
Restructure-Tolerant Timing Prediction via Multimodal Fusion
Ziyi Wang1†, Siting Liu1†, Yuan Pu1, Song Chen2, Tsung-Yi Ho1, Bei Yu1

1Chinese University of Hong Kong, 2University of Science and Technology of China

Introduction

Repetitive placement and routing to guarantee timing closure is costly.

Pre-routing Timing evaluation is necessary to save abundant routing

running time and provide quick feedback to optimize timing early.

Background

Timing Closure

Slack: se = re − ae for a timing path endpoint e, where re and ae

denote e’s required time and arrival time.

Worst Negative Slack (WNS): w(·) = mine se.

Total Negative Slack (TNS): t(·) =
∑

e {min{0, se}}

Timing awareness has been extended to most phases of the physical de-

sign flow for the timing closure.

Related works

Traditional method, e.g., Elmore’s model [1], is imprecise due to

inaccurate wire estimation without actual routing information.

2 classes of ML-driven methods:
1. two-stage [2] [3]: first predict local net/cell delays and then apply graph traversals

to evaluate the global timing metric.

2. end-to-end [4]: directly predict global timing metrics, but still relies on local

net/cell delay prediction as auxiliary tasks.

Highlights

CLK

D Q

CLK

D Q

?
?

?
?

s

eC4C4

C1C1

C2C2

C3C3

label=？

(a) Input netlist

CLK

D Q

CLK

D Qe

s C5C5

C6C6

C7C7

C8C8
C9C9

(b) Optimized netlist

Figure 1. Example of circuit reconstruction after timing optimization

Previous methods follow a local-view fashion that only focuses on local

graph information, which is destructed after timing optimization (TO).

Graph Restructuring leads to inconsistency between local delay

supervision and global timing metrics prediction.

Restructure-tolerant Pre-routing Timing Prediction Given the

pre-routing layout and netlist of a design, our goal is to make an accurate

and efficient estimation of the sign-off global timing metrics, i.e., endpoint

arrival time, with the impact of timing optimization taken into account.

Overall Flow

Endpoint-wise
Netlist Information

Extraction

Placed
Circuit

Endpoint Arrival Time
Regression

Output

MLP

Endpoint-wise
Layout Information

Extraction

CLK

D Q

CLK

D Q vnvn

Endpoint-wise
Netlist

Embeddings

Endpoint-wise
Layout

Embeddings

Endpoint Embeddings

Figure 2. Overview of our pre-routing timing prediction framework, which first

generates endpoint-wise embedding and then conducts sign-off global timing

prediction.

Highlights

We develop a novel endpoint embedding framework that fuses

layout-netlist information considering the impact of timing

optimization.

A customized graph neural network is presented to extract and

aggregate endpoint-wise netlist information.

A convolutional neural network with an endpoint-wise masking

technique is developed to efficiently extract the unique layout

information for each timing endpoint.

Netlist Embedding Model

Data Representation

Heterogeneous graph taking each pin as a node, and with two edge

types: cell edge and net edge.

Directed acyclic graph (DAG) by removing cell edges of registers.

Customized Message Passing Scheme

CLK

D Q

CLK

D Q e
CLK

D Q

e
CLK

D Q

Given Placed Circuit

e

e

Topological Levels Generation
& Message-Passing

vnvn

Endpoint-wise
Netlist

Embeddings

cell node
net node

net aggregation
cell aggregation

e endpoint

Figure 3. Our netlist embedding flow.

~hv =

σ(fMLP
c1 (max

{
~hu : u ∈ N (v)

}
) + fMLP

c2 (~hc
v)) v ∈ Vc

σ(~hd + fMLP
n (~hn

v)) v ∈ Vn

(1)

Highlights

Motivated by delay propagation

Flows in the topological order and aggregated at endpoints

Different aggregators for cell nodes and net nodes, respectively.

Layout Embedding Model

⊙⊙

Endpoint-wise
Layout

Embeddings

Endpoint-wise Mask Generation

H
4
H
4

W
4
W
4

Fully
Connected

Layer

Layout Features
32

WW

HH

64

W
2
W
2

H
2
H
2

W
4
W
4

H
4
H
4

32 1

Conv Max pooling

Layout Feature Fusion

e

e

MLML

MeMe

ML
eML
e

Figure 4. Our endpoint-wise layout embedding generation flow with a CNN model and

a novel endpoint-wise masking technique.

Highlights

We propose a critical region-based method to extract unique

endpoint-wise layout information.

We derive the critical region from a critical path, based on the

observation that the impact of TO on e is closely related to this path.

Critical Mask Generation

e

(a) Input graph

0

1

3

2

4

5

0

1

e

(b) Path-finding and mask

generation

(c) Output mask

Figure 5. Example of mask generation. The number next to each node indicates its

topological level, and the purple lines depict the longest path Pe for e. The dotted boxes

illustrate the critical region consisting of net edge bounding boxes along Pe.

