

LRSDP: Low-Rank SDP for Triple Patterning
Lithography Layout Decomposition

Yu Zhang1,2, Yifan Chen1, Zhonglin Xie1, Hong Xu2, Zaiwen Wen1,
Yibo Lin1,3, Bei Yu2

1Peking University
2Chinese University of Hong Kong
3Institute of Electronic Design Automation, Peking University

2/25

Due to the availability issue of EUV (Extreme Ultra-Violet) lithography, triple
patterning layout (TPL) decomposition is widely adopted in advanced technology
nodes1.

a

b

cd

Input features.

d2

a
d1

b
c2

c1
TPL decomposition.

1W. Li et al., “Openmpl: An open-source layout decomposer”, IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 40, no. 11, pp. 2331–2344, 2020.

Background

3/25

Existing MPL decomposition studies
follow a two-step procedure:

1 Graph simplification

2 Subgraph Decomposition

• ILP, SDP, EC, etc

CPU runtime

Conflict #

Performance target

ILP: Good performance
but expensive

Greedy or heuristic:

Fast but bad quality

SDP or EC: Tradeoff

performance and runtime

Comparison of current TPL decomposers

Background

4/25

However, these methods usually assume the subgraphs are small, i.e., fewer than
100 vertices. When the design complexity increases, the sizes of subgraphs also
boost, and large subgraphs generally take >90% of runtime.

87.9%

9.9%
2.2%

Small
Medium
Large

The proportion of small, medium, and large
subgraphs after graph simplification.

5.4%
93.5%

Small
Medium
Large

The time ratio spent on solving the TPL
decomposition for these subgraphs.

Observation

5/25

We propose LRSDP, a scalable low-rank SDP solver for the MPL decomposition
problem on large graphs. Our SDP solver mainly includes three parts:

1 Low-rank factorization

2 Augmented Lagrangian method (ALM)

3 Riemannian gradient descent method with Barzilai-Borwein steps (RGBB)

Contribution

6/25

The vector program for TPL is NP-hard due to the discrete constraint. The
problem can be further relaxed as the following semidefinite program2,

min
X∈Rn×n

⟨C,X⟩

s.t. xii = 1, ∀i ∈ V

xij ≥ −1
2
, ∀eij ∈ CE

X ≥ 0,

(1)

2B. Yu et al., “Layout decomposition for triple patterning lithography”,, 2011, pp. 1–8.

Preliminary of SDP based TPL

7/25

It has been recognized that the solution to the SDP program relaxed by
combinatorial optimization is often low-rank3, so we perform low-rank
factorization to our SDP program:

=

3Y. Wang et al., “A decomposition augmented lagrangian method for low-rank semidefinite
programming”, arXiv preprint arXiv:2109.11707, 2021.

Low-rank Factorization

8/25

Original SDP program4: After low-rank factorization:

min
X∈Rn×n

⟨C,X⟩ (2)

s.t. xii = 1, ∀i ∈ V

xij ≥ −1
2
, ∀eij ∈ CE

X ≥ 0,

−→

min
R∈Rp×n

⟨C,R⊤R⟩ (3)

s.t. ∥ri∥2 = 1, ∀i ∈ V

r⊤i rj ≥ −1
2
, ∀eij ∈ CE,

4B. Yu et al., “Layout decomposition for triple patterning lithography”,, 2011, pp. 1–8.

Low-rank Factorization

9/25

1 The semidefinite constraint can be naturally omitted as the factorization implies it;

2 This low-rank factorization leads to many fewer variables in the problem of interest,
as p ≪ n;

3 Although the new formula becomes nonlinear and nonconvex, the global optimality
of the solution to this factorized version can still be ensured by properly choosing p5.

5N. Boumal et al., “The non-convex burer-monteiro approach works on smooth semidefinite
programs”, nips, vol. 29, 2016.

Benefits of Low-rank Factorization

10/25

Riemannian optimization is used to solve optimization problems with manifold
structure constraints:

min
x∈M

f (x), (4)

where M refers to manifold constraints and f : M → R is a smooth cost function.

