
Microarchitecture Power Modeling via Artificial Neural
Network and Transfer Learning

Jianwang Zhai1, Yici Cai1, Bei Yu2

1Tsinghua University
2The Chinese University of Hong Kong

Jan. 18, 2023



Introduction



Power Modeling

• With the slowdown of Moore’s law and the breakdown of Dennard scaling, power
consumption has become the main challenge in high power-efficiency CPU design.

• Accurate and robust power models are highly demanded to explore better designs.

• Time-to-market for newer generations of CPU is stringent, and designers want to
perform modeling for the new target CPU at a lower cost.

Challenges

• High requirements: modeling speed, accuracy, and generality.

• Complex architecture & large-scale design space & advanced technology.

• The lengthy EDA design flow makes data collection very difficult.

Power Modeling for Modern CPUs

3/34



To overcome the above challenges, people try to conduct power modeling to guide
the CPU design at the early design stage, i.e., the microarchitecture design stage.

Related Work

• Regression for power modeling using design parameters1.

• PMC-based power models using equivalent microarchitecture events 2.

• Hierarchical analytical power modeling, McPAT3.

• Re-weighting McPAT results by linear regression4.

• Calibrate McPAT using a broader range of features and machine learning (ML)5.

1
B. C. Lee, et al. “Illustrative Design Space Studies with Microarchitectural Regression Models”. In: Proc. HPCA, 2007.

2
M. J. Walker, et al. “Accurate and Stable Run-Time Power Modeling for Mobile and Embedded CPUs”. In: IEEE TCAD, 2017.

3
S. Li, et al. “McPAT: An integrated power, area, and timing modeling framework for multicore and manycore architectures”. In: Proc. MICRO,

2009.
4

W. Lee, et al. “PowerTrain: A learning-based calibration of McPAT power models”. In: Proc. ISLPED, 2015.
5

J. Zhai, et al. “McPAT-Calib: A Microarchitecture Power Modeling Framework for Modern CPUs”. In: Proc. ICCAD, 2021.

Previous Solutions & Limitations
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Limitations

• ML-based models usually assume that the training and test data are independent
and identically distributed , i.e., i.i.d.

• However, there are significant discrepancies in data distribution among different
CPU designs, even when they are in the same design space.

• Thus, previous learning-based models ignore the issue of transferability and often
require retraining the model by collecting sufficient data for a new target CPU design.
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• Taking RISC-V BOOM6 as an example, principal component analysis (PCA) is used
to visualize the power data for three different configurations.

• Power models trained using one existing configuration are usually not accurate
enough for new target configurations.
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Table: Modeling MAPE.

Ridge → SmallBOOM LargeBOOM GigaBOOM

SmallBOOM 6.93% 11.98% 10.55%
LargeBOOM 61.29% 8.22% 15.24%
GigaBOOM 64.17% 15.48% 6.74%

6
J. Zhao, et al. "SonicBOOM: The 3rd generation berkeley out-of-order machine." Fourth Workshop on Computer Architecture Research with RISC-V,

2020.

Gap between Training & Testing Data: Example
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Preliminaries



• Artificial neural network (ANN) is an ML model with powerful feature extraction
and function fitting capabilities.

• Importantly, ANN models exhibit good transferability7 and are widely used for
prediction tasks in various disciplines.
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Hidden Hidden

Hidden

Output

7
J. Yosinski, et al. “How transferable are features in deep neural networks?” In: Proc. NeurIPS, 2014.

Artificial Neural Network
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• For traditional ML models, once the data distribution is changed, new labeled
training data needs to be re-collected to rebuild the model.

• Transfer Learning (TL)8 aims to improve the performance of the target model by
transferring knowledge from the source domain, thus reducing the dependence on
target domain data.

8
S. J. Pan, et al. “A survey on transfer learning”. In: IEEE TKDE, 2010.

Transfer Learning
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Definition (Power)
The total power can be expressed as:

P = Pdynamic + Pstatic = αCV2
DDf + VDDIleakage︸ ︷︷ ︸
Transistor level

=
∑

βnfn(en,d) + g(d)︸ ︷︷ ︸
Microarchitecture level

(1)

Definition (Microarchitecture Configuration)

A CPU design characterized by a set of microarchitecture design parameters, such as
FetchWidth, DecodeWidth, FetchBufferEntry, etc..

