 3D
routing spaces. As shown in Figure 2, the L-shape pattern in-
cludes one single bend point to change the routing direction,
while the Z-shape pattern routing path contains two bends.
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Figure 1: Grid graph construction procedure; There are 3 metal lay-
ers with 4× 4 grids in each layer.
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Figure 2: 2D/3D pattern routing; The red path represents one L-
shape pattern routing solution, and the blue path is one of the candi-
date Z-shape pattern routing paths.

3 Algorithms
3.1 Overview
Figure 3 depicts the overall flow of FastGR. To begin, we
present a heterogeneous task graph scheduler and use it to
manage the execution order of multiple routing tasks in both
portions of our global routing framework, the pattern rout-
ing stage, and the rip-up and reroute iterations. The conflict-
ing relationship among these tasks is used to form the task
graph. It is important to note that a conflict between two rout-
ing tasks indicates that they cannot be processed at the same
time. Our task graph scheduler is utilized to determine the
execution order of each conflicting pair of tasks.

3.2 Task Graph Scheduler
To determine the execution order of the global routing tasks,
we develop a two-stage task graph scheduler. The first stage
is to create a task conflict graph. The task graph scheduler is
then used to determine the order of execution for each conflict
edge. Following the task conflict graph generation, we extract
one maximum non-conflicting set as the root task batch. All
of these tasks can be divided into two groups: the root task
batch and the non-root task batch. We assign the execution
order to each pair of conflicting tasks as follows.
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Figure 3: Overall flow of FastGR.

Notation Description

L The number of metal layers.
Tl The point on lth layer with the same 2D position as Pt.

T (Ps) The sub-tree rooted at Ps in the ordered multi-pin net.
c(· · · ) The cost of a routing path for a single two-pin net.

cbc(Ps, ls) The bottom children cost with Ps in the ls layer.

W(i) Weight matrix of part i in our computation graph flow.
(Bs(i), Bt(i)) The ith bend point pair of 2D patterns.
B

s(i)
l B

t(i)
l The bend points on lth layer of 3D patterns.

c∗(i)(Ps, Pt, lt) The minimum cost with (Bs(i), Bt(i)).
c∗(Ps, Pt, lt) The minimum cost of T (Ps) attached with Ps → Tlt .

Table 1: Notations for GPU-friendly pattern routing.

• Only one task is in the root task batch. The execution
direction is from the root batch task to the other.

• Both the tasks are not part of the root batch. The execu-
tion order is from the task with a smaller task ID to the
other and the task ID indicates the sorting result.

3.3 GPU-friendly 3D Pattern Routing
Figure 4 shows the programming architecture of our GPU-
friendly pattern routing framework for all of these routing
tasks during the pattern routing stage. Each batch in Fig-
ure 4 represents a single routing task, and each task contains
several multi-pin nets. As shown in Figure 2, there are two
common patterns in pattern routing approaches, where the
L-shape pattern provides two candidate routing paths in 2D
space and L × L candidate routing paths in 3D space. At
the same time, there are two bend points in Z-shape patterns
named the source bend point, and the target bend point since
one connects to the source pin, and the other connects to the
target pin. Without loss of generality, we discuss two bend
points here and treat L-shape patterns as a special case. the
bend point pair can get M +N candidate paths in 2D space,
where M represents the width of the bounding box of the net
on G and N is the height. Section 3.3 defines the notations
used in our GPU-friendly 3D pattern routing algorithms for
the two-pin net Ps → Pt.

We define a GPU-friendly 3D pattern routing algorithm as
shown in Figure 5. The left part in Figure 5 illustrates one of
the solutions of Ps → Pt with two bend points (Bs(i), Bt(i)),
where i means the index of the candidate bend point pair and
1 ≤ i ≤ M + N . We define ls, lb, and lt as the layer of
the source pin, the wire connecting two bend points, and the
target pin respectively.

The double-bend routing path includes three parts,

• the wire connecting the source point Ps to the source
bend point Bs(i)

ls
;

• the vias to change routing metal layers from ls to lb and
the wire connecting to the target bend point Bt(i)

lb
;

• the vias to change routing metal layers from lb to lt and
the wire connecting to the target point Tlt .

In this sample path, ls is 1, lb is 2 and lt is 4. We
denote this candidate double-bend pattern routing path as
P{Ps, B

s(i)
ls

, B
t(i)
lb

, Tlt}. According to the above three parts,
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Figure 5: GPU-friendly 3D pattern routing flow for ith candidate
bend point pair (Bs(i), Bt(i)); Each 3D pattern routing solution is
denoted as P{Ps, B
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, B
t(i)
lt

, Tlt}. The sample routing path is col-
ored by green.

the formal formulation of the path cost is,

c(P{Ps,B
s(i)
ls

, B
t(i)
lb

, Tlt}) = cw(Ps, B
s(i)

, ls)

+ cv(B
s(i)

, ls, lb) + cw(B
s(i)

, B
t(i)

, lb)

+ cv(B
t(i)

, lb, lt) + cw(B
t(i)

, Tlt , lt).

