
Graph-Learning-Driven Path-Based Timing Analysis
Results Predictor from Graph-Based Timing Analysis

Yuyang Ye1, Tinghuan Chen2, Yifan Gao1, Hao Yan1,
Bei Yu2, Longxing Shi1

1Southeast University
2The Chinese University of Hong Kong

Jan. 18, 2023

Introduction

STA plays an important role in the design flow for timing closure.

front-end System Specification

Functional Design
（Verilog）

Functional Verification
(Pre-simulation)

Logic Synthesis
and Optimization

Consistency test

Architectural Design

Design For Test

Placement

Routing

Design Rule Check &

Layout Versus Schematic

Layout Automation

Functional Verification
(Post-simulation)

Clock Tree Synthesis

Tape Out back-end

Static Timing

Analysis

Static Timing Analysis (STA)

3/27

For achieving a tradeoff between efficiency and accuracy, STA is divided into two
kinds:

• Graph-based Analysis (GBA)
(fast but inaccurate)

• Path-based Analysis (PBA)
(accurate but slow)

U1 U2
A
B

Load=10
Net A

Load=10
Net B

Cell 2Cell 1

ZZ A0.15

0.25

0.22

GBA delay=0.20

Timing Path: From U1/A to U2/Z

U1 U2
A
B

Load=10
Net A

Load=10
Net B

Cell 2Cell 1

ZZ A0.15

0.25

0.13

PBA delay=0.14

Timing Path: From U1/A to U2/Z

Introduction: GBA Vs. PBA

4/27

Molina 1 and Kahng 2 name fast prediction of PBA results based on GBA results
as a solution to achieve runtime and accuracy tradeoff
Kahng et al. 3 develop two tree-based classification and regression models to
capture divergence in cell slew/delay in PBA and GBA timing mode

PBA Timing Results

Point Trans Incr Path

U0_reg/CP 0.00000 0.00000 0.00000

U0_reg/Q 0.01308 0.04382 0.04382

U1/Z 0.02745 0.01973 0.06355

U2/Z 0.00766 0.01808 0.08163

Data arrival time 0.08163

GBA Timing Results

Point Trans Incr Path

U0_reg/CP 0.00000 0.00000 0.00000

U0_reg/Q 0.02015 0.05688 0.05688

U1/Z 0.03045 0.02473 0.08161

U2/Z 0.01066 0.02080 0.10241

Data arrival time 0.10241

(a) (b)

(a) From GBA to PBA; (b) Tree-based classification.

1EDA vendors should improve the runtime performance of path-based timing analysis
2Machine learning applications in physical design: Recent results and directions
3Using machine learning to predict path-based slack from graph-based timing analysis

Motivation: PBA based on GBA

5/27

Graph learning methods are used to solve various EDA problems.

• Cells→ Nodes
Node features are researched
in many problems
Cell information is collected

• Nets→ Edges
Edge features are not fully
considered
Net information is ignored

Node Edge

Motivation: Graph Learning for Timing Analysis

6/27

An edge-featured graph G = {V, E ,X,H} is defined as an undirected graph
consisting of:
• a node set V = {v(1), v(2), . . . , v(n)}, where |V| = N. It denotes cell set on critical paths;

• an edge set E , where |E| = M. It denotes net set on critical paths;

• node features X ∈ Rn×kx , where ith row vector xi ∈ Rkx is the node features for the ith

node;

• edge features H ∈ Rm×kh , where the row vector hp ∈ Rkh is the edge features for the pth

edge or the edge between ith and jth node.

Definition: Edge-featured Graph

7/27

Problem 1:
• Given a training set Ptrain which includes edge-featured graphs representing critical

paths with GBA and PBA timing results in training cases

• Train a graph-learning based model based on Ptrain

• Given a test set Ptest (where Ptest ∩ Ptrain = ∅) which includes edge-featured graphs
representing critical paths with GBA results in testing cases.

• Generate their PBA timing results in Ptest using the trained model based on given
GBA timing results and timing path structure information without additional STA
runtime.

Problem Formulation

8/27

Algorithms

In our work, Problem 1 is divided into three tasks based on delay calculation
progress: node embedding, cell slew and delay prediction, path arrive time
calculation.

