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Abstract
Design rule checking (DRC) is essential in physical verification to

ensure high yield and reliability for VLSI circuit designs. To achieve

reasonable design cycle time, acceleration for computationally in-

tensive DRC tasks has been demanded to accommodate the ever-

growing complexity of modern VLSI circuits. In this paper, we pro-

pose X-Check, a GPU-accelerated design rule checker. X-Check inte-

grates novel parallel sweepline algorithms, which are both efficient

in practice and with nontrivial theoretical guarantees. Experimental

results have demonstrated significant speedup achieved by X-Check

compared with a multi-threaded CPU checker.

1 Introduction

Design rule checking (DRC) determines whether the physical

layout of a particular chip satisfies a set of geometric design rules,

which is an essential step in the physical verification flow. Typical

design rules include intra-layer rules that specify a minimum width

and a minimum spacing of the patterns within a layer, and inter-

layer rules that define a minimum extension between shapes in

different layers. A design rule checker mainly runs computational

geometry algorithms [1–4] that analyze geometric relationships

between primitive data objects such as polygons and edges.

Recent advancements in process technology have significantly

impacted design rule checking. A practical impact is an explosion

in the number of design rules that must be honored in the layout.

Instead of simple width and spacing rules, modern fabrication tech-

nologies prescribe many complex contextual rules, leading to a more

intensive computation workload. The continuing and growing high

computational costs of DRC drive us to pursue parallel computing

techniques to reduce the turn-around time for these tasks. Previous

work in both academia and industry has proposed various parallel

algorithms for DRC. One standard technique is to partition the lay-

out into tiles and perform DRC on the tiles in parallel, which has

been investigated since the 1980s [5]. When the layout is equipped

with hierarchical information, it is also possible to exploit paral-

lelism from the hierarchical representation, as illustrated in [6, 7].

At the edge level, Carlson et al. has proposed parallel algorithms for
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Figure 1: X-Check: GPU-accelerated design rule checking.

Manhattan geometry [8] and general (oblique) geometry [9]. The

above approaches can be considered as data parallelism. For task
parallelism, since design rule checking often involves more than one

algorithm, Marantz [10] has developed a parallel checker that runs

different checking algorithms concurrently. A systematic approach

that combines both data and task parallelism is presented in [11].

Despite the fact that various parallel algorithms have been in-

vestigated, their scalability still cannot catch up with the growth of

computation demand of DRC for modern designs under advanced

processes. It takes more than a day and more than 2000 cores to

complete an entire DRC on a 5nm design
1
. Recent years have seen

GPU acceleration for various design automation stages to speed up

design closure. It is pointed out that many conventional parallel

algorithms do not scale beyond a few CPU cores [12], and how to

better utilize the massive computing resources in GPUs needs spe-

cial considerations. We detail two popular methodologies to develop

efficient GPU-enabled applications. The first one is to cast a design
automation problem into another problem solvable by cur-
rent tools/infrastructure. One of the most clever ideas is Dream-

Place [13], where the analytical placement problem is converted to

neural network training and hence can be implemented on top of the

PyTorch framework. Similarly, GATSPI [14] is a GPU-enabled gate-

level simulator developed with DGL/PyTorch and customized CUDA

kernels; in particular, netlists are transformed into graph objects

for further operations. FastGR [15] regards the batched net routing

ordering problem as a task scheduling problem, which is solved

using the Taskflow [16] scheduler. By utilizing existing solvers or

frameworks, developers could focus more on problem formulation

and algorithm customization, without needing to build everything

from scratch. The second methodology is to design novel GPU-
friendly computation kernels for some critical tasks in the
design flow. In [17], density accumulation, an essential primitive

in placement, is decomposed to a density allocation phase, plus a 2D

prefix sum phase, which is easily parallelized. GAMER [18] solves the

shortest path problem in routing by iterative vertical and horizon-

tal sweeping/relaxation, which is also conceptually a scan process.