(1)

For each pair of bend points (Bs(i), Bt(i)), we will
generate the candidate flow i for this bend point pair.
c∗(i)(Ps, Pt, lt) represents the minimum cost result of the
two-pin net Ps → Pt in the ith candidate flow with the 3D
pattern routing algorithm. The calculation of c∗(i)(Ps, Pt, lt)
with the inter-net ordering is,

c
∗(i)

(Ps, Pt, lt) = min
0<ls,lb≤L

{
cbc(Ps, ls)

+ c(P{Ps, B
s(i)
ls

, B
t(i)
lb

, Tlt})
}
. (2)

We propose a merge step to merge the results of all M +
N candidate flows. We can get the final minimum cost as
follows,

c
∗
(Ps, Pt, lt) = min

1≤i≤M+N
c
∗(i)

(Ps, Pt, lt). (3)

To better utilize the GPU resources, we reformulate it as
the computation graph flow using the vector/matrix addition
and minimum operation. Our proposed GPU-friendly pat-
tern routing algorithm for the ith candidate bend point pair
(Bs(i), Bt(i)) is shown in the right part of Figure 5. The

weight of the edge Ps → B
s(i)
ls

includes the bottom children
cost cbc(Ps, ls) and the wire cost to connect Ps and Bs(i).
The formulation of lths of the edge weights w⃗(1) is,

w
(1)
ls

= cbc(Ps, ls) + cw(Ps, B
s(i)

, ls), 0 < ls ≤ L. (4)

The metal layer switch procedure at the source bend point
is represented by the connection between B

s(i)
ls

and B
t(i)
lb

.
Based on the connection, we formulate the entry of the edge
weights matrix W(2) at the lths row and the lthb column as

w
(2)
ls,lb

= cv(B
s(i)

, ls, lb) + cw(B
s(i)

, B
t(i)

, lb), 0 < ls, lb ≤ L. (5)

We can also define the metal layer switch procedure at the
target bend point as the connection between B

t(i)
lb

and Tlt .
The entry at lthb row and the ltht column of the edge weights
matrix W(3) is defined as,

w
(3)
lb,lt

= cv(B
t(i)

, lb, lt) + cw(B
t(i)

, Tlt , lt), 0 < lb, lt ≤ L. (6)

The minimum cost c∗(i)(Ps, Pt, lt) of the candidate bend
point pair (Bs(i), Bt(i)) can be calculated as Equation (7) re-
ferring to Equation (2),

c
∗(i)

(Ps, Pt, lt) = min
0<ls,lb≤L

{
w

(1)
ls

+ w
(2)
ls,lb

+ w
(3)
lb,lt

}
. (7)

Having all the minimum cost of M + N candidate bend
point pairs, we can finally get the c∗(Ps, Pt, lt) using the
merge step in Equation (3) which can also be computed as
the vector minimum operation on GPU.

Both L-shape and Z-shape patterns are included in the
above formulations. Separate routing algorithms can be for-
mulated by limiting bend point pair candidates.

3.4 Parallel Rip-up and Reroute Iterations
Each multi-pin net is treated as a separate routing task. Then,
we apply our task graph scheduler to these routing tasks based
on the conflict relationship. Finally, all these routing tasks
follow the execution order determined in the ordered task
graph. As a result, utilizing Taskflow [Huang et al., 2019]
and the ordered task graph, we can quickly maximize the par-
allelism of our rip-up and reroute iterations.



Overall runtime (s) PATTERN runtime (s) MAZE runtime (s)
Bench CUGR FastGRL SPD FastGRH SPD CUGR FastGRL SPD FastGRH SPD CUGR FastGRL SPD FastGRH SPD

18t5 80.645 24.858 3.24× 45.240 1.78× 45.111 4.967 9.08× 27.774 1.62× 21.588 5.219 4.14× 2.320 9.30×
18t5m 83.49 33.457 2.50× 40.509 2.06× 7.445 3.314 2.25× 13.084 0.57× 63.32 16.117 3.93× 13.604 4.65×
18t8 260.982 97.568 2.68× 133.717 1.95× 118.117 8.983 13.15× 53.110 2.22× 108.986 52.692 2.07× 46.397 2.35×
18t8m 250.26 131.395 1.91× 141.511 1.77× 18.292 5.715 3.20× 23.690 0.77× 201.58 79.987 2.52× 77.740 2.59×
18t10 354.347 110.811 3.20× 144.570 2.45× 124.533 10.410 11.96× 38.503 3.23× 199.777 70.222 2.85× 73.873 2.70×
18t10m 339.471 165.682 2.05× 169.670 2.00× 18.485 6.788 2.72× 15.858 1.17× 291.58 106.097 2.75× 103.631 2.81×
19t7 527.955 181.445 2.91× 231.654 2.28× 223.947 15.556 14.40× 85.943 2.61× 241.787 98.780 2.45× 77.569 3.12×
19t7m 340.489 179.115 1.90× 210.831 1.62× 34.208 8.658 3.95× 45.032 0.76× 244.686 105.852 2.31× 104.355 2.35×
19t8 529.193 173.299 3.05× 240.520 2.20× 333.965 17.612 18.96× 93.800 3.56× 96.888 53.312 1.82× 42.909 2.26×
19t8m 520.547 320.228 1.63× 317.376 1.64× 51.922 11.982 4.33× 43.210 1.20× 371.748 202.516 1.84× 169.857 2.19×
19t9 842.18 250.466 3.36× 320.815 2.63× 561.337 24.481 22.93× 103.690 5.41× 129.707 74.764 1.74× 60.311 2.15×
19t9m 632.577 434.852 1.46× 498.958 1.27× 88.971 17.976 4.95× 52.054 1.71× 400.227 247.518 1.62× 283.915 1.41×
AVG 2.49× 1.97× 9.32× 2.07× 2.50× 3.16×