Edge-featured Graph

GBA Timing Results
PBA Timing Results

Point Trans Incr Path

U0_reg/CP 0.00000 0.00000 0.00000

U0_reg/Q 0.01308 0.04382 0.04382

U1/Z 0.02745 0.01973 0.06355

U2/Z 0.00766 0.01808 0.08163

Path arrival time 0.08163

INPUT Our Work OUTPUT

Node Embedding

Predicting Cell Slew
and Delay

Data
Representation

Path Arrive Time
Calculation

PBA Cell Slew and Delay

PBA Path Arrival Time

initial node features initial edge features

Final embeddings

Task 1

Task 2

Task 3

Critical Paths

GBA-STA

Timing Constraints

Circuit Netlist

Wire Technology File

Timing Library

Overall Flow

10/27

Cell Features and Edge Features are selected based on circuit knowledge and
parameter-sweeping experiments, which can assist EdgeGAT.

Type Name Description

Node

cell delay delay of cell
cell output slew transition time of cell output pin
cell input slew transition time of cell input pin on path
cell input slew type rise or fall
cell threshold voltage threshold voltage of cell
wst cell input slew worst transition time of input pins
cell drive strength drive strength of cell
cell functionality functionality of cell
tot cell input cap sum of cell input pin cap
tot cell load cap total load capacitance of cell

Edge

net delay delay of net
net slew type rise or fall
net output slew transition time of net output pin
net input slew transition time of net input pin
tot net cap sum of net capacitance
tot net res sum of net resistance
net input cap capacitance of driver cell for net
tot net load cap total capacitance of load cells

Data Representation

11/27

To predict the cell slew and delay accurately, EdgeGAT layers and merge layer in
deep EdgeGAT are used to generate new node embedding F: {fi, ∀i ∈ V} for cells
in circuit which is based on node (cell) features X: {xi, ∀i ∈ V}, edge (net) features
H: {hp, ∀p ∈ E}, and timing path structural information.

EdgeGAT Layer 1 Merge Layer

Nonlinear Transformer

Node Attention

Aggregator

Edge Attention

Aggregator

Encoder

EdgeGAT Layer d EdgeGAT Layer D

Residual

Connections

Task 1: Node Embedding

12/27

To achieve nonlinear transforming in the d-th EdgeGAT layer, two learnable
matrices, Wd

X ∈ RKd
X×Kd−1

X , Wd
H ∈ RKd

H×Kd−1
H and a hyper-parameter ld, are used to

transform the input node features {xd−1
i ∈ RKd−1

X , ∀i ∈ V} and edge features

{hd−1
p ∈ RKd−1

H ,∀p ∈ E} into latent representations nd
i and ed

i :

EdgeGAT Layer 1 Merge Layer

Nonlinear Transformer

Node Attention

Aggregator

Edge Attention

Aggregator

Encoder

EdgeGAT Layer d EdgeGAT Layer D

Residual

Connections

Nonlinear Transformer:

nd
i = ((1− ld)I + ldWd

X) · xd−1
i

ed
p = ((1− ld)I + ldWd

H) · hd−1
p

EdgeGAT Layer (Transformer)

13/27

The node attention aggregator accepts the transformed node and edge
representations generated as inputs, nd

i and ed
i , and produces aggregated node

representations gd
i based on node attention coefficients α.

EdgeGAT Layer 1

Nonlinear Transformer

Node Attention

Aggregator

Edge Attention

Aggregator

Encoder

EdgeGAT Layer d EdgeGAT Layer D

Residual

Connections Node Attention Aggregator:

αd
ij =

exp
(
LeakyReLU

(
(ad)⊤

[
nd

i ∥nd
j ∥ed

ij

]))
∑

k∈Ni
exp

(
LeakyReLU

(
(ad)⊤

[
nd

i ∥nd
k∥ed

ik

]))
gd

i =
∑
j∈Ni

αijnd
j , ∀i ∈ V.

EdgeGAT Layer (Node Attention Aggregator)

14/27

Different from node attention module, edge-attention module produces
aggregated edge representations zd

p based on edge attention coefficients β.

EdgeGAT Layer 1 Merge Layer

Nonlinear Transformer

Node Attention

Aggregator

Edge Attention

Aggregator

Encoder

EdgeGAT Layer d EdgeGAT Layer D

Residual

Connections Edge Attention Aggregator:

βd
pq =

exp
(
LeakyReLU

(
(bd)⊤

[
ed

p∥ed
q∥nd

pq
]))∑

k∈Np
exp

(
LeakyReLU

(
(bd)⊤

[
ed

p∥ed
k∥nd

pk

]))
zd

p =
∑

q∈Np

βpqed
q, ∀p ∈ E .

EdgeGAT Layer (Edge Attention Aggregator)

15/27

A non-linear transformation σ is performed to encode the aggregated
representations. After encoding, we can get new node feature matrix Xd, edge
feature matrix Hd, and edge-integrated feature matrix Md.

