THE 37TH AAAI CONFERENCE ON
ARTIFICIAL INTELLIGENCE

FEBRUARY 7-14, 2023 - WASHINGTON, DC, USA
WALTER E. WASHINGTON CONVENTION CENTER

Y/

AutoGraph: Optimizing DNN Computation
Graph for Parallel GPU Kernel Execution

Yuxuan Zhao, Qi Sun, Zhuolun He, Yang Bai, Bei Yu

The Chinese University of Hong Kong
{yxzhao2l,byu}@cse.cuhk.edu.hk

Feb. 07-14, 2023

Introduction

DNN Deployment Stack //A

| DL Frameworks f Q O {: b @ i

I Kernel Dispatching, Kernel
I Submission
|

3/20

DNN Deployment Stack //A

I Kernel Dispatching, Kernel
| Submission
I

4/20

Prior Arts //A

¢ Equivalent Graph Substitution:

- TASO! takes operator definitions and specifications, then automatically
generates and verifies graph substitutions.

¢ Parallel GPU Kernel Launch:

- 10S? divides the computation into different stages and uses DP to find the
optimized launch schedule.

- Nimble® supports parallel kernel launch for the whole model and leverages the
AOT scheduler to minimize scheduling overhead.

!Zhihao Jia et al. (2019). “TASO: optimizing deep learning computation with automatic
generation of graph substitutions”. In: Proc. SOSP.

ZYaoyao Ding et al. (2021). “IOS: Inter-Operator Scheduler for CNN Acceleration”. In:
Proc. MLSys.

*Woosuk Kwon et al. (2020). “Nimble: Lightweight and Parallel GPU Task Scheduling for Deep
Learning”. In: Proc. NeurIPS. 5/20

Prior Arts //A

¢ Equivalent Graph Substitution:

- TASO! takes operator definitions and specifications, then automatically
generates and verifies graph substitutions.

¢ Parallel GPU Kernel Launch:

- 10S? divides the computation into different stages and uses DP to find the
optimized launch schedule.

- Nimble® supports parallel kernel launch for the whole model and leverages the
AOT scheduler to minimize scheduling overhead.

Can we bridge the gap between them?

!Zhihao Jia et al. (2019). “TASO: optimizing deep learning computation with automatic
generation of graph substitutions”. In: Proc. SOSP.

ZYaoyao Ding et al. (2021). “IOS: Inter-Operator Scheduler for CNN Acceleration”. In:
Proc. MLSys.

*Woosuk Kwon et al. (2020). “Nimble: Lightweight and Parallel GPU Task Scheduling for Deep
Learning”. In: Proc. NeurIPS. 5/20

Challenges //A

Huge graph optimization search space

¢ Modern DNN models can be complex and large.

¢ The number of available graph substitutions are huge.

6/20

Challenges //A

Huge graph optimization search space

¢ Modern DNN models can be complex and large.

¢ The number of available graph substitutions are huge.

Inter-operator parallelism is ignored

¢ Previous graph optimization methods focus on sequential kernel launch.

¢ Lack runtime information.

U Submit Submit Submit
Operator A| | Operator B| | Operator C

GPU

Submit

Submit Submit

CPU

Operator A| |Operator B| | Operator € Seeam0 l Operator A] l Operator C]
- [Coremorn | [omrs] [owmmrc | svum
(a) Sequential kernel launch (b) Parallel kernel launch

6/20

Details of AutoGraph

Overview of AutoGraph //A

Initial Comp.

Graph Flow-based Partition Subgraphs
N Min-cut + ::> [
| ! Et Subgraph Merging O,/?\ :
PP goo
Cost-based Graph Opt. ' ({dg) 3
[A DP + Backtracking] i O

¢ Tackle huge search space:

- Flow-based graph partition method.
- Dynamic programming + backtracking search.

¢ Tackle inter-operator parallelism:

- Customized cost function.
- Runtime information based on GPU Multi-Stream. 8/20

Overview of AutoGraph //A

Initial Comp.

Graph Flow-based Partition Subgraphs
N Min-cut + ::> [
| ! Et Subgraph Merging O,/?\ :
PP goo
Cost-based Graph Opt. ' ({dg) 3
[A DP + Backtracking] i O

On-board
Verification : (9\

@\@@"'Q%cfﬁﬁﬁﬁm

¢ Tackle huge search space:

- Flow-based graph partition method.
- Dynamic programming + backtracking search.

¢ Tackle inter-operator parallelism:

- Customized cost function.
- Runtime information based on GPU Multi-Stream. 8/20

Flow-based Graph Partition //A

Initial Comp. Minimum Graph
Graph Partitioning Set

Possible Subgraphs

O\QP Qdo Graph piiﬂ,;> QﬁI{OQQp }@ O};{OQg{O }m "
{Qpcﬁo numeralonm M{Qpbdgg
Q@P o &Pk

¢ The node capacity is defined as the number of available graph substitutions.

¢ The entire computation graph is recursively split into independent subgraphs by its
minimum cut.

