
Efficient Design Rule Checking with GPU Acceleration

Wei Zhong1, Zhenhua Feng1, Zhuolun He2, Weimin Wang1,
Yuzhe Ma3, Bei Yu2

1Dalian University of Technology
2Chinese University of Hong Kong
3HKUST(GZ)

Apr. 18, 2023

Introduction

• Design rule checking (DRC) is the process to verify that a design layout conforms to a
set of predefined design rules.

18
0n
m

13
0n
m
90
nm

65
nm

45
40
nm

32
28
nm

22
20
nm

16
14
nm

10
nm 7n

m
5n
m

0

20,000

40,000

60,000

80,000
D
R
C

R
u
le

&
O
p
er
a
ti
o
n
C
o
u
n
t

Average DRC rules
Historical Growth Trend
Average DRC Operations

Growth of design rules.

Design Rule Checking: Basic Concepts

3/22

• Width check

• Space check

• Enclosing check

(a)

A

B

(b)

 A
B

(c)

(a) Example of width check; (b) Example of space check; (c) Example of enclosing check.

Basic Design rules

4/22

Algorithms

• The overview of our GPU-accelerated design rule checking flow.

Merge Contacting Polygons in
Each Region

Copy Merged Region to GPU

Sort Horizontal And Vertical Edges
of The Polygon in The Region

Check Inside
of Polygon

Scanline to Find The Candidate
Edge Pairs

Y

Box Overlap Check to Find The
Conflict Polygon Pairs

Check Out Conflicting Edge Pairs
among Candidate Edge Pairs

Scanline Between Polygons to
Find Candidate Edge Pairs

N

Clip Layout into Multiple Regions CPU Execution

GPU Execution

Overview of our GPU-accelerate DRC.

Algorithm

6/22

• The method of transferring layout information from the CPU to the GPU.

B
A

Split

Reorganize

A1 A2

A3A4

B1 B2

C

B8

C1 C2

C6

Merged Edge Matrix

[A1.x, A1.y, A2.x, A2.y]
[A2.x, A2.y, A3.x, A3.y]
[A3.x, A3.y, A4.x, A4.y]
[A4.x, A4.y, A1.x, A1.y]

[B1.x, B1.y, B2.x, B2.y]
…
[B8.x, B8.y, B1.x, B1.y]

[C1.x, C1.y, C2.x, C2.y]
…
[C6.x, C6.y, C1.x, C1.y]

Encoding and decoding of a layout. Polygon edges are separated and stored uniformly in an edge
matrix. The compact representation reduces data transfer overhead.

Data Transfer

7/22

• Scanline inside polygon.

• Overlap checking.

• Scanline Between Polygons.

GPU-based Scanline

8/22

Device

Gird

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block

Thread Thread Thread

Thread Thread Thread

Thread Thread Thread

Thread Thread Thread

Host

Kernel Kernel Kernel

Batch Batch

Edge 0

Edge 1

Edge 2

Edge 3

Edge 4

Edge 5

… …

Programming architecture for the scanline algorithm.

Scanline inside polygon

9/22

Suppose there are two vertical edges e1 = x1 × [y11, y12] and e2 = x2 × [y21, y22]. If
the their distance is smaller than the threshold ϵ:

|x1 − x2| < ϵ, (1)

they will be recorded as an candidate edge pair.
Similarly, for horizontal e3 = [x31, x32]× y3 and e4 = [x41, x42]× y4, they will be
recorded when the condition |y3 − y4| < ϵ. holds.

Scanline inside polygon

10/22

B

Pₗₗ

Pᵤᵣ

A

Threshold

Threshold

(a)

C
D

Threshold

Threshold

(b)

Two typical overlapping examples.

For any two polygons P(i) and P(j),
threshold ϵ, if any one of the following
formulas is satisfied, they will be
regarded as a pair of polygons with the
possibility of violation:

P(i)
ll .x < P(j)

ur .x + ϵ, (2)

P(j)
ll .x < P(i)

ur .x + ϵ, (3)

P(i)
ll .x < P(j)

ur .y + ϵ, (4)

P(j)
ll .x < P(i)

ur .y + ϵ, (5)

Overlap checking

11/22

B

A
Up

Low

Left Right

Threshold

Threshold

Vertical
range

Horizontal range

Polygon A and Polygon B are detected using the scanline algorithm between polygons.

Enclosing check

12/22

Experimental result

• A 64-bit Ubuntu Linux machine with TITAN RTX GPU and 3.5GHz Intel Core
i9-10920X CPU.

• The compilers include CUDA NVCC 10.2 and GNU GCC 5.4.0.

• 4096 threads for all kernel configurations and 1 CPU core for all host operations.

• Baseline is KLayout 0.26.6.

• The layout benchmarks in the experiments are generated by OpenROAD project with
default settings.

Experimental setup

14/22

(a) (b)

(c) (d)

Space check results with (a) DRC script and (b) ours; Enclosing check results with (c) DRC script and
(D) ours.

Correctness of DRC Results

15/22

Table: Enclosing check in Metal1

Design gcd aes bp_be bp
8 CPU threads 33.522 13194.039 58477.239 90250.85
16 CPU threads 34.212 13074.176 51671.131 85792.708
24 CPU threads 34.52 13072.36 49047.536 74497.754

Ours 0.343 27.932 257.056 409.381
Speedup 100.641× 468.01× 190.80× 181.98×
Average 201.1×

Runtime Performance

16/22

Table: Enclosing check in Metal2

Design gcd aes bp_be bp
8 CPU threads 5.547 1977.047 2859.979 3332.67
16 CPU threads 5.732 1997.85 2435.594 2321.697
24 CPU threads 5.552 1976.503 2320.845 2298.961

Ours 0.291 30.493 132.717 250.022
Speedup 19.08× 64.82× 17.49× 11.21×
Average 22.19×

Runtime Performance

17/22

Table: Space check in Metal1

Design gcd aes bp_be bp
8 CPU threads 10.99 376.244 5950.007 14865.705
16 CPU threads 11.131 3692.87 4540.09 8833.2
24 CPU threads 10.989 3690.08 4226.62 7565.84

Ours 0.316 19.091 250.799 471.71
Speedup 34.78× 193.29× 16.85× 16.04×
Average 36.71×

Runtime Performance

18/22

Table: Space check in Metal2

Design gcd aes bp_be bp
8 CPU threads 6.378 2732.5534 3870.166 5015.233
16 CPU threads 6.168 2703.47 3365.211 3767.176
24 CPU threads 6.174 2666.539 3114.918 3621.914

Ours 0.399 28.591 121.279 238.966
Speedup 15.47× 93.26× 25.68× 15.16×
Average 27.38×

Runtime Performance

19/22

Conclusion

• An efficient data packing method customized for layout data transfer.

• A GPU-based scanline algorithm that can perform parallel scanning of complex
graphics.

• Speedup of 36× when performing space check on the Metal1 layer.

• Speedup of 201× when performing enclosing check of the Metal1 layer.

GPU-based Scanline

21/22

THANK YOU!

	Introduction
	Design Rule Checking: Basic Concepts
	Basic Design rules

	Algorithms
	Data Transfer
	GPU-based Scanline

	Experimental result
	Experimental setup
	Correctness of DRC Results
	Runtime Performance

	Conclusion