Preliminary of Riemannian optimization

11/25

Some examples of smooth manifold constraints:

M = {X ∈ Rn×n | tr(X) = 1, X ≥ 0}

M = {X ∈ Rn×n | Xi,i = 1, X ≥ 0}

M = {X ∈ Rm×n | ∥xi∥2 = 1}

Preliminary of Riemannian optimization

12/25

We further restrict the optimization of variable R from Rp×n to a smooth
Riemannian manifold: M = {R ∈ Rp×n|R = [r1, · · · , rn], ∥ri∥2 = 1}, which is
exactly a unit sphere.

min
R∈Rp×n

⟨C,R⊤R⟩ (5)

s.t. ∥ri∥2 = 1, ∀i ∈ V

r⊤i rj ≥ −1
2
, ∀eij ∈ CE,

−→

min
R∈M

⟨C,R⊤R⟩ (6)

s.t. r⊤i rj ≥ −1
2
, ∀eij ∈ CE,

Riemannian Manifold in SDP for TPL

13/25

• Guarantee the satisfiability of the unit length constraint.

• Utilize the structure information of M to reduce searching space.

Unrestricted search in Euclidean space. Restricted search in Riemannian space.

Benefits of Riemannian Optimization

14/25

Now, the only difficult constraint is the inequality constraint. Here we introduce
an auxiliary variable W ∈ Rn×n to remove the inequality constraint, so the
factorized SDP is reformulated as:

min
R∈M

⟨C,R⊤R⟩+ h(W) (7)

s.t. P ⊙ R⊤R = W,

where ⊙ denotes element-wise product, h is a characteristic function, and P
encodes the information of conflict edges:

h(W) =

{
0, wij ≥ −1

2 , ∀eij ∈ CE,
+∞, otherwise,

pij =

{
1, ∀eij ∈ CE,
0, ∀eij /∈ CE.

Eliminate Inequality Constraint

15/25

The major framework of LRSDP is based on the augmented lagrangian method,
which includes an additional term to penalize infeasible points.

The ALM function is denoted by:

Lσ(R,W,y, σ) = ⟨C,R⊤R⟩+ h(W)− ⟨y,P ⊙ R⊤R − W⟩+ σ

2
∥P ⊙ R⊤R − W∥2

F, (8)

where y ∈ Rn×n, and σ > 0 are parameters for ALM. The subproblem in k-th
iteration is an unconstrained Riemannian optimization problem:

min
R∈M

Φk(R) = ⟨C,R⊤R⟩+ h(P ⊙ R⊤R − yk/σk − T(R)) +
σk

2
∥T(R)∥2

F. (9)

Augmented Lagrangian Method

16/25

Given the unconstrained optimization problem min
x∈Rn

f (x), the optimal step size for

the k-th iteration is:
αk = H−1, (10)

where H is the Hessian matrix of f (xk). However, this ideal step length is usually
unnecessarily expensive to compute for a general nonlinear cost function f .

Optimal Step Length

17/25

The basic idea of the Barzilai-Borwein (BB) method6 is to approximate the
computationally expensive Hessian matrix. When s⊤k yk > 0, the BB step-length is

αBB
k =

s⊤k sk

s⊤k yk
. (11)

with sk := xk − xk−1 and yk := ∇f (xk)−∇f (xk−1). Then, the BB method performs
the iteration: xk+1 = xk + αBB

k gk.

6B. Iannazzo and M. Porcelli, “The riemannian barzilai–borwein method with nonmonotone line
search and the matrix geometric mean computation”, IMA Journal of Numerical Analysis, vol. 38,
no. 1, pp. 495–517, 2018.

Barzilai-Borwein (BB) method

18/25

We can compare Euclidean gradient descent with Riemannian gradient descent:

Euclidean optimization:

1 Find a descent direction
gk = −∇f (xk);

2 Update xk+1 = xk + αBB
k gk.

Riemannian optimization:

1 Find a descent direction
gk = −gradf (xk) ∈ TxkM;

2 Update x′
k = xk + αBB

k gk ∈ TxkM;

3 Retract xk+1 = Rxk(α
BB
k gk) ∈ M.

Riemannian Gradient Descent with Barzilai-Borwein Steps

19/25

RGBB is performed to find the optimal solution for the subproblem. The RGBB at
k-th step is illustrated as follows:

Retraction

Riemannian Gradient Descent with Barzilai-Borwein Steps

20/25

LRSDP
ALM

Initialization

Solve Subproblem

Update Multiplier

No
Converged ?