In [19], GPU-friendly algorithms are analyzed and implemented

1
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Figure 2: Typical rules: (a) width and spacing rules in a metal
layer; (b) enclosing rule between ametal layer and a via layer.

for timing analysis, including a breadth-first search for RC delay

computation, parallel levelization by advancing ‘frontier’, and table

lookup/interpolation. We refer readers to [20] for a survey on GPU

acceleration in VLSI back-end design. Moreover, GPU acceleration

is also a popular topic in conference contests [21, 22].

In this paper, we propose X-Check, as illustrated in Figure 1, a

GPU-accelerated design rule checker that parallelizes DRC via par-

allel sweepline algorithms. We show that many DRC tasks can be

converted into a general prefix computation problem and propose a

parallel sweepline paradigm to solve those problems. The proposed

algorithmic paradigm is both easy to implement (GPU-friendly),

and with nontrivial theoretical guarantees. We also discuss various

implementation techniques to improve efficiency. In summary, our

contributions are as follows:

• To our knowledge, it is the first time to apply a modern

general-purpose GPU to design rule checking;

• We show that many DRC tasks can be converted into gen-

eral prefix computation problems, and propose a parallel

sweepline paradigm to solve them;

• We implement the proposed algorithms on GPUs and fully

integrate them into an end-to-end DRC flow;

• Significant speedup has been achieved on several designs of

various sizes.

The rest of the paper is organized as follows: Section 2 recaps prelimi-

naries; Section 3 introduces DRC algorithms and a parallel sweepline

paradigm; Section 4 proposes two novel parallel sweepline algo-

rithms for a series of DRC tasks; Section 5 discusses several imple-

mentation details and techniques, and Section 6 presents experimen-

tal evaluations.

2 Preliminaries
Design Rules. We illustrate a few fundamental intra-layer and

inter-layer rules. Intra-layer constraints define interactions, mea-

surements, and connectivity requirements between objects on the

same layer, e.g., minimum dimensions of objects on each layer or

minimum spacing between objects on the same layer, as shown

in Figure 2(a). Inter-layer constraints define interactions, measure-

ments, and connectivity requirements between objects on multiple

layers, e.g., encapsulation dimensions for objects on different layers

or minimum spacing between objects on different layers, as shown

in Figure 2(b).

DRC Engine in KLayout. As we are going to integrate our pro-

posed parallel DRC algorithms into the DRC flow provided by KLay-

out [23], we introduce the basics of the KLayout DRC engine. The

DRC functionality in KLayout is controlled by a DRC script that

specifies the check options and steps. KLayout organizes a layout as

(a) Distance Check (informal) (b) Distance Check

Figure 3: Distance Check. See Problems 1 and 2.

layers, which are basically collections of polygons or edges. Large

layouts are first clipped into tiles to reduce memory requirements

and to enable parallel processing by multiple CPU cores. In each tile,

the touched objects are merged into a single object (the so-called

clean state in KLayout). The checking tasks are then performed on

the merged layers.

Parallel ComputationModel. In this paper, we adopt the PRAM
model with concurrent reads and exclusive writes (CREW). We use

the work-depth (WD) paradigm [24] to analyze parallel algorithms,

where work𝑊 is the total number of operations, and depth 𝐷 is the

length of the critical path, assuming infinitive processing resources.

By the Brent’s principle, the runtime 𝑇𝑝 of an algorithm using 𝑝

processors can be bounded by 𝑇𝑝 ≤𝑊 /𝑝 + 𝐷 .

3 Design Rule Checking Algorithms
3.1 Problem Formulation

Before diving into technical details, we first describe a general

distance check problem that we aim to solve.

Problem 1 (Distance Check (informal)). A layout can be seen as

a set of axis-parallel polygonal objects. The distance rule says the

following: any two edges must not be closer than a predefined min-

imal distance. A distance violation is a pair of edges in the layout

that violate the distance rule. Given a layout, the task is to report all

the distance violations.

