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Introduction



• Design rule checking (DRC) is the process to verify that a design layout conforms to a
set of predefined design rules.
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Design Rule Checking: Basic Concepts
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• Width check

• Space check

• Enclosing check

(a)

A

B

(b)

             A
B

(c)

(a) Example of width check; (b) Example of space check; (c) Example of enclosing check.

Basic Design rules
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Algorithms



• The overview of our GPU-accelerated design rule checking flow.

Merge Contacting Polygons in 
Each Region

Copy Merged Region to GPU
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of The Polygon in The Region 

Check Inside 
of Polygon

Scanline to Find The Candidate 
Edge Pairs

Y

Box Overlap Check to Find The 
Conflict Polygon Pairs

Check Out Conflicting Edge Pairs 
among Candidate Edge Pairs
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Find Candidate Edge Pairs

N

Clip Layout into Multiple Regions CPU Execution

GPU Execution

 

Overview of our GPU-accelerate DRC.

Algorithm
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• The method of transferring layout information from the CPU to the GPU.

B
A

Split

Reorganize

A1 A2
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Merged Edge Matrix

[A1.x, A1.y, A2.x, A2.y]
[A2.x, A2.y, A3.x, A3.y]
[A3.x, A3.y, A4.x, A4.y]
[A4.x, A4.y, A1.x, A1.y]

[B1.x, B1.y, B2.x, B2.y]
…
[B8.x, B8.y, B1.x, B1.y]

[C1.x, C1.y, C2.x, C2.y]
…
[C6.x, C6.y, C1.x, C1.y]

Encoding and decoding of a layout. Polygon edges are separated and stored uniformly in an edge
matrix. The compact representation reduces data transfer overhead.

Data Transfer
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• Scanline inside polygon.

• Overlap checking.

• Scanline Between Polygons.

GPU-based Scanline
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Programming architecture for the scanline algorithm.

Scanline inside polygon
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Suppose there are two vertical edges e1 = x1 × [y11, y12] and e2 = x2 × [y21, y22]. If
the their distance is smaller than the threshold ϵ:

|x1 − x2| < ϵ, (1)

they will be recorded as an candidate edge pair.
Similarly, for horizontal e3 = [x31, x32]× y3 and e4 = [x41, x42]× y4, they will be
recorded when the condition |y3 − y4| < ϵ. holds.

Scanline inside polygon
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Two typical overlapping examples.

For any two polygons P(i) and P(j),
threshold ϵ, if any one of the following
formulas is satisfied, they will be
regarded as a pair of polygons with the
possibility of violation:

P(i)
ll .x < P(j)

ur .x + ϵ, (2)

P(j)
ll .x < P(i)

ur .x + ϵ, (3)

P(i)
ll .x < P(j)

ur .y + ϵ, (4)

P(j)
ll .x < P(i)

ur .y + ϵ, (5)

Overlap checking
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Polygon A and Polygon B are detected using the scanline algorithm between polygons.

Enclosing check
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Experimental result



• A 64-bit Ubuntu Linux machine with TITAN RTX GPU and 3.5GHz Intel Core
i9-10920X CPU.

• The compilers include CUDA NVCC 10.2 and GNU GCC 5.4.0.

• 4096 threads for all kernel configurations and 1 CPU core for all host operations.

• Baseline is KLayout 0.26.6.

• The layout benchmarks in the experiments are generated by OpenROAD project with
default settings.

Experimental setup

14/22



(a) (b)

(c) (d)

Space check results with (a) DRC script and (b) ours; Enclosing check results with (c) DRC script and
(D) ours.

Correctness of DRC Results
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Table: Enclosing check in Metal1

Design gcd aes bp_be bp
8 CPU threads 33.522 13194.039 58477.239 90250.85
16 CPU threads 34.212 13074.176 51671.131 85792.708
24 CPU threads 34.52 13072.36 49047.536 74497.754

Ours 0.343 27.932 257.056 409.381
Speedup 100.641× 468.01× 190.80× 181.98×
Average 201.1×

Runtime Performance
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Table: Enclosing check in Metal2

Design gcd aes bp_be bp
8 CPU threads 5.547 1977.047 2859.979 3332.67
16 CPU threads 5.732 1997.85 2435.594 2321.697
24 CPU threads 5.552 1976.503 2320.845 2298.961

Ours 0.291 30.493 132.717 250.022
Speedup 19.08× 64.82× 17.49× 11.21×
Average 22.19×

Runtime Performance
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Table: Space check in Metal1

Design gcd aes bp_be bp
8 CPU threads 10.99 376.244 5950.007 14865.705
16 CPU threads 11.131 3692.87 4540.09 8833.2
24 CPU threads 10.989 3690.08 4226.62 7565.84

Ours 0.316 19.091 250.799 471.71
Speedup 34.78× 193.29× 16.85× 16.04×
Average 36.71×

Runtime Performance
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Table: Space check in Metal2

Design gcd aes bp_be bp
8 CPU threads 6.378 2732.5534 3870.166 5015.233
16 CPU threads 6.168 2703.47 3365.211 3767.176
24 CPU threads 6.174 2666.539 3114.918 3621.914

Ours 0.399 28.591 121.279 238.966
Speedup 15.47× 93.26× 25.68× 15.16×
Average 27.38×

Runtime Performance

19/22



Conclusion



• An efficient data packing method customized for layout data transfer.

• A GPU-based scanline algorithm that can perform parallel scanning of complex
graphics.

• Speedup of 36× when performing space check on the Metal1 layer.

• Speedup of 201× when performing enclosing check of the Metal1 layer.

GPU-based Scanline
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THANK YOU!
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