

JULY 9-13, 2023
MOSCONE WEST CENTER

MOSCONE WEST CENTER SAN FRANCISCO, CA, USA

DiffPattern: Layout Pattern Generation via Discrete Diffusion

Zixiao Wang¹, Yunheng Shen², Wenqian Zhao¹, Yang Bai¹, Guojin Chen¹, Farzan Farnia¹, **Bei Yu**¹

¹Chinese University of Hong Kong ²Tsinghua University

Background Knowledge

Layout Pattern Generation

Original Layout Patterns [ICCAD'20]

Generated Layout Patterns (Ours)

VLSI layout patterns provide critical resources in various designs for manufacturability research, from early technology node development to back-end design and sign-off flows[DAC'19]¹.

An End-to-End Learning Solution?

The three basic DRC checks

- Maybe No
- Gap between Discrete Rules and Continuous DNN Model

Squish Pattern Representation

Squish Pattern [US Patent'14]²

- Lossless and efficient representation method
- Encodes layout into pattern topology matrix and geometric information
- Problem #1: information density of each pixel is still not satisfactory

Novel Pattern Generation

Generate gray image (topology) and transfer it into a binary image

- May lead to a deduction of information
- Problem #2: How to generate a binary mask directly?

³X. Zhang *et al.*, "Layout pattern generation and legalization with generative learning models", in *Proc. ICCAD*, 2020, pp. 1–9.

Pattern Legalization

Examples of DRC Rule

Finding legal distance vector for each topology

- Solving a Linear System (1D pattern) [DAC'19].
- Using Exist Distance Vector (2D pattern) [ICCAD'20]
- Problem #3: 2D pattern introduces non-linear constraint, hard to solve!

Evaluation

• Pattern Diversity. Shannon entropy of the pattern complexity.

$$H = -\sum_{i} \sum_{j} P(c_{xi}, c_{yj}) \log P(c_{xi}, c_{yj}), \tag{1}$$

Pattern Legality.

$$L = \frac{\text{\# Legal Patterns}}{\text{\# All Patterns}}.$$
 (2)

Denoising Diffusion Probabilistic Models [NeurIPS'20]⁴

Illustration of denoising diffusion process.

Forward Process: $q\left(T_{k}|T_{k-1}\right) := \mathcal{N}\left(T_{k}; \sqrt{1-\beta_{k}}T_{k-1}, \beta_{k}I\right)$. Reverse Process: $p_{\theta}\left(T_{k-1}|T_{k}\right) := \mathcal{N}\left(T_{k-1}; \mu_{\theta}\left(T_{k}, k\right), \Sigma_{\theta}\left(T_{k}, k\right)\right)$.

Proposed Method: DiffPattern

Overview

An illustration of the Diffpattern framework for reliable layout pattern generation.

Problem #1: Deep Squish Pattern Representation

- The Topology Tensor is a lossless and compact representation of the topology matrix.
- The Naive Concatenating brings unbalanced power to each bit and an exponentially increasing state space.

Problem #2: Topology Tensor Generation

An illustration of the (flattened) samples from our Discrete Diffusion Model.

Forward Process $q(x_k \mid x_{k-1}) := \operatorname{Cat}(x_k; p = x_{k-1}Q_k)$, Multiple step forward at once. $q(x_k \mid x_0) = \operatorname{Cat}(x_k; p = x_0\bar{Q}_k)$, $\bar{Q}_k = Q_1Q_2...Q_k$ Reverse Process $p_{\boldsymbol{\theta}}(x_{k-1} \mid x_k) = \sum_{\widetilde{x}_0} q(x_{k-1} \mid x_k, \widetilde{x}_0) p_{\boldsymbol{\theta}}(\widetilde{x}_0 \mid x_k)$. Training Loss Function: $L = D_{\mathrm{KL}}(q(x_{k-1} \mid x_k, x_0) \parallel p_{\boldsymbol{\theta}}(x_{k-1} \mid x_k)) - \lambda \log p_{\boldsymbol{\theta}}(x_0 \mid x_k)$,

Problem #2: Topology Tensor Generation

A uniform stationary distribution is a natural choice in topology tensor generation. Given any x_0 , the distribution of every entry x_k should follows,

$$q(x_k|x_0) \to [0.5, 0.5], \text{ when } k \to K.$$
 (3)

$$\mathbf{Q}_k = \begin{bmatrix} 1 - \beta_k & \beta_k \\ \beta_k & 1 - \beta_k \end{bmatrix},\tag{4}$$

$$\beta_k = \frac{(k-1)(\beta_K - \beta_1)}{K - 1} + \beta_1, \ k = 1, ..., K, \tag{5}$$

where β_1 and β_K are hyperparameters.

Problem #3: 2D Pattern Legalization

Examples of DRC Rule

$$\begin{cases} \delta_{xi}, \delta_{yj} > 0, & \forall \delta_{xi}, \delta_{yj}; \\ \sum \delta_{xi} = \sqrt{C}M, & \sum \delta_{yj} = \sqrt{C}M; \\ \sum_{i=a}^{b} \delta_{i} \geq Space_{min}, & \forall (a,b) \in Set_{S}; \\ \sum_{i=a}^{b} \delta_{i} \geq Width_{min}, & \forall (a,b) \in Set_{W}; \\ \sum \delta_{xi}\delta_{yj} \in [Area_{min}, Area_{max}], & \forall Polygon; \end{cases}$$
(6)

Experiment Results

Diversity and Legality

Set/Method	Generated Topology	Generat Patterns	ed Patterns Diversity (†)	Legal l Legality (†)	Patterns Diversity (†)
Real Patterns	-	-	-	13869	10.777
CAE [DAC'19]	100000	100000	4.5875	19	3.7871
VCAE [ICCAD'20]	100000	100000	10.9311	2126	9.9775
CAE+LegalGAN [ICCAD'20]	100000	100000	5.8465	3740	5.8142
VCAE+LegalGAN [ICCAD'20]	100000	100000	9.8692	84510	9.8669
LayouTransformer [ICCAD'22]	-	100000	10.532	89726	10.527
DiffPattern-S	100000	100000	10.815	100000	10.815
$DiffPattern ext{-}L$	100000	10000000	10.815	10000000	10.815

- DiffPattern achieves a perfect performance (i.e. 100%) under the metric of legality.
- DiffPattern also gets reasonable improvement (10.527 \rightarrow 10.815) on the diversity.
- We generate 100 different layout patterns from each topology in DiffPattern-L.

Flexibility: Generate Different Patterns from Single Topology.

Different layout patterns that are generated from a single topology with the same design rule.

Flexibility: Generate Legal Patterns with Different Design Rules.

Layout patterns that are generated from the same topology with different design rules: (a) Normal rule; (b) Larger $space_{min}$; (c) Smaller $Area_{max}$.

Distribution of Complexity

An illustration of complexity distribution.

Model Efficiency

Phase/Method	Cost Time (s)	Acceleration
Sampling	0.544	N/A
Solving-R Solving-E	0.269 0.117	1.00× 2.30×

 \bullet Initializing with existing results achieves 2.30 $\!\times$ acceleration on CPU.

THANK YOU!