Without loss of generality, we first consider horizontal segments

only. We now give a more formal definition of the above problem:

Problem 2 (Distance Check). Given a setH of horizontal segments

in R2, report the segment pairs fromH2
whose horizontal projection

is nonempty, and vertical distance is smaller than 𝛿 . Formally, we

want to report:

{([𝑙1, 𝑟1] × 𝑦1, [𝑙2, 𝑟2] × 𝑦2) ∈ H2}
s.t. [𝑙1, 𝑟1] ∩ [𝑙2, 𝑟2] ≠ ∅, |𝑦1 − 𝑦2 | < 𝛿

(1)

Figure 3 illustrates the our problem formulation.

3.2 Sweepline Algorithms
Technically, Problem 2 can be efficiently solved by the sweepline

algorithmic framework. A sweepline algorithm can be conceptually

regarded as moving a sweepline on the plane to process a set of

points (a.k.a. event points) one by one. Suppose the event points are

stored in a data structure P that supports a delete-min2 operation in

𝑇 (P𝑑𝑒𝑙𝑒𝑡𝑒−𝑚𝑖𝑛) time. While P is not empty, the algorithm processes

2
A delete-min operation finds the minimum element and removes it.
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the points 𝑝 in P by repeatedly calling the delete-min operation.

For each event point 𝑝 , the algorithm updates a (persistent) status

data structure S that supports insertion, deletion, and range-report,

whose time complexities are denoted as 𝑇 (S𝑖𝑛𝑠𝑒𝑟𝑡 ), 𝑇 (S𝑑𝑒𝑙𝑒𝑡𝑒 ), and
𝑇 (S𝑟𝑎𝑛𝑔𝑒−𝑟𝑒𝑝𝑜𝑟𝑡 ), respectively. The total runtime for the sweepline

algorithm can be written as

𝑇𝑡𝑜𝑡𝑎𝑙 = |P|𝑇 (P𝑑𝑒𝑙𝑒𝑡𝑒−𝑚𝑖𝑛) + 𝑛 ·𝑇 (S𝑖𝑛𝑠𝑒𝑟𝑡 )

+ 𝑛 ·𝑇 (S𝑑𝑒𝑙𝑒𝑡𝑒 ) +
𝑚∑

𝑇 (S𝑟𝑎𝑛𝑔𝑒−𝑟𝑒𝑝𝑜𝑟𝑡 ),
(2)

where 𝑛 is the total number of elements to be inserted/deleted to S,

and𝑚 is the total number of range-reports.

To solve Problem 2 with a sweepline algorithm, assume all the

event points (i.e., endpoints of segments) are known ahead of time.

We use a logarithmic time priority queue (e.g., a binary heap) to orga-

nize the event points by prioritizing their 𝑥-coordinates, which sup-

ports delete-min in𝑂 (log |P|) time. For each event point, we update

a self-balancing binary search tree (e.g., a BB[𝛼] tree) that organizes

horizontal segments by their 𝑦-coordinates, with 𝑇 (S𝑖𝑛𝑠𝑒𝑟𝑡 ) and
𝑇 (S𝑑𝑒𝑙𝑒𝑡𝑒 ) in𝑂 (log |S|) time, and𝑇 (S𝑟𝑎𝑛𝑔𝑒−𝑟𝑒𝑝𝑜𝑟𝑡 ) in𝑂 (log |S| +𝑘)
time where 𝑘 is the number of reported elements. Specifically, for

a left endpoint of a horizontal segment, we insert the segment into

S; for a right endpoint of a horizontal segment, we remove it from

S. When a segment [𝑙, 𝑟 ] × 𝑦 is inserted into S, we also query S

and report segments that are within [𝑦 − 𝛿,𝑦 + 𝛿], which all violate

the distance rule. Algorithm 1 summarizes the squential sweeping

algorithm for distance check. Suppose there are 𝑛 segments and 𝑘

violations, we have

𝑇𝑡𝑜𝑡𝑎𝑙 = 𝑂 (𝑛)𝑇 (P𝑑𝑒𝑙𝑒𝑡𝑒−𝑚𝑖𝑛) +𝑂 (𝑛) ·𝑇 (S𝑖𝑛𝑠𝑒𝑟𝑡 )

+𝑂 (𝑛) ·𝑇 (S𝑑𝑒𝑙𝑒𝑡𝑒 ) +
𝑂 (𝑛)∑

𝑇 (S𝑟𝑎𝑛𝑔𝑒−𝑟𝑒𝑝𝑜𝑟𝑡 )
= 𝑂 (𝑛 log𝑛 + 𝑘)

The runtime bound is optimal, as the element uniqueness problem

(lower bounded by Ω(𝑛 log𝑛)) is reducible to the problem [25], and

we need Ω(𝑘) time to report all the violations.

