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• Place standard cells (rectangles) onto valid region.

• Legality: no overlap; row alignment; site alignment.

• Objective: minimize total wirelength (routed? HPWL? Steiner-tree).

Figure: Fill standard cells into blue region.
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Steiner Tree Clique Star HPWL

N/A N/A

Table: Examples of different wirelength models. The first row shows models using ℓ1
distance, while the second shows those using ℓ2 distance.
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• Steiner tree is the most accurate model. HARD to optimize.

• All ℓ2 models are smooth and easy to optimize.

• HPWL is the most widely adopted one. Why?

Model Steiner Tree Clique Star HPWL
Distance ℓ1 ℓ1 ℓ2 ℓ1 ℓ2 ℓ1
Accuracy ■■■■■ ■ ■ ■■■ ■■ ■■■■

Smoothness ■ ■■ ■■■■■ ■■ ■■■■■ ■■
Table: The approximation accuracy and smoothness of different models.
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Two widely-used models: the log-sum-exp model1 and the weighted-average
model [DAC’11],
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where γ is the precision parameter. Uniform convergence?

1W. C. Naylor et al., Non-linear optimization system and method for wire length and delay optimization
for an automatic electric circuit placer, US Patent 6,301,693, Oct 9, 2001.
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Figure: A simple example of approximating max{x, 0} − min{x, 0} = |x| (2-pin net) with
differentiable models, under γ = 0.2.
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The WA model is good, but are there any drawbacks?
• Numerical Stability. It occurs due to the exponential function.

• Non-Convexity. It can be easily verified in the above figure. The non-convexity may
get more complicated in high-dimensional cases of real designs.

• Approximation Error. The exponential terms provide high precision when γ is very
small, but mostly γ is not an ϵ-like value.
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Figure: (a) The non-convexity of WA [DAC’11] on a simple 3-pin net to approximate
∆x = max{xmin, x, xmax} − min{xmin, x, xmax}. (b) The average approximation against γ or
t for 4-pin nets, under fixed ∆x = 200.
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In our placement applications, we only consider closed convex functions h(x)
defined in Rn to simplify the notations.

Definition 1 (Moreau Envelope)

For any t > 0, the Moreau envelope function ht is defined by

ht(x) = min
u∈Rn

{
h(u) +

1
2t
∥u − x∥2

2

}
. (2)

Usually, it does not have an explicit closed-form representation.
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We have the following facts.

Fact 2 (Point-wise Convergence)

We always have the point-wise convergence limt→0+ ht(x) = h(x).

Fact 3 (Differentiability)

The envelope-theorem states that ∇xht(x) = 1
t (x − proxth(x)).
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Replace ht with the HPWL function approximation Wt
e, defined as

Wt
e = min

u∈Rn

{
We(u) +

1
2t
∥u − x∥2

2

}
, (3)

where We is the horizontal (vertical) half-perimeter wirelength function of net
e ∈ E,

We(x) = max
1≤i≤n

xi − min
1≤i≤n

xi. (4)

The forward computation of Wt
e(x) and the backward computation ∇Wt

e(x) is
possible.
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The key problem is to find how to compute the proximal point,

proxtWe
(x) = argmin

u∈Rn

{
We(u) +

1
2t
∥u − x∥2

2

}
. (5)

We have to solve the above optimization problem.
• Cheap. The approximation will work.

• Expensive. The approximation is only symbolic, and it is hard to make it practical.

Wt
e + t will be considered to be the approximation.
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Gradient Property: the gradient of Moreau envelope function Wt
e is g = ∇Wt

e(x)
where

gi =


1
t (xi − τ2), if xi > τ2;

0, if τ1 ≤ xi ≤ τ2;
1
t (xi − τ1), otherwise

(6)

is defined for any i = 1, · · · , n, such that

n

∑
i=1

(xi − τ2)
+ =

n

∑
i=1

(τ1 − xi)
+ = t, (7)

if the solution τ1, τ2 to (7) satisfy τ1 ≤ τ2, otherwise g = ∇Wt
e(x) is determined by

the average coordinate: gi =
1
t xi − 1

tn ∑n
i=1 xi for any index i = 1, · · · , n.
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Figure: The illustration of water-filling to solve τ1 in Equation (7).
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Figure: A simple example of approximating max{x, 0} − min{x, 0} = |x| (2-pin net) with
ME model, under t = 0.2.
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The closed-form representation is

We(x) ≈ Wt
e(x) + t =

{
x2

4t + t, if |x| ≤ 2t,
|x|, otherwise

(8)

You may know about the Huber loss,

Lδ(a) =
{ 1

2 a2, if |a| ≤ δ,
δ(|a| − 1

2 δ), otherwise
(9)

Then we have equality Wt
e(x) =

1
2t L2t(x). The model is the multidimensional

generalization of Huber loss.
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The wirelength curve against density overflow.
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(b) ISPD2019 ispd19_test10

A Test on ISPD’06 and ISPD’19
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THANK YOU!
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