Definition (Benchmark)
The workload program executed on the target CPU design.

Problem Formulation
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• The objective of microarchitecture power modeling is to estimate the power of
different benchmarks running on the target microarchitecture configuration.

• To handle the distribution discrepancies, we focus on how to transfer the knowledge
gained in the source domain (i.e., the existing configuration) to the target domain (i.e.,
the new target configuration) to improve the target modeling performance.

Problem (Microarchitecture Power Modeling)

Given labeled samples of size m from a source configuration CS , Ds = {(xs
i , ys

i )}m
i=1, and

labeled samples of size n from the target configuration CT , Dt = {(xt
i , yt

i)}n
i=1. The objective

is to construct a target power model that gives accurate power predictions for unlabeled
samples, {(xt

i)}N
i=n+1, on the target configuration CT .

Problem Formulation
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Method



• ANN-Based Microarchitecture Power Model

• Cross-Domain Mixup

• Domain-Adversarial Training
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• The total power is modeled directly using the modeling features.

• Feature sources: McPAT-7nm modeling results & microarchitecture design
parameters & event statistics obtained by gem5 simulation.

• Features are extracted separately from different sources according to their
importance; a residual network is added to enhance the gradient propagation.

Network structure of ANN-based power model:
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Motivation

• The biggest challenge comes from collecting enough labeled samples.

• The distribution discrepancies are present in both feature and label space.

Cross-Domain Mixup

• The similarity can be considered as the potential for knowledge transfer:

similarity = cos < xs, xt >=
xs · xt

||xs||||xt|| . (2)

• For each labeled target sample (xt, yt), we select the k most similar labeled source
samples and perform mixup:

xm
i = λixt + (1 − λi)xs

i , i = 1, ..., k (3)

ym
i = λiyt + (1 − λi)ys

i , i = 1, ..., k (4)

where λi ∼ Beta(20, 2), k is set to ⌈m+N
2n ⌉ to keep the balance among domains.

Cross-Domain Mixup
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Data Distribution

• We can get the labeled auxiliary domain samples, Dm = {(xm
i , ym

i )}kn
i=1, that are closer

to the target distribution.
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Motivation

• After cross-domain mixup, there are still distribution discrepancies between the
different domains.

• How to take advantage of all labeled and unlabeled samples to train a better model
for the target domain.

Domain-Adversarial Training

• Domain-adversarial training of neural networks9 for image classification tasks can
learn discriminative but domain-invariant features between the source and target
domains.

• We extend it for a regression task (i.e., power modeling) and perform
domain-adversarial training on three domains: source, target, and auxiliary domains.

9
Y. Ganin et al. “Domain-adversarial training of neural networks”. In: JMLR, 2016.

Domain-Adversarial Training
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• Input: all labeled and unlabeled samples from the three domains.

• Three major parts: the feature extractor Gf (·; θf ), the power regressor Gy(·; θy), and
the 3-class domain classifier Gd(·; θd).

• GRL is a gradient reversal layer, aiming to make Gd unable to distinguish which
domain the sample comes from, thereby extracting domain-invariant features.
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Illustration of the pipeline in improved domain-adversarial training.

Domain-Adversarial Training: Pipeline
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Power Regression

• We use mean squared error (MSE) as the regression loss Ly for power prediction.

• We train Gf and Gy with all labeled samples from the three domains with losses:

Ls
y(θf , θy) =

1
m

m∑
i=1

Ly(Gy(Gf (xs
i ; θf ); θy), ys

i ), (5)

Lt
y(θf , θy) =

1
n

n∑
i=1

Ly(Gy(Gf (xt
i ; θf ); θy), yt

i), (6)

Lm
y (θf , θy) =

1
kn

kn∑
i=1

Ly(Gy(Gf (xm
i ; θf ); θy), ym

i ). (7)

Domain-Adversarial Training
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Adversarial Training

• The domain classifier Gd uses a softmax activation function with categorical
cross-entropy (CCE) as the adversarial loss Ld.