Algorithm 1 Sequential Sweepline Algorithm for Distance Check

Input: A setH of horizontal segments

Output: Segment pairs that violate the distance rule

1: Sort segment endpoints P by ascending 𝑥-coordinates

2: Initialize an empty BST S ⊲ use 𝑦-coordinates as keys

3: for all endpoint 𝑝 ∈ P do
4: if 𝑝 is the left endpoint of a segment ℎ = [𝑙, 𝑟 ] × 𝑦 then
5: Range query S for [𝑦 − 𝛿,𝑦 + 𝛿]
6: Report the corresponding segment pairs

7: Insert ℎ to S

8: else
9: Delete ℎ from S

10: end if
11: end for

3.3 Parallelizing Sweepline Algorithms
We present a parallel sweepline paradigm proposed in [26], the

key idea of which is to regard a sweepline algorithm as computing

prefix structures. We follow the notations used in [26]. Event points

𝑝𝑖 ∈ 𝑃 are processed in a total order ≺: 𝑃 × 𝑃 ↦→ {0, 1}. At each

Step1: Batching with T ′
kn/b = ρ(p(k−1)n/b+1, · · · , pkn/b)

T ′
n/b T ′

2n/b T ′
3n/b · · · T ′

n

Step2: Sweeping with Tkn/b = f (T(k−1)n/b, T
′
kn/b)

Tn/b T2n/b T3n/b · · · T ′
n

Step3: Refining with Ti = h(Ti−1, pi)

T1 T2 · · · Tn/b Tn/b+1 Tn/b+2 · · · T2n/b T2n/b+1 T2n/b+2 · · · T3n/b · · · Tn−b+1 Tn−b+2 · · · Tn

Figure 4: Parallel prefix build for sweepline algorithms in
three steps: batching, sweeping, and refining. Each rectangle
block represents a prefix structure, where different colors in-
dicate different blocks. Each colored arrow represents work-
load of a thread. Adapted from [26].

point, our goal is to build the intermediate data structure 𝑡𝑖 ∈ 𝑇 with

the previous data structure 𝑡𝑖−1 and the current point 𝑝𝑖 using an

update function ℎ : 𝑇 ×𝑃 ↦→ 𝑇 (i.e., 𝑡𝑖 = ℎ(𝑡𝑖−1, 𝑝𝑖 )). The initial prefix
structure is 𝑡0. In this way, we define a sweepline algorithm as a five

tuple:

𝑆𝑊 = {𝑃, ≺,𝑇 , 𝑡0, ℎ}. (3)

To describe a parallel sweepline algorithm, we further define two

operators, a fold function 𝜌 : ⟨𝑃⟩ ↦→ 𝑇 that converts a sequence of

points to a prefix structure, and a combine function 𝑓 : 𝑇 ×𝑇 ↦→ 𝑇

that combines/reduces two prefix structures. We require 𝑓 to be

associative. A parallel sweepline paradigm is defined as:

𝑃𝑆𝑊 = {𝑃, ≺,𝑇 , 𝑡0, ℎ, 𝜌, 𝑓 }. (4)

The essence of the parallel sweepline algorithm is to make use of

the associativity of the combine function 𝑓 . More precisely, repeatedly

updating a sequence of points ⟨𝑃⟩ into a sequence of prefix structures
⟨𝑇 ⟩ using the update function ℎ, is equivalent to first converting the

points into (partial) prefix structures, and then combining the partial

prefix structures using the combine function 𝑓 . In [26], they propose

to compute such prefix structures in three steps:

(1) Batching. The inputs are sorted and evenly split into𝑏 blocks.
Each thread converts the consecutive 𝑛/𝑏 points in one block

into a partial sum (i.e., prefix) 𝑇 ′
𝑘𝑛/𝑏 for 𝑘 = 1, 2, · · · , 𝑏 using

the fold function 𝜌 .

