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Prior Arts //A

¢ Equivalent Graph Substitution:

- TASO! takes operator definitions and specifications, then automatically
generates and verifies graph substitutions.

¢ Parallel GPU Kernel Launch:

- 10S? divides the computation into different stages and uses DP to find the
optimized launch schedule.

- Nimble® supports parallel kernel launch for the whole model and leverages the
AOT scheduler to minimize scheduling overhead.

!Zhihao Jia et al. (2019). “TASO: optimizing deep learning computation with automatic
generation of graph substitutions”. In: Proc. SOSP.

ZYaoyao Ding et al. (2021). “IOS: Inter-Operator Scheduler for CNN Acceleration”. In:
Proc. MLSys.

*Woosuk Kwon et al. (2020). “Nimble: Lightweight and Parallel GPU Task Scheduling for Deep
Learning”. In: Proc. NeurIPS. 5/20
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¢ Parallel GPU Kernel Launch:

- 10S? divides the computation into different stages and uses DP to find the
optimized launch schedule.

- Nimble® supports parallel kernel launch for the whole model and leverages the
AOT scheduler to minimize scheduling overhead.

Can we bridge the gap between them?
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Challenges //A

Huge graph optimization search space

¢ Modern DNN models can be complex and large.

¢ The number of available graph substitutions are huge.
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Challenges //A

Huge graph optimization search space

¢ Modern DNN models can be complex and large.

¢ The number of available graph substitutions are huge.

Inter-operator parallelism is ignored

¢ Previous graph optimization methods focus on sequential kernel launch.

¢ Lack runtime information.
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Details of AutoGraph
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¢ Tackle huge search space:

- Flow-based graph partition method.
- Dynamic programming + backtracking search.

¢ Tackle inter-operator parallelism:

- Customized cost function.
- Runtime information based on GPU Multi-Stream. 8/20
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Flow-based Graph Partition //A
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¢ The node capacity is defined as the number of available graph substitutions.

¢ The entire computation graph is recursively split into independent subgraphs by its
minimum cut.

¢ Adjacent subgraphs are merged to form new subgraphs.
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Backtracking Search via Mixed Critical Path Cost //A
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¢ Backtracking search is used to optimize each subgraph.

® We use the mixed critical path cost in Equation 1 as the selection criteria.

Cr =« Z cost(v) + Z cost(v)

veV, veV

=(1+a) Z cost(v) + Z cost(v).

veV, veV—-V,

1)
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DP-based Optimization Solution Search //A
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MCPI[G — p] = MCP|G — ps] = MCP[G — p1 — p2]

A transition state in our dynamic programming + backtracking search.

* We observe that different graph partitioning sequences share the same sub-sequence.

¢ The problem can be solved by Equation 2.

MCPIG] = min (MCP[G p] -+ BSMCP[p)). @)
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On-board Verification /N
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GPU stream assignment.

¢ The operator nodes on different branches are assigned to different streams with
proper synchronization events inserted.

¢ CUDA Graph is used to launch the computation graph.

¢ We sample the top-k candidates for on-board verification each time.
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Experimental Results



Experimental Settings //A

® Platform:

- NVIDIA GeForce RTX 2080Ti GPU.
- CUDA 11.0, cuDNN 8.0.5, and PyTorch 1.7.
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Experimental Settings //A

® Platform:

- NVIDIA GeForce RTX 2080Ti GPU.
- CUDA 11.0, cuDNN 8.0.5, and PyTorch 1.7.

* Seven modern DNNs are benchmarked:

Table: DNN Models Used in Our Experiments.

Type Name block#  input shape
Inception-v3 11 [1, 3,299, 299]
ResNet-50 16 [1, 3,224, 224]
CNN ResNeXt-50 16 [1,3, 224, 224]
NasNet-A 18 [1,3,224, 224]
NasNet-Mobile 12 [1,3,224,224]
RNN RNNTC-SRU 10 [1 x 10, 1024]
Transformer BERT 8 [16 x 64, 1024]
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End-to-end Model Inference Latency //A

Table: Model inference latency results (ms).

Model JIT TASO+JIT IOS Nimble TASO+Nimble Ours
Inception-v3 8.839 7.819 3.788 3.174 2.928 2.799
ResNet-50 4.566 4.554 3284 2144 1.988 1.905
ResNeXt-50 7.540 7.369 3.056 7.708 5.933 2.892
NasNet-A 13.891 10.843 9.583  6.483 13.086 5.850
NasNet-Mobile 10.155 8.085 3.821  2.320 6.540 1.883
RNNTC-SRU  1.496 1.307 - 0.486 0.387 0.387
BERT 11.011 9.026 - 6.923 6.473 6.240

¢ Compare with TASO, our method achieves speedup ranging from 1.04x to 3.47x on
parallel kernel launch framework.

* Compare with IOS and Nimble, our method achieves speedup ranging from 1.06x to
1.26 % on the benchmark models.
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Ablation Studies on Different Settings

* “w/o. Opt.” means directly measuring the initial computation graph.

® “w/o. DP” means directly using the minimum partitioning set without our
DP-based method.
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Ablation Studies on Different Batch Sizes
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The normalized throughput comparisons of different frameworks on various batch sizes for
NasNet-Mobile.

¢ Alarger batch size provides more intra-operator parallelism.

® We can still exploit inter-operator parallelism and graph optimization to further
improve the inference performance.

17/20




Conclusion



Conclusion //A

¢ Existing graph optimization methods fails to utilize inter-operator parallelism and
thus impair system capability within a parallel kernel launch framework.

® We propose AutoGraph to bridge the gap. Experimental results demonstrate that our
method achieves up to 3.47 x speedup over previous arts.

® Moreover, AutoGraph outperforms state-of-the-art parallel kernel launch
frameworks by up to 1.26x.
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