• We use all labeled and unlabeled samples to train Gf and Gd, with losses:

Ls
d(θf , θd) =

1
m

m∑
i=1

Ld(Gd(Gf (xs
i ; θf ); θd), ds

i ), (8)

Lt
d(θf , θd) =

1
N

N∑
i=1

Ld(Gd(Gf (xt
i ; θf ); θd), dt

i), (9)

Lm
d (θf , θd) =

1
kn

kn∑
i=1

Ld(Gd(Gf (xm
i ; θf ); θd), dm

i ). (10)

Domain-Adversarial Training
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Optimization Objective and Solution

• In order for Gf to extract domain-invariant features, i.e., Gd cannot correctly perform
domain classification, the complete optimization objective is:

E(θf , θy, θd) = Ls
y(θf , θy) + Lt

y(θf , θy) + Lm
y (θf , θy)

−β(Ls
d(θf , θd) + Lt

d(θf , θd) + Lm
d (θf , θd)),

(11)

where β > 0 is a hyper-parameter for trade-off.

• The saddle point θ̂f , θ̂y, θ̂d are given by:

(θ̂f , θ̂y) = argmin
θf ,θy

E(θf , θy, θ̂d), (12)

θ̂d = argmax
θd

E(θ̂f , θ̂y, θd). (13)

• The final target model: yt
prediction = Gy(Gf (xt; θ̂f ); θ̂y).

Domain-Adversarial Training
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Evaluation
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Detailed BOOM pipeline.

RISC-V

• Free & Open source; Easy to start.

• Has received great attention and support
from academia and industry.

BOOM

• A family of out-of-order RISC-V designs.

• High performance & Parametric
microarchitecture design & Automatic
design flow.

• There are various typical configurations for
different application scenarios.

RISC-V BOOM
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• Three distinct RISC-V BOOM configurations; 100 commonly used benchmarks.

• Six transfer tasks: L → S, G → S, S → L, G → L, S → G, and L → G.

Table: Design parameters and power statistics of three BOOM configurations.

Parameters
SmallBOOM (S) LargeBOOM (L) GigaBOOM (G)

−− − Default + ++ −− − Default + ++ −− − Default + ++

FetchWidth 4 4 4 4 4 8 8 8 8 8 8 8 8 8 8
DecodeWidth 1 1 1 1 1 3 3 3 3 3 5 5 5 5 5

FetchBufferEntry 5 6 8 12 16 18 21 24 27 30 30 30 35 35 40
RobEntry 16 24 32 40 48 81 90 96 105 114 125 130 130 130 140

IntPhysRegister 36 44 52 60 68 88 94 100 105 112 108 118 128 130 140
FpPhysRegister 36 42 48 52 56 88 92 96 105 112 108 118 128 130 140
LDQ/STQEntriy 4 6 8 12 16 16 20 24 28 32 24 28 32 34 36
BranchCount 6 7 8 9 10 14 15 16 16 16 18 19 20 21 22

MemIssue/FpIssueWidth 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2
IntIssueWidth 1 1 1 1 2 2 3 3 3 3 5 5 5 5 5

DCache/ICacheWay 2 4 4 4 8 8 8 8 8 8 8 8 8 8 8
DCache/ICacheTLBEntry 8 8 8 8 16 16 16 16 16 32 32 32 32 32 32

DCacheMSHR 2 2 2 2 4 4 4 4 4 4 8 8 8 8 8
ICacheFetchBytes 2 2 2 2 2 4 4 4 4 4 4 4 4 4 4

Min. Power (mW) 9.54 9.73 10.22 10.64 12.11 21.12 22.14 22.31 22.98 28.03 36.84 38.33 34.12 35.41 36.70
Max. Power (mW) 14.62 16.01 18.10 17.06 19.94 38.07 39.15 42.56 43.85 50.52 61.80 59.94 59.75 60.43 65.23
Avg. Power (mW) 11.84 12.60 13.51 13.67 15.55 27.27 28.45 29.53 30.32 35.26 44.86 45.88 42.96 43.56 45.91
Std. Power (mW) 1.32 1.53 1.71 1.69 1.78 4.57 4.49 4.82 4.97 5.30 5.78 5.50 6.58 5.97 7.16

Experiment: Data & Task
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• HPCA0710: design parameter-based modeling method.