(2) Sweeping. A single thread is invoked to sweep the 𝑏 partial

sums using the combine function 𝑓 to compute the prefix

structures 𝑇𝑛/𝑏 ,𝑇2𝑛/𝑏 , · · · ,𝑇𝑛 .
(3) Refining. The rest of the prefix structures are built using

the 𝑏 prefix structures built in the second step. In each block,

the points are processed sequentially to update the prefix

structures using ℎ. The 𝑏 blocks can be done in parallel.

Figure 4 illustrates the parallel prefix structure build. The runtime

complexity of such a strategy is analyzed in [26], which depends on

the complexity of the functions ℎ, 𝜌 , and 𝑓 . We will do the analysis

in Section 4 within the concrete (DRC) context.

Bootstrapping. Note that each subproblem in the refining step is

of the same type as the original problem, so that we can repeatedly

apply the same algorithm for each block. Such bootstrapping tech-

nique may slightly improve the runtime complexity (see Corollary 1

in [26] for details), usually by some logarithmic factor.
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4 Massively Parallel Design Rule Checking
Section 3.3 describes an efficient parallel sweepline algorithmic

paradigm. Now, we are going to show that design rule checking tasks

fit into the prefix build framework. We claim that distance check

(Problem 2) is prefix computation as described in Equation (4).

Claim 1. Distance check is prefix computation.

To prove the claim, we introduce two strategies to solve the prob-

lem, i.e., sweeping vertically and horizontally, in the following sub-

sections.

4.1 The Vertical Sweeping Algorithm
Firstly, sort segments in ascending 𝑦-coordinates. We explain the

algorithm by introducing the components in Equation (4).

• The event point set 𝑃 includes all the 𝑦-coordinates of the

segments.

• The total order ≺ is the total order < on the 𝑦-coordinates.

• The prefix structure contains a set S of segments that are

below current segment within 𝛿 in 𝑦-direction.
• The identity 𝑡0 contains an empty set ∅.
• The update function ℎ processes the segments by adding the

segment to S, and delete the segments that are below current

segment by more than 𝛿 .

• For the fold function 𝜌 , it suffices to first binary search for the

lowest segment that is within 𝛿 to the highest segment, and

then add the segments in between to the set S.

• The combine function 𝑓 is defined by first taking the union of

the sets, and then delete the elements that are below the target

segment by more than 𝛿 . Note that 𝑓 is associative because

the set operations are associative.

By our construction, the prefix structures contain all the candidate

segments below each segment, in the sense that their distances in

the𝑦-direction are within 𝛿 . It remains to check whether each pair of

segments overlap in the 𝑥-direction. Each violation will be reported

by the algorithm exactly once.

We now analyze the runtime complexity of the vertical sweeping

algorithm under the parallel sweepline framework. Recall that we

have 𝑛 events evenly split into 𝑏 blocks. As an implementation trick,

we store all the segments in a global array. The prefix structures only

store pointers to this global array instead of explicitly storing the set

elements. As a side note, the depth will grow to as large as𝑂 (𝑛 log𝑛)
if we use a persistent binary search tree for the implementation. We

use 𝑠𝑖 to denote the size of the 𝑖-th prefix structure.

