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Background Knowledge



. Layout Pattern Generation
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Generated Layout Patterns (Ours)

i
Original Layout Patterns [[CCAD20]

VLSI layout patterns provide critical resources in various designs for manufacturability
research, from early technology node development to back-end design and sign-off
flows| DAC 19]1.

% 'H. Yang et al., “Deepattern: Layout pattern generation with transforming convolutional
[<59 auto-encoder”, in DAC, 2019, pp- 1-6.
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. An End-to-End Learning Solution?

The three basic DRC checks
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Enclosure

Spacing

* Maybe No
¢ Gap between Discrete Rules and Continuous DNN Model




. Squish Pattern Representation
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Squish Pattern :

¢ Lossless and efficient representation method
¢ Encodes layout into pattern topology matrix and geometric information

¢ Problem #1: information density of each pixel is still not satisfactory

& %F. E. Gennari and Y.-C. Lai, Topology design using squish patterns, US Patent 8,832,621, Sep. 2014&3




. Novel Pattem Generation
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(a) Encoder-Decoder [DAC"19] (b) VAE-based [ICCAD 203

¢ Generate gray image (topology) and transfer it into a binary image
¢ May lead to a deduction of information

¢ Problem #2: How to generate a binary mask directly?

€ *X. Zhang et al., “Layout pattern generation and legalization with generative learning models”, &
¥ in Proc. ICCAD, 2020, pp. 1-9. 3




. Pattern Legalization

Space Width Area
Examples of DRC Rule

Finding legal distance vector for each topology

¢ Solving a Linear System (1D pattern) [DAC"19].
¢ Using Exist Distance Vector (2D pattern) [[CCAD 20|

¢ Problem #43: 2D pattern introduces non-linear constraint, hard to solve!
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. Evaluation

¢ Pattern Diversity. Shannon entropy of the pattern complexity.

H= _ZZP(Cxi»Cy]') log P(cxi, ¢yj), 1)
P
¢ Pattern Legality.
_ # Legal Patterns
L= # All Patterns @




. Denoising Diffusion Probabilistic Models [NeurIPS"20]*

q(T | T, _y)
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Mlustration of denoising diffusion process.

T,

Forward Process: q (Ti|Ti_1) := N (Ti; /T = BiT—1, Bel) -
Reverse Process: pg (Tx_1|Tk) := N (Ti—1; o (Tx, k) , o (T, k)) -

& *7. Ho et al., “Denoising diffusion probabilistic models”, NeurIPS, vol. 33, pp. 68406851, 2020. : ‘3




Proposed Method: DiffPattern



Overview
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An illustration of the Diffpattern framework for reliable layout pattern generation.




. Problem #1: Deep Squish Pattern Representation

Naive Concatenating State Space Bit Power

Topology Matrix

101 {0,1,..., 14,15}
T / ¢ [+ [
1 1 {0,1} x {0,1}
N | LR

Bit Power

Topology Tensor State Space

¢ The Topology Tensor is a lossless and compact representation of the topology matrix.

¢ The Naive Concatenating brings unbalanced power to each bit and an exponentially
increasing state space.




. Problem #2: Topology Tensor Generation
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An illustration of the (flattened) samples from our Discrete Diffusion Model.

Forward Process g (x | x¢—1) := Cat (xg;p = x1Qk), B

Multiple step forward at once. q(x¢|xo) = Cat(xi;p = %0Qx), Qk = Q1Q2...Qx
Reverse Process pg (xc—1|xk) = >z, 9 (Xk—1[xk, X0) po (¥o|xk) -

Training Loss Function: L = Dxy, (9 (x¢—1|%k, X0) || po (xk—1|xx)) — Alog pe (xo|xx) »

> LS




. Problem #2: Topology Tensor Generation

A uniform stationary distribution is a natural choice in topology tensor
generation. Given any xy, the distribution of every entry x; should follows,

q(x¢|xp) — [0.5,0.5], when k — K. 3)
T =Bc Bk
=50 %) @
k=1 (8- B) B
B = e B k=1, K, )

where 31 and Sk are hyperparameters.




. Problem #3: 2D Pattern Legalization
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Experiment Results



Diversity and Legality

Generated Patterns Legal Patterns

Set/Method Generated Topology Patterns  Diversity (1) | Legality %T) Diversity (1)
Real Patterns - - - 13869 10.777
CAE 100000 100000 4.5875 19 3.7871
VCAE 100000 100000 10.9311 2126 9.9775
CAE+Legal GAN 100000 100000 5.8465 3740 5.8142
VCAE+Legal GAN 100000 100000 9.8692 84510 9.8669
LayouTransformer - 100000 10.532 89726 10.527
DiffPattern-S 100000 100000 10.815 100000 10.815
DiffPattern-L 100000 10000000 10.815 10000000 10.815

DiffPattern achieves a perfect performance (i.e. 100%) under the metric of legality.
DiffPattern also gets reasonable improvement (10.527—10.815) on the diversity.
We generate 100 different layout patterns from each topology in DiffPattern-L.




. Flexibility: Generate Different Patterns from Single Topology.
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Different layout patterns that are generated from a single topology with the same design rule.
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Flexibility: Generate Legal Patterns with Different Design
Rules.
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Layout patterns that are generated from the same topology with different design rules: (a) Normal
rule; (b) Larger space, . ; (c) Smaller Area, .
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Distribution of Complexity

Real Patterns DiffPattern
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An illustration of complexity distribution.




. Model Efficiency

Phase/Method ‘ Cost Time (s) Acceleration

Sampling | 0.544 N/A
Solving-R 0.269 1.00x
Solving-E 0.117 2.30x

¢ Initializing with existing results achieves 2.30x acceleration on CPU.




THANK YOU!




	Background Knowledge
	Proposed Method: DiffPattern
	Experiment Results