RGBB

Update Parameters

Line Search

Update R

Step Size

Converged ?
NoYes

Yes

LRSDP Flow

21/25

Table 1. ISPD’19 benchmarks that can be solved by all three decomposers.
Vertices ILP CSDP Ours (RGBB)

test case Total Mean Max conflict stitch cost time/s conflict stitch cost time/s conflict stitch cost time/s
test1 100 8073 25 171 241 299 270.9 88.9 269 287 297.7 4.5 262 285 290.5 2.8
test1 101 4398 61 834 78 138 91.8 3739.1 94 134 107.4 34.1 98 141 112.1 4.8
test1 102 109 16 46 1 1 1.1 2.2 1 1 1.1 0.1 1 1 1.1 0.1
test2 100 253454 34 1068 5046 8934 5939.4 22120.4 6439 8179 7256.9 330.1 6456 8202 7276.2 101.2
test2 102 13021 42 2375 213 502 263.2 12243.6 479 475 526.5 579.8 297 486 345.6 28.6
test3 100 21064 92 7060 680 757 755.7 24566.2 1058 1109 1168.9 13577.3 911 733 984.3 168.3
test3 101 8682 71 2858 130 270 157.0 10422.4 196 276 223.6 854.4 194 266 220.6 30.7
test3 102 76 13 26 2 1 2.1 0.1 2 1 2.1 0.0 2 1 2.1 0.0
test5 100 9187 19 781 354 330 387.0 5523.0 396 329 428.9 43.9 402 321 434.1 6.8
test5 101 12515 20 246 467 232 490.2 113.1 527 228 549.8 9.9 496 229 518.9 3.8
test5 102 8265 51 3295 197 174 214.4 7225.2 262 151 277.1 1526.5 238 144 252.4 40.8
test6 102 26540 28 978 115 482 163.2 451.1 144 477 191.7 65.0 150 479 197.9 10.8
test7 100 287412 18 2678 8424 9740 9398.0 36696.6 9020 9509 9970.9 2936.4 9089 9490 10038.0 698.6
test8 100 95194 8 78 5683 4606 6143.6 158.2 5750 4547 6204.7 47.2 5752 4549 6206.9 38.0
test8 101 553934 25 4897 6199 13139 7512.9 52660.6 7275 12741 8549.1 7466.4 7235 12840 8519.0 820.7
test9 100 144539 8 71 8739 6969 9435.9 249.3 8842 6880 9530.0 73.1 8841 6879 9528.9 60.3
test10 100 211030 10 362 9775 9580 10733.0 409.3 9963 9457 10908.7 115.9 9964 9457 10909.7 94.7

average ratio – – – 0.87 1.03 0.89 186.62 1.05 1.03 1.05 12.48 1.00 1.00 1.00 1.00

Experiment result

22/25

Table 2. ISPD’19 benchmarks that can’t be solved by all three decomposers. Some
algorithms crash (‘Failed’) or exceed the time limit (‘TLE’).

Vertices ILP CSDP Ours (RGBB)
test case Total Mean Max conflict stitch cost time/s conflict stitch cost time/s conflict stitch cost time/s
test2 101 165137 90 3505 TLE TLE TLE TLE 4553 5026 5055.6 12327.0 3837 5124 4349.4 489.5
test4 100 203283 63 20521 TLE TLE TLE TLE Failed Failed Failed Failed 16377 10559 17432.9 18357.1
test4 101 231944 76 57176 18012 6250 18637.0 30439.1 TLE TLE TLE TLE 12041 7238 12764.8 41421.6
test6 100 632812 28 309 14954 23427 17296.7 11318.6 17657 22134 19870.4 407.9 17596 22215 19817.5 213.8
test6 101 399298 96 25155 TLE TLE TLE TLE Failed Failed Failed Failed 8851 12238 10074.8 7469.2
test7 101 762019 57 31521 TLE TLE TLE TLE Failed Failed Failed Failed 13831 18247 15655.7 23700.9
test7 102 314479 92 9473 TLE TLE TLE TLE TLE TLE TLE TLE 6480 6192 7099.2 1880.9
test8 102 568566 66 94828 TLE TLE TLE TLE Failed Failed Failed Failed 97885 8937 98778.7 16016.8
test9 101 911524 25 12887 TLE TLE TLE TLE 24475 21418 26616.8 11375.8 12031 21909 14221.9 2471.8
test9 102 903364 56 49695 TLE TLE TLE TLE Failed Failed Failed Failed 10015 17668 11781.8 33270.6
test10 101 1304220 38 23389 TLE TLE TLE TLE Failed Failed Failed Failed 18480 28608 21340.8 9748.4

Experiment result

23/25

• Among two SDP-based approaches, our method is 12.48× faster than CSDP on
average with 5% lower cost.

• Our method is 186.62× faster than ILP and only increases about 11% cost, which
makes a better trade-off between performance and efficiency.

• Our method is able to deal with fairly large cases within the time limit, whereas
CSDP is prone to fail on these large layouts.

Conclusion

24/25

THANK YOU!

	Introduction
	Preliminary
	Algorithm
	Experiment