(1) Batching. There are 𝑏 blocks, and each block has 𝑂 (𝑛/𝑏)
elements. The 𝜌 function can be implemented using a binary

search in the block, which takes 𝑂 (log(𝑛/𝑏)) time. The total

work is 𝑂 (𝑏 log(𝑛/𝑏)).
(2) Sweeping. Consider the case of combining the prefix struc-

tures of the (𝑘−1)-th block and the𝑘-th block. After sweeping,
the size of𝑇(𝑘−1)𝑛/𝑏 is 𝑠 (𝑘−1)𝑛/𝑏 , while𝑇

′
𝑘𝑛/𝑏 can have at most

𝑛/𝑏 elements. The combine function can be implemented us-

ing a binary search in these 𝑠 (𝑘−1)𝑛/𝑏 + 𝑛/𝑏 elements, which

takes𝑂 (log(𝑠 (𝑘−1)𝑛/𝑏 +𝑛/𝑏)) time. Therefore, the total work

and depth are

∑𝑏
𝑘=1

𝑂 (log(𝑠 (𝑘−1)𝑛/𝑏 + 𝑛/𝑏).

(3) Refining. The 𝑏 blocks are refined in parallel. In general,

building the 𝑖-th prefix structure takes𝑂 (log 𝑠𝑖−1) time. There-

fore the total work is

∑𝑛
𝑘=1

𝑂 (log(𝑠𝑘−1)). The depth is bounded
by max𝑘

∑𝑛/𝑏
𝑖=1

𝑂 (log(𝑠 (𝑘−1)𝑛/𝑏+𝑖−1)).
Note that each 𝑠𝑖 is upper bounded by 𝑖 . The prefix structures can be

build in 𝑂 (𝑛 log𝑛) work and 𝑂 ((𝑏 + 𝑛/𝑏) log𝑛) depth in the worst

case. When 𝑏 = Θ(
√
𝑛), the depth is 𝑂 (

√
𝑛 log𝑛). This worst-case

depth can be obtained by another naive solution that launches 𝑏

threads to perform the𝑛 binary searches in the whole space, resulting

in an 𝑂 (𝑛 log𝑛/𝑏) depth. However, when 𝑠𝑖 = Θ(polylog(𝑖))3, our
algorithm yields the better 𝑂 (𝑛 log log𝑛/𝑏) time complexity.

After building the prefix structures, each element in the prefix

structures can be examined in constant time for violation check. The

total work is bounded by

∑𝑛
𝑖=1 𝑠𝑖 . Again, the worse case complexity

is 𝑂 (𝑛2), and when 𝑠𝑖 = 𝑜 (𝑖) the algorithm gives nontrivial runtime

bound. Algorithm 2 summarizes the vertical sweeping algorithm.

Algorithm 2 Vertical Sweeping

Input: A setH of horizontal segments

Output: Segment pairs that violate the distance rule

1: Sort segments by ascending 𝑦-coordinates

2: Partition the sorted segments into 𝑏 blocks

3: For each block do in parallel ⊲ Batching

4: Find the lowest segment that is within 𝛿 to the highest seg-

ment in the block

5: Endfor
6: Sweep the partial results among the 𝑏 blocks ⊲ Sweep

7: For each block do in parallel ⊲ Refine

8: Refine the prefix structures

9: Endfor
10: For each prefix structure do in parallel ⊲ Report

11: Report the violations in the prefix structure

12: Endfor

4.2 The Horizontal Sweeping Algorithm
For horizontal sweeping, we first sort segment endpoints in as-

cending 𝑥-coordinates. We also describe the components according

to Equation (4).

• The event point set 𝑃 contains the endpoints of the segments

inH.

• ≺ is the total order < on the 𝑥-coordinates of the endpoints.

• The key observation here is that a sweepline algorithm main-

tains an ‘active set’ of segments. This active set of segments

are those who span the current (vertical) sweepline, or equiva-

lently, thosewhose left endpoints are to the left of the sweepline

(i.e., have been processed), while the right endpoints are

to the right of the sweepline (i.e., have not been processed

yet). Therefore, we maintain two sets in the prefix structure

𝑡 = (L,R) ∈ 𝑇 : a set L that records the segments whose left

endpoints have been processed, and a set R that records the

segments whose right endpoints have been processed. This is

natural, as the ‘active set’ can be easily computed by 𝐿 \ 𝑅.
• The identity 𝑡0 contains two empty sets, i.e., 𝑡0 = (∅, ∅)