• TCAD1711: microarchitecture event statistics-based method.

• PowerTrain12: re-weights the McPAT modeling results with L1 regularization.

• McPAT-Calib13: use a wider range of feature sources and advanced ML methods.

• McPAT-CalibAL14: use an active learning method to select labeled target samples.

Training Ways

• Tgt O.: train the target model using only the available labeled target samples.

• Both: train the target model using both the labeled source and target samples.

10
B. C. Lee, et al. “Illustrative Design Space Studies with Microarchitectural Regression Models”. In: Proc. HPCA, 2007.

11
M. J. Walker, et al. “Accurate and Stable Run-Time Power Modeling for Mobile and Embedded CPUs”. In: IEEE TCAD, 2017.

12
W. Lee, et al. “PowerTrain: A learning-based calibration of McPAT power models”. In: Proc. ISLPED, 2015.

13
J. Zhai, et al. “McPAT-Calib: A Microarchitecture Power Modeling Framework for Modern CPUs”. In: Proc. ICCAD, 2021.

14
J. Zhai, et al. “McPAT-Calib: A RISC-V BOOM Microarchitecture Power Modeling Framework”. In: IEEE TCAD, 2023.

Result: Power Modeling Baselines

25/34



• Fine-tune15 first pre-trains an ANN model using labeled source samples, and then
fine-tunes the pre-trained model with labeled target samples.

• DANN16 trains the target model using labeled source and target samples, and uses
all samples to train a binary classifier used to discriminate source and target domains.

• MDD17 learns a new feature representation by minimizing the disparity discrepancy
between the encoded source and target domains.

• TrAdaBoostR218 is based on the reverse boosting principle, which reduces the
weights of poorly predicted source samples at each boosting iteration.

15
J. Yosinski, et al. “How transferable are features in deep neural networks?” In: Proc. NeurIPS, 2014.

16
Y. Ganin, et al. “Domain-adversarial training of neural networks”. In: JMLR, 2016.

17
Y. Zhang, et al. “Bridging theory and algorithm for domain adaptation”. In: Proc. ICML, 2019.

18
D. Pardoe, et al. “Boosting for regression transfer”. In: Proc. ICML, 2010.

Experiment: Transfer Learning Baselines
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• KLIEP19 is a kernel-based sample bias correction method minimizing the
KL-divergence between a reweighted source and target distributions.

• KMM20 reweights source samples to minimize the maximum mean discrepancy
(MMD) between source and target domains.

• WANN21 relies on an adversarial weighting approach to minimize the Y-discrepancy
between domains.

19
M. Sugiyama, et al. “Direct importance estimation with model selection and its application to covariate shift adaptation”. In: Proc. NeurIPS, 2007.

20
J. Huang, et al. “Correcting sample selection bias by unlabeled data”. In: Proc. NeurIPS, 2006.

21
A. de Mathelin, et al. “Adversarial weighting for domain adaptation in regression”. In: Proc. ICTAI, 2021.

Experiment: Transfer Learning Baselines
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• Cross-validation is performed in each of the three configurations.

• Compared with SOTA ML models, ANN-based power models embedded with a
prior knowledge can achieve comparable or even better modeling accuracy.

Table: Modeling accuracy of different models.

Features Model S L G Avg.

Selected

Linear Regressor 6.95% 8.12% 6.52% 7.20%
Ridge Regressor 6.94% 8.13% 6.60% 7.22%

Gaussian Process Regressor 7.01% 8.36% 6.92% 7.43%
KNeighbors Regressor 6.60% 8.37% 5.82% 6.93%

Support Vector Regressor 8.14% 9.69% 7.90% 8.58%
Random Forest Regressor 5.48% 7.03% 6.08% 6.20%

XGBoost Regressor 4.56% 5.45% 5.62% 5.21%

Total
MLP Regressor 5.27% 5.28% 5.62% 5.39%

Our ANN-based model 5.42% 4.89% 4.75% 5.02%

Accuracy of ANN-Based Model
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• Perform the six transfer tasks in the three distinct configurations.

