

AutoGraph: Optimizing DNN Computation Graph for Parallel GPU Kernel Execution

Yuxuan Zhao, Qi Sun, Zhuolun He, Yang Bai, Bei Yu

The Chinese University of Hong Kong {yxzhao21,byu}@cse.cuhk.edu.hk

Feb. 07–14, 2023

Introduction

DNN Deployment Stack

DNN Deployment Stack

Prior Arts

- Equivalent Graph Substitution:
 - TASO¹ takes operator definitions and specifications, then automatically generates and verifies graph substitutions.
- Parallel GPU Kernel Launch:
 - IOS² divides the computation into different stages and uses DP to find the optimized launch schedule.
 - Nimble³ supports parallel kernel launch for the whole model and leverages the AOT scheduler to minimize scheduling overhead.

¹Zhihao Jia et al. (2019). "TASO: optimizing deep learning computation with automatic generation of graph substitutions". In: *Proc. SOSP*.

²Yaoyao Ding et al. (2021). "IOS: Inter-Operator Scheduler for CNN Acceleration". In: *Proc. MLSys*.

³Woosuk Kwon et al. (2020). "Nimble: Lightweight and Parallel GPU Task Scheduling for Deep Learning". In: *Proc. NeurIPS*.

Prior Arts

- Equivalent Graph Substitution:
 - TASO¹ takes operator definitions and specifications, then automatically generates and verifies graph substitutions.
- Parallel GPU Kernel Launch:
 - IOS² divides the computation into different stages and uses DP to find the optimized launch schedule.
 - Nimble³ supports parallel kernel launch for the whole model and leverages the AOT scheduler to minimize scheduling overhead.

Can we bridge the gap between them?

¹Zhihao Jia et al. (2019). "TASO: optimizing deep learning computation with automatic generation of graph substitutions". In: *Proc. SOSP*.

²Yaoyao Ding et al. (2021). "IOS: Inter-Operator Scheduler for CNN Acceleration". In: *Proc. MLSys*.

³Woosuk Kwon et al. (2020). "Nimble: Lightweight and Parallel GPU Task Scheduling for Deep Learning". In: *Proc. NeurIPS*.

Challenges

Huge graph optimization search space

- Modern DNN models can be complex and large.
- The number of available graph substitutions are huge.

Challenges

Huge graph optimization search space

- Modern DNN models can be complex and large.
- The number of available graph substitutions are huge.

Inter-operator parallelism is ignored

- Previous graph optimization methods focus on sequential kernel launch.
- Lack runtime information.

Details of AutoGraph

Overview of AutoGraph

- Tackle huge search space:
 - Flow-based graph partition method.
 - Dynamic programming + backtracking search.
- Tackle inter-operator parallelism:
 - Customized cost function.
 - Runtime information based on GPU Multi-Stream.

Overview of AutoGraph

- Tackle huge search space:
 - Flow-based graph partition method.
 - Dynamic programming + backtracking search.
- Tackle inter-operator parallelism:
 - Customized cost function.
 - Runtime information based on GPU Multi-Stream.

Flow-based Graph Partition

- The node capacity is defined as the number of available graph substitutions.
- The entire computation graph is recursively split into independent subgraphs by its minimum cut.
- Adjacent subgraphs are merged to form new subgraphs.

Backtracking Search via Mixed Critical Path Cost

- Backtracking search is used to optimize each subgraph.
- We use the mixed critical path cost in Equation 1 as the selection criteria.

$$C_{E} = \alpha \sum_{v \in V_{c}} cost(v) + \sum_{v \in V} cost(v)$$

$$= (1 + \alpha) \sum_{v \in V_{c}} cost(v) + \sum_{v \in V - V_{c}} cost(v).$$
(1)

DP-based Optimization Solution Search

A transition state in our dynamic programming + backtracking search.

- We observe that different graph partitioning sequences share the same sub-sequence.
- The problem can be solved by Equation 2.

$$MCP[G] = \min_{p} (MCP[G - p] + BSMCP[p]).$$
 (2)

GPU stream assignment.

- The operator nodes on different branches are assigned to different streams with proper synchronization events inserted.
- CUDA Graph is used to launch the computation graph.
- We sample the top-*k* candidates for on-board verification each time.

Experimental Results

Experimental Settings

- Platform:
 - NVIDIA GeForce RTX 2080Ti GPU.
 - CUDA 11.0, cuDNN 8.0.5, and PyTorch 1.7.

Experimental Settings

- Platform:
 - NVIDIA GeForce RTX 2080Ti GPU.
 - CUDA 11.0, cuDNN 8.0.5, and PyTorch 1.7.
- Seven modern DNNs are benchmarked:

Table: DNN Models Used in Our Experiments.

Туре	Name	block#	input shape	
CNN	Inception-v3	11	[1, 3, 299, 299]	
	ResNet-50	16	[1, 3, 224, 224]	
	ResNeXt-50	16	[1, 3, 224, 224]	
	NasNet-A	18	[1, 3, 224, 224]	
	NasNet-Mobile	12	[1, 3, 224, 224]	
RNN	RNNTC-SRU	10	$[1 \times 10, 1024]$	
Transformer	BERT	8	$[16 \times 64, 1024]$	

End-to-end Model Inference Latency

Table: Model inference latency results (ms).

Model	JIT	TASO+JIT	IOS	Nimble	TASO+Nimble	Ours
Inception-v3	8.839	7.819	3.788	3.174	2.928	2.799
ResNet-50	4.566	4.554	3.284	2.144	1.988	1.905
ResNeXt-50	7.540	7.369	3.056	7.708	5.933	2.892
NasNet-A	13.891	10.843	9.583	6.483	13.086	5.850
NasNet-Mobile	10.155	8.085	3.821	2.320	6.540	1.883
RNNTC-SRU	1.496	1.307	-	0.486	0.387	0.387
BERT	11.011	9.026	-	6.923	6.473	6.240

- Compare with TASO, our method achieves speedup ranging from $1.04 \times$ to $3.47 \times$ on parallel kernel launch framework.
- Compare with IOS and Nimble, our method achieves speedup ranging from $1.06 \times$ to $1.26 \times$ on the benchmark models.

Ablation Studies on Different Settings

- "w/o. Opt." means directly measuring the initial computation graph.
- "w/o. DP" means directly using the minimum partitioning set without our DP-based method.

Ablation Studies on Different Batch Sizes

The normalized throughput comparisons of different frameworks on various batch sizes for NasNet-Mobile.

- A larger batch size provides more intra-operator parallelism.
- We can still exploit inter-operator parallelism and graph optimization to further improve the inference performance.

Conclusion

- Existing graph optimization methods fails to utilize inter-operator parallelism and thus impair system capability within a parallel kernel launch framework.
- We propose AutoGraph to bridge the gap. Experimental results demonstrate that our method achieves up to 3.47× speedup over previous arts.
- Moreover, AutoGraph outperforms state-of-the-art parallel kernel launch frameworks by up to $1.26\times$.

THANK YOU!