3
Some literature [2] gives

√
𝑛 estimation.
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(a) Vertical Sweeping

a

b c

d

e

f

g

h

i

T1 T2 T3 T4 T5 T6 T7 T8

T1 = {a, e}

T2 = {a,b}

T3 = {a, b,d,g}

T4 = {d, g,h, i}

T5 = {h, i}

T6 = {h, i, c, f}

T7 = {c, f}
T8 = ∅

report (a, b)

report (b, d)

report (g, h), (h, i)

Endpoints sorted by x-coordinates Prefix Violation

(b) Horizontal Sweeping

Figure 5: Illustration of vertical and horizontal sweeping algorithms.

• The update function ℎ processes the endpoint by adding the

segment to the corresponding set. Specifically, we have

ℎ((L,R), 𝑝) =
{
(L ∪ ℎ𝑝 ,R), if 𝑝 is a left endpoint

(L,R ∪ ℎ𝑝 ), otherwise,

where ℎ𝑝 is the corresponding segment whose endpoint is 𝑝 ,

and (L,R) is some prefix structure 𝑡 ∈ 𝑇 .

• The fold function 𝜌 can be trivially defined as applying ℎ for

each event point 𝑝 in a recursive manner. That is:{
𝜌 (𝑝1) = ℎ(𝑡0, 𝑝1)
𝜌 (𝑝1, 𝑝2, · · · , 𝑝𝑛) = ℎ(𝜌 (𝑝1, 𝑝2, · · · , 𝑝𝑛−1), 𝑝𝑛)

• The combine function 𝑓 is defined using set union, i.e.,

𝑓 ((L1,R1), (L2,R2)) = (L1 ∪ L2,R1 ∪ R2)

Note that 𝑓 is associative because the set union operator ∪ is

associative.

In this way, we also successfully relate the distance check problem

to prefix computation, which can be parallelized using the strategy

in Section 3.3. We now analyze the time complexity. Assume we or-

ganize sets in self-balanced binary search trees (specifically, on their

𝑦-coordinates) that support common logarithmic time operations.

Merging two binary search trees of sizes𝑚 and 𝑛 takes 𝑂 (𝑚 + 𝑛)
time.

(1) Batching. There are 𝑏 blocks, and each block has 𝑂 (𝑛/𝑏)
elements. The total work is𝑂 (𝑏 ·𝑛/𝑏 log(𝑛/𝑏)), and the depth
is 𝑂 (𝑛/𝑏 log(𝑛/𝑏)).

(2) Sweeping. Consider the case of combining the prefix struc-

tures of the (𝑘 − 1)-th block and the 𝑘-th block. After sweep-

ing,𝑇(𝑘−1)𝑛/𝑏 may contain at most (𝑘−1)𝑛/𝑏 elements, while

𝑇 ′
𝑘𝑛/𝑏 can have at most 𝑛/𝑏 elements. With our assumed tree

operation bounds, it costs

∑𝑏
𝑘=1

𝑂 (𝑘𝑛/𝑏) = 𝑂 (𝑏𝑛) work and

the same amount of depth.

(3) Refining. The 𝑏 blocks are refined in parallel. Consider the 𝑘-

th block, where each prefix structure can have at most 𝑘𝑛/𝑏 el-
ements. Therefore the total work is

∑𝑏
𝑘=1

𝑂 (𝑛/𝑏 log(𝑘𝑛/𝑏)) =
𝑂 (𝑛 log𝑛). The depth is 𝑂 (𝑛/𝑏 log𝑛).

By combining the three stages, we have total work 𝑂 (𝑛(𝑏 + log𝑛))
and depth 𝑂 (𝑛(𝑏 + log𝑛/𝑏)). When 𝑏 = Θ(

√
log𝑛), the depth is

𝑂 (𝑛
√
log𝑛). This runtime bound is worse than that of the vertical

sweeping algorithm, but it maintains the 𝑦-coordinates of the seg-

ments in order. To report violations from the prefix structures, it

suffices to perform two predecessor/successor searches and report

violations within the range, which costs𝑂 (log𝑛 + 𝑘) work and time,

where 𝑛 is the size of the prefix structure, and 𝑘 is the number of

reported elements. Recall that such a range search takes 𝑂 (𝑛) work
in the vertical sweeping algorithm.