• The use of source samples is not always beneficial (e.g. TCAD17 & PowerTrain).

• Compared with the SOTA results, our TL-based model achieves better results.

Table: Comparison with previous microarchitecture power models.

Task
HPCA07 TCAD17 PowerTrain McPAT-Calib McPAT-CalibAL

OursTgt O. Both Tgt O. Both Tgt O. Both Tgt O. Both Tgt O. Both

L → S 10.30% 10.21% 7.81% 9.28% 7.30% 7.98% 5.15% 4.97% 4.94% 4.67% 5.25%
G → S 10.30% 10.23% 7.81% 10.82% 7.30% 8.93% 5.15% 5.09% 4.94% 4.99% 5.19%
S → L 13.63% 13.63% 10.21% 10.60% 8.23% 8.87% 5.97% 5.43% 5.54% 4.93% 4.28%
G → L 13.63% 13.51% 10.21% 12.61% 8.23% 8.75% 5.97% 6.10% 5.54% 5.89% 4.14%
S → G 11.62% 11.72% 7.55% 7.83% 6.67% 6.77% 6.56% 5.97% 6.35% 5.55% 3.85%
L → G 11.62% 11.58% 7.55% 8.33% 6.67% 6.75% 6.56% 5.63% 6.35% 5.42% 3.80%

Average 11.85% 11.81% 8.53% 9.91% 7.40% 8.01% 5.89% 5.53% 5.61% 5.24% 4.42%
Ratio 2.681 2.672 1.930 2.242 1.674 1.812 1.333 1.251 1.269 1.186 1.000

Comparison and Analysis of Power Models
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• For ANN-based model, the introduction of source samples can always enhance the
target modeling ability, but the performance gain decreases with the increase of n.

• Importantly, our TL method can improve the transferability of the model by utilizing
the source knowledge more efficiently, always showing better transfer results.
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• All TL methods are implemented on our ANN-based model.

• Cross-domain mixup can fill the distribution discrepancies in both feature and label
space, meanwhile the domain-adversarial training makes full use of both labeled and
unlabeled target samples, thus achieving the best transfer performance.

Table: Comparison with previous TL methods.

TL Method L → S G → S S → L G → L S → G L → G Avg.→
Fine-tune 5.33% 5.47% 4.81% 5.43% 5.09% 4.75% 5.15%

DANN 5.47% 5.49% 4.95% 5.09% 4.75% 4.61% 5.06%
MDD 5.49% 5.80% 4.78% 5.04% 5.19% 4.80% 5.18%

TrAdaB. 5.41% 5.35% 4.71% 4.81% 5.10% 5.00% 5.06%
KLIEP 6.20% 5.73% 4.77% 5.18% 5.19% 4.77% 5.31%
KMM 5.58% 5.52% 5.04% 5.13% 5.20% 5.12% 5.27%

WANN 5.91% 6.05% 4.98% 5.30% 4.75% 4.69% 5.28%

Ours 5.25% 5.19% 4.28% 4.14% 3.85% 3.80% 4.42%

Transfer Results
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• “w/o CDM” means adversarial training only on the source and target domains
without cross-domain mixup.

• “w/o DAT” represents training the model directly with labeled samples from the
three domains, without domain-adversarial training.

• “Full TL” uses both techniques to achieve the best transfer results.
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Ablation study of our TL method.

Ablation Study

32/34



Why is our modeling method effective?

• ANN-Based Power Model: to ensure powerful feature extraction and transferability.

• Cross-Domain Mixup: can address the problem of insufficient labeled target samples
and fill in the distribution discrepancie in both feature and label space.

• Domain-Adversarial Training: can extract domain-invariant features for further
knowledge transfer and complete the target model construction.

Open problem

• How to improve the transferability between power models of highly heterogeneous
processors.

Conclusion
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