EdgeGAT Layer 1 Merge Layer

Nonlinear Transformer

Node Attention

Aggregator

Edge Attention

Aggregator

Encoder

EdgeGAT Layer d EdgeGAT Layer D

Residual

Connections
Encoder:

xd
i = σ(gd

i ∥xi)

hd
p = σ(zd

i ∥hi)

md
i = σ

∑
j∈Ni

αij
(
nj∥eij

)

EdgeGAT Layer (Encoder)

16/27

We can get the final node embedding results F: {fi,∀i ∈ V} based on each
edge-integrated feature matrix Md : {md

i ,∀i ∈ V} in merge layer.

EdgeGAT Layer 1 Merge Layer

Nonlinear Transformer

Node Attention

Aggregator

Edge Attention

Aggregator

Encoder

EdgeGAT Layer d EdgeGAT Layer D

Residual

Connections

Merge Layer:

fi = ∥D
d=1(m

d
i), ∀i ∈ V.

Merge Layer

17/27

Then, a multilayer perceptron module (MLP) is used to predict the cell slew and
delay in PBA mode. The minimizing Mean-Squared Error (MSE) between the
predicted and the PBA result is taken as the loss function.

Lslew(θ | F,SPBA
r) =

1
N

∑
i∈V

(SPBA
i − SPBA

r_i)2.

Ldelay(ϕ | {F,SPBA
cell },DPBA

r) =
1
N

∑
i∈V

(DPBA
i −DPBA

r_i)2.

Ltot(θ,ϕ | {F,SPBA
cell },SPBA

r ,DPBA
r) = Lslew + Ldelay.

Task 2: Predicting

18/27

PBA arrival time of a critical path ATPBA
CP is estimated by the predicted PBA cell

delay DPBA
cell and GBA wire delay DGBA

wire .

ATPBA
CP =

∑
i∈VCP

DPBA
i +

∑
p∈ECP

DGBA
p .

U1

A B
Z B

U3
Z

ZN

Net A
Net B

U2

Point Trans Incr Path

U0_reg/CP 0.00000 0.00000 0.00000

netA 0.00042 0.00012 0.00012

U0_reg/Q 0.02015 0.05688 0.05688

U1/Z 0.03045 0.02473 0.08161

U2/Z 0.01066 0.02080 0.10241

Data arrival time 0.10241

Collect Net Delay From GBA Results

Node Embedding

Predicting Cell Slew
and Delay

Data
Representation

Predict Cell Delay using Our Work

Task 1

Task 2

Task 3: Calculation

19/27

Algorithm 1 summarizes the overall training process of PBA cell slew/delay
predictor. We leverage a parallel training scheme by partitioning critical paths
over multi-GPUs.

Algorithm 1 Training Methodology.

Input: Edge-featured graph: G = {V, E ,X,H}; Node feature matrix: X: {xi, ∀i ∈
V}; Edge feature matrix: H: {hp,∀p ∈ E}; Real PBA cell slew SPBA

r and delay
DPBA

r ; Search depth D=100; Parameters in the LeakyReLU nonlinear function.
Output: Trainable parameters W: {Wd

X and Wd
H, ∀d ∈ {1, ...,D}} in EdgeGAT lay-

ers; θ and ϕ in MLP
1: for i ∈ V do
2: fi ← ∥D

d=1

(
md

i

)
; ▷ Node embedding

3: SPBA
i ←MLP(θ | F); ▷ Predicting cell slew

4: DPBA
i ←MLP(ϕ | F,SPBA

i); ▷ Predicting cell delay
5: end for
6: Compute Ltot;
7: Minimize Ltot via Adam and update all parameters W

Some Tricks: Parallel Training

20/27

Experimental Results

• Training Device: a Linux machine with
32 cores and 4 NVIDIA Tesla V100
GPUs in parallel with 128GB memory.

• PBA&GBA Device: a 72-core 2.6GHz
Linux machine with 1024 GB memory

• Benchmarks: 18 open-source circuits
with TSMC28nm

Benchmark #Cells #Nets #FFs #CPs

Train

PCI_BRIDGE 1234 1598 310 456
DMA 10215 10898 1956 1475
B19 33785 34399 3420 5093

SALSA 52895 57737 7836 9648
RocketCore 90859 93812 16784 12475
VGA_LCD 56194 56279 17054 8761

ECG 84127 85058 14,018 13189
TATE 184601 185379 31,409 27931
JPEG 219064 231934 37,642 36489

NETCARD 316137 317974 87,317 46713
LEON3MP 341000 341263 108,724 50716

Total 1390111 1075068 326470 212766

Test

WB_DMA 40962 40664 718 9619
LDPC 39377 42018 2048 7613

DES_PERT 48289 48523 2983 10976
AES-128 113168 90905 10686 24973

TV_CORE 207414 189262 40681 33706
NOVA 141990 139224 30494 39341

OPENGFX 219064 231934 37,642 47831
Total 810264 782530 125252 221890

Experimental Settings

22/27

Benchmark
Cell Slew/Delay Prediction Accuracy (R2 score)