¢ Adjacent subgraphs are merged to form new subgraphs.

9/20

Backtracking Search via Mixed Critical Path Cost //A

Opt. for each subgraph Applyr € Rtop O Critical node

_______ e O Normal node
bl AL nit withps /O\ & /O\
R. g_ —=> Merge the
D5 - - - operators
PP]Pz —>
——————— Pe
p{ P O v
- — %K - \
pr] & Candidate Graph Queue If Cp(') < £ x Cr(Dbest)
P4

Dequeue() ,
_______ “{ Graph 1] [Graph N 14_ _Enqueue(P)

¢ Backtracking search is used to optimize each subgraph.

® We use the mixed critical path cost in Equation 1 as the selection criteria.

Cr =« Z cost(v) + Z cost(v)

veV, veV

=(1+a) Z cost(v) + Z cost(v).

veV, veV—-V,

1)

10/20

DP-based Optimization Solution Search //A

HEEs =

D) y 9
}p BSMCP[p)
__________ 26 Backtracking Search

pr

MCPI[G — p] = MCP|G — ps] = MCP[G — p1 — p2]

A transition state in our dynamic programming + backtracking search.

* We observe that different graph partitioning sequences share the same sub-sequence.

¢ The problem can be solved by Equation 2.

MCPIG] = min (MCP[G p] -+ BSMCP[p)). @)
11/20

On-board Verification /N
Node-to-stream O Stream0
Mapping O Stream1

PP =1 Qe
WS

O §)

GPU stream assignment.

¢ The operator nodes on different branches are assigned to different streams with
proper synchronization events inserted.

¢ CUDA Graph is used to launch the computation graph.

¢ We sample the top-k candidates for on-board verification each time.

12/20

Experimental Results

Experimental Settings //A

® Platform:

- NVIDIA GeForce RTX 2080Ti GPU.
- CUDA 11.0, cuDNN 8.0.5, and PyTorch 1.7.

14/20

Experimental Settings //A

® Platform:

- NVIDIA GeForce RTX 2080Ti GPU.
- CUDA 11.0, cuDNN 8.0.5, and PyTorch 1.7.

* Seven modern DNNs are benchmarked:

Table: DNN Models Used in Our Experiments.

Type Name block# input shape
Inception-v3 11 [1, 3,299, 299]
ResNet-50 16 [1, 3,224, 224]
CNN ResNeXt-50 16 [1,3, 224, 224]
NasNet-A 18 [1,3,224, 224]
NasNet-Mobile 12 [1,3,224,224]
RNN RNNTC-SRU 10 [1 x 10, 1024]
Transformer BERT 8 [16 x 64, 1024]

14/20

End-to-end Model Inference Latency //A

Table: Model inference latency results (ms).

Model JIT TASO+JIT IOS Nimble TASO+Nimble Ours
Inception-v3 8.839 7.819 3.788 3.174 2.928 2.799
ResNet-50 4.566 4.554 3284 2144 1.988 1.905
ResNeXt-50 7.540 7.369 3.056 7.708 5.933 2.892
NasNet-A 13.891 10.843 9.583 6.483 13.086 5.850
NasNet-Mobile 10.155 8.085 3.821 2.320 6.540 1.883
RNNTC-SRU 1.496 1.307 - 0.486 0.387 0.387
BERT 11.011 9.026 - 6.923 6.473 6.240

¢ Compare with TASO, our method achieves speedup ranging from 1.04x to 3.47x on
parallel kernel launch framework.

* Compare with IOS and Nimble, our method achieves speedup ranging from 1.06x to
1.26 % on the benchmark models.

15/20

Ablation Studies on Different Settings

* “w/o. Opt.” means directly measuring the initial computation graph.

® “w/o. DP” means directly using the minimum partitioning set without our
DP-based method.

T _ = " B Ous iR
é’ 1 w/o. DP
= S| —w/o. Opt. .
(&)
S 30 |
%
- I
0 . mm < L1
A D o oe B0 NS
30 gseﬂ gg@ O é$eV C;5 S
XﬂpGQ W ®§§é° e Y6§S gyﬁS

16/20

Ablation Studies on Different Batch Sizes

== Ours
== Nimble
— IOS
— JIT

Normalized Throughput

BS1 BS 4 BS 8 BS16 BS 32

The normalized throughput comparisons of different frameworks on various batch sizes for
NasNet-Mobile.

¢ Alarger batch size provides more intra-operator parallelism.

® We can still exploit inter-operator parallelism and graph optimization to further
improve the inference performance.

17/20

Conclusion

Conclusion //A

¢ Existing graph optimization methods fails to utilize inter-operator parallelism and
thus impair system capability within a parallel kernel launch framework.

® We propose AutoGraph to bridge the gap. Experimental results demonstrate that our
method achieves up to 3.47 x speedup over previous arts.

® Moreover, AutoGraph outperforms state-of-the-art parallel kernel launch
frameworks by up to 1.26x.

19/20

THANK YOU!

	Introduction
	Details of AutoGraph
	Experimental Results
	Conclusion