Results

Benchmark

Input information Impact of timing optimization on sign-off metrics

#pin #edp #en #ec

slack variation net variation cell variation

∆wns ∆tns #replaced ∆delay #replaced ∆delay

train

jpeg 932842 40801 650878 607795 98.8% 99.8% 32.5% 50.8% 35.4% 40.6%

rocket 698347 52731 490499 432068 94.0% 94.8% 28.5% 70.0% 8.0% 24.2%

smallboom 694441 61764 488052 423344 87.4% 99.1% 40.9% 53.1% 15.6% 39.8%

steelcore 26598 1662 19439 17732 89.6% 98.3% 49.8% 51.8% 18.4% 29.4%

xgate 20842 684 14653 13010 94.8% 99.1% 31.3% 50.7% 16.9% 20.9%

test

arm9 44469 2500 33065 29287 82.5% 88.8% 46.7% 47.8% 24.0% 42.9%

chacha 35687 1986 25117 23083 86.5% 88.0% 47.1% 62.5% 38.8% 40.2%

hwacha 1357798 61313 985057 922085 91.7% 92.5% 45.1% 70.4% 22.0% 37.1%

or1200 1165114 172401 844443 658961 95.4% 97.3% 49.1% 61.4% 20.8% 28.6%

sha3 794720 60323 552021 485596 96.0% 97.4% 30.3% 77.6% 8.3% 28.8%

Avg
train 474614 31528 332704 298790 92.9% 98.2% 36.6% 55.3% 18.9% 31.0%

test 679558 59705 487941 423802 90.4% 92.8% 43.7% 63.9% 22.8% 35.5%

Table 1. Dataset statistic. We use Cadence Genus with advanced 7-nm ASAP7 PDK [5]

for synthesis, and Cadence Innovus for placement, timing optimization, and routing.

Benchmark
baselines’ net/cell delay prediction (R2 score) Endpoint arrival time prediction (R2 score)

DAC19 [?] DAC22-he [?] DAC22-guo [?] DAC19 [?] DAC22-he [?] DAC22-guo [?] our CNN-only our GNN-only our full

arm9 0.0101 -0.5187 -0.2960 / -1.8234 0.6655 0.7304 0.8279 -0.0011 0.8405 0.8852

chacha -0.1389 -0.1008 -0.0813 / -0.2737 0.4406 0.6146 -0.0253 -0.1152 0.7346 0.9027

hwacha 0.0519 -0.0323 -0.8003 / -0.8630 0.2752 0.5186 0.7090 -0.0173 0.8022 0.8623

or1200 -0.0395 -0.3051 -3.5679 / -0.0924 0.3226 0.4484 0.6776 -0.0019 0.7381 0.8081

sha3 0.3941 0.5554 -0.3713 / 0.1230 0.7784 0.7917 0.8464 -0.0058 0.8635 0.9035

avg 0.0555 -0.0803 -1.0234 / -0.5859 0.4965 0.6207 0.6071 -0.0283 0.7958 0.8724

Table 2. Overall Comparison on the test benchmarks.

design
commercial (20 threads) ours

opt route sta total pre infer total speedup

jpeg 7863 624922 227 633012 20.63 5.56 26.19 24170×
rocket 16239 19161 167 35567 18.53 2.02 20.55 1731×

smallboom 9051 53942 152 63145 19.72 4.81 24.53 2574×
steelcore 1294 747 20 2061 0.39 1.12 1.51 1365×
xgate 338 630 17 985 0.34 0.48 0.82 1201×
arm9 305 1825 16 2146 0.88 1.78 2.66 807×
chacha 1621 1794 23 3438 0.82 1.20 2.02 1702×
hwacha 43883 136946 241 181070 23.89 5.77 29.66 6105×
or1200 28641 40291 339 69271 112.20 6.52 118.72 583×
sha3 18785 16870 185 35840 24.95 2.58 27.53 1302×
avg. 12802 89713 139 102654 22.23 3.184 25.42 4154×

Table 3. Runtime (s) Analysis where pre is for preprocessing consisting of graph

construction, topological level and critical mask generation.

Highlights

Our proposed global-view fashion outperforms prior local-view fashion

when timing optimization is taken into account.

Previous methods perform badly on local net/cell delay prediction,

demonstrating that it is hard to model the influence of TO locally with

only pre-routing information.

Prediction performance on local net/cell delay is inconsistent with that

on global timing metrics.

Layout information alone is useless but works well when combined

with netlist information.

Our proposed framework is highly efficient for obtaining an accurate

estimation of sigh-off timing performance.

Conclusion & Future Directions

This study has raised the importance of timing-optimization-aware

pre-routing timing prediction and provides a novel framework for

timing endpoint embedding generation.

We should keep a close eye on multimodal fusion in the VLSI design

flow for more thorough information mining.

This work can be extended by feedbacking the prediction to guide

timing optimization in the placement stage.

References

[1] J. Rubinstein, P. Penfield, and M. A. Horowitz, “Signal delay in rc tree networks,” tcad, pp. 202–211,

1983.

[2] E. C. Barboza, N. Shukla, Y. Chen, and J. Hu, “Machine learning-based pre-routing timing prediction

with reduced pessimism,” in Proc. DAC, 2019.

[3] X. He, Z. Fu, Y. Wang, C. Chang Liu, and Y. Guo, “Accurate timing prediction at placement stage with

look-ahead rc network,” in Proc. DAC, 2022.

[4] Z. Guo, M. Liu, J. Gu, S. Zhang, D. Z. Pan, and Y. Lin, “A timing engine inspired graph neural network

model for pre-routing slack prediction,” in Proc. DAC, 2022.

[5] L. T. Clark, V. Vashishtha, L. Shifren, A. Gujja, S. Sinha, B. Cline, C. Ramamurthy, and G. Yeric, “Asap7:

A 7-nm finfet predictive process design kit,” Microelectronics Journal, 2016.

https://ZeayW.github.io Design Automation Conference 2023, San Francisco ziyiwang21@cse.cuhk.edu.hk

https://ZeayW.github.io
mailto:stliu@cse.cuhk.edu.hk