MLP GCNII1 GraphSage2 GAT3 EGNN4 Deep EdgeGAT

WB_DMA 0.795/0.761 0.875/0.861 0.881/0.846 0.883/0.876 0.915/0.907 0.996/0.971
LDPC 0.762/0.732 0.842/0.832 0.865/0.814 0.877/0.871 0.921/0.916 0.991/0.987

DES_PERT 0.766/0.727 0.896/0.887 0.847/0.826 0.906/0.900 0.963/0.960 0.989/0.987
AES-128 0.731/0.712 0.801/0.792 0.821/0.810 0.856/0.816 0.938/0.921 0.977/0.970

TV_CORE 0.756/0.717 0.838/0.817 0.847/0.837 0.856/0.844 0.957/0.944 0.982/0.979
NOVA 0.725/0.718 0.826/0.812 0.824/0.818 0.864/0.855 0.905/0.871 0.974/0.971

OPENGFX 0.699/0.681 0.819/0.802 0.809/0.798 0.834/0.816 0.862/0.840 0.982/0.974

Average 0.748/0.721 0.843/0.829 0.842/0.821 0.868/0.854 0.923/0.909 0.984/0.977

• Ours outperforms GCNII by 0.142/0.147, GraphSage by 0.141/0.156, GAT by
0.116/0.123 and EGNN by 0.062/0.069.

1Simple and deep graph convolutional networks 2Inductive representation learning on large graphs
3Graph attention networks 4Exploiting edge features for graph neural networks

Results: Cell Slew/Delay Prediction Accuracy

23/27

Benchmark
Path Delay Prediction Accuracy: R2 score / MAE(ps) Runtime(s)

STA Tool (PrimeTime) Prior Work Ours PBA Ours Comparison
PBA GBA CART1 D=25 D=50 D=100 Full GBA Predictor Total Speedup

WB_DMA 1.000/0.00 0.549/64.91 0.732/21.34 0.881/10.74 0.928/3.23 0.998/0.89 276.7 12.1 1.197 13.297 20.81×
PCI_BRIDGE 1.000/0.00 0.471/89.23 0.694/41.01 0.896/14.65 0.901/9.51 0.993/1.46 365.9 15.3 0.798 16.098 22.73×

DES_PERT 1.000/0.00 0.452/50.84 0.702/37.86 0.891/25.17 0.931/10.92 0.997/1.02 386.3 16.4 1.614 18.014 21.44×
AES-256 1.000/0.00 0.393/130.92 0.511/80.75 0.702/22.94 0.822/9.37 0.977/3.94 593.7 31.2 2.731 33.931 17.50×

TV_CORE 1.000/0.00 0.424/91.27 0.651/57.93 0.825/29.36 0.897/19.34 0.984/6.81 614.6 22.1 2.410 24.51 25.08×
NOVA 1.000/0.00 0.419/88.64 0.673/36.59 0.839/23.83 0.904/14.37 0.983/4.11 1133.8 30.5 4.276 34.776 32.60×

OPENGFX 1.000/0.00 0.378/267.91 0.571/147.03 0.793/53.74 0.851/27.89 0.987/5.84 1185.4 36.3 4.432 40.732 29.10×

Average 1.000/0.00 0.441/111.96 0.647/60.36 0.832/25.78 0.891/13.52 0.988/3.44 642.3 23.4 2.494 25.894 24.80×

• According to the R2 scores, the accuracy of our work reaches 0.832, 0.891, and 0.988
on average when D=25,50 and 100. And the average maximum absolute error of our
results is just 3.44ps.

• the average runtime of our workflow to get accurate PBA timing results costs 25.894s,
which achieves 24.80× speedup compared with PrimeTime.

1Using machine learning to predict path-based slack from graph-based timing analysis

Results: Path Delay Prediction Accuracy

24/27

Conclusion

• Using GBA results to predict PBA makes a tradeoff between accuracy and runtime.

• Our predictor has the potential to substantially predict PBA timing results accurately.
According to the R2 scores, the accuracy of our work reaches 0.988 on average with
maximum error reaching 6.81 ps.

• Our work accelerates PBA timing results which achieves an average 24.80× speedup
faster than PBA using the commercial STA tool.

Conclusion

26/27

THANK YOU!

	Introduction
	Algorithms
	Experimental Results
	Conclusion