Table 2: Runtime speedup (SPD) results on ICCAD 2019 benchmarks. AVG means the averaged one.

Score Wirelength # Vias # Shorts
Bench FastGRL FastGRH FastGRL FastGRH FastGRL FastGRH FastGRL FastGRH Improved (%)

18t5 16919500 16880800 26988200 26915900 856362 855723 0 0
18t5m 18774900 18705100 27942700 27799600 802385 809459 3188 3135 1.662
18t8 40881100 40825200 64359900 64211700 2174240 2179840 8.5 0 100.000
18t8m 42897000 42728700 64554600 64441200 1948740 1957020 5649.5 5360 5.124
18t10 42592100 42575900 66718200 66677100 2308250 2309320 0 0
18t10m 44579100 44275300 71071700 71014000 2059820 2067080 1608 1000 37.811
19t7 71887200 71763600 118744000 118495000 3128750 3129020 0 0
19t7m 67923300 67639200 107115000 106577000 3080660 3084060 4086.5 4028.5 1.419
19t8 113929000 113844000 181854000 181687000 5750370 5750260 0 0
19t8m 114362000 114545000 177638000 177284000 5612590 5623080 6185.5 6822 -10.290
19t9 175523000 175367000 274106000 273884000 9603400 9603200 112.5 23.5 79.111
19t9m 173339000 173002000 267786000 267304000 9359980 9375940 4013 3692 7.999

Average 27.855

Table 3: Solution quality results after global routing. The better performance is marked as bold.

4 Experimental Results
4.1 Experimental Setup
The framework was developed in C++/CUDA based on
CUGR [Liu et al., 2020]. We conducted the experiments on
a 64-bit Linux machine with Intel(R) Xeon(R) Gold 6226R
CPU @ 2.90GHz and 1 NVIDIA GeForce RTX 3090 GPU.
ICCAD2019 benchmarks[Dolgov et al., 2019] were adopted.
We integrated our proposed two types of GPU-friendly pat-
tern routing algorithms into the pattern routing stage sepa-
rately to illustrate the strength of our methods. Further, the
details of sorting scheme and threshold settings can be found
in [Liu et al., 2022b].

4.2 Acceleration
We evaluate the total runtime, pattern routing runtime, and
runtime of the rip-up and reroute iterations to demonstrate
the acceleration performance. Section 4 shows that our pro-
posed FastGRL can bring an overall 2.489× acceleration with
9.324× speedup on the pattern routing stage. Meanwhile,
the proposed FastGRH can still obtain 1.970× speed up with
much more candidate routing paths, in which the pattern
routing stage achieves 2.070× acceleration on average and
3.157× improvement on the maze routing stage due to the
reduction of the number of nets to rip up.

4.3 Evaluation on Hybrid Shape Patterns.
Section 4 shows the comparison of the solution quality af-
ter global routing. It establishes that the global router with

hybrid-shape pattern routing algorithm FastGRH can beat the
global router with L-shape pattern routing algorithm FastGRL

[Liu et al., 2022a] with respect to the solution quality on most
designs. Since our hybrid-shape pattern routing algorithm
considers Z-shape patterns as the candidate routing paths, the
number of vias increases reasonably. To further evaluate the
solution performance, Dr.CU [Chen et al., 2019] is applied to
conduct detailed routing under the guide of the global routing
solution. As for the wirelength, our FastGR framework out-
performs CUGR on most designs. Furthermore, FastGR can
obtain comparable detailed routing performance with CUGR
in many aspects (including the number of vias, the number of
shorts, and the number of spacing violations) as listed in [Liu
et al., 2022b].

5 Conclusion
In this paper, we propose an efficient global routing frame-
work, FastGR, accelerated for CPU-GPU platforms. We pro-
pose two GPU-friendly pattern routing algorithms and a het-
erogeneous task graph scheduler. The experimental results
highlight the importance of GPU-accelerated kernel algo-
rithms and the task scheduler for inter-net ordering in rout-
ing. An adequate fuse of them can assist in reducing design
cycles and improve the solution quality at the same time. In
the future, we plan to extend the task graph scheduler to other
critical stages and exploit the power of GPU acceleration in
the VLSI flow.
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