4.3 Summary and Discussions
Both algorithms proposed in previous sections give nontrivial

runtime guarantees. We summarize them in the following theorem:

Theorem 1. Assume 𝑠𝑖 = Θ(polylog(𝑖)). Distance check can be
solved in𝑂 (𝑛 · polylog(𝑛)) work and𝑂 (

√
𝑛 · polylog(𝑛)) depth, or in

𝑂 (𝑛 log𝑛) work and 𝑂 (𝑛
√
log𝑛) depth.

We then show that many DRC tasks are distance check.

Claim 2. Width check is distance check.

Proof. LetH be the horizontal segments of a polygon. Let 𝛿 be

the minimumwidth constraint. Then, a distance check reports all the

horizontal segment pairs that violate the width constraint. Similarly,

rotate the polygon by 90
◦
. Now a distance check reports violation

between (originally) vertical segments. □

Corollary 1.1. Width check can be solved in𝑂 (𝑛 · polylog(𝑛)) work
and 𝑂 (

√
𝑛 · polylog(𝑛)) depth.

With almost identical arguments, we have following corollaries.

Corollary 1.2. Space check can be done in 𝑂 (𝑛 · polylog(𝑛)) work
and 𝑂 (

√
𝑛 · polylog(𝑛)) depth.

Corollary 1.3. Enclosing check can be done in 𝑂 (𝑛 · polylog(𝑛))
work and 𝑂 (

√
𝑛 · polylog(𝑛)) depth.

We also illustrate the vertical and horizontal sweeping algorithms

in Figure 5. Both vertical and horizontal sweeping algorithms do

not dominate each other: they achieve either better work efficiency

or better depth bound. From our perspective, the vertical sweeping

algorithm appears to be more promising since it provides polyno-

mially better theoretical depth (�̃� (
√
𝑛) v.s. �̃� (𝑛)), which is the main

reason why we turn to GPU acceleration. Besides, the vertical sweep-

ing algorithm looks easier to implement, as the prefix construction
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mainly relies on 1D binary search. In contrast, for horizontal sweep-

ing we have to count on efficient set operations (set union and set

difference). This is a bit surprising at the first glance, because we

often use a horizontal sweeping strategy for sequential implementa-

tion (see Section 3.2). We would like to argue that the phenomenon

provides an intuitive yet important insight for parallel algorithm de-

sign: suppose the problem can be decomposed along both an ‘easier’

direction and a ‘harder’ direction, it is better to decompose a problem
by the ‘simple’ direction for parallelism, and leave the ‘complex’ work
to each individual processors. In the distance check case, since the

segments are horizontal, the 𝑥- and 𝑦-coordinates are not equivalent.

The 𝑦-coordinate is the ‘easier’ direction because each segment has

only one 𝑦-coordinate, which forms a total order. This also implicitly

enables the use of two pointers to indicate a range (recall how do we

represent a prefix structure in the vertical sweeping algorithm). On

the contrary, the 𝑥-coordinate is the ‘harder’ one, as each segment

has two endpoints with different 𝑥-coordinates, and thus there is no

global total order of the segments. To deal with the complexity, we

proposed to use two sets to maintain the left endpoints and right

endpoints separately, but it inevitably complicates the algorithm.

Note that the emphasis is different from sequential algorithm de-

sign: in the sequential sweepline algorithm, we would like to use

the sweepline paradigm to look after the complex 𝑥-coordinates and

leave the simple 𝑦-coordinates to the status data structure S (defined

in Section 3.2) that we want to maintain for efficient queries.

5 GPU Implementation
The massive parallelism exposed in the vertical sweeping algo-

rithm mainly comes from the divide-and-conquer paradigm, which

is conceptually GPU-friendly. Whenever the inputs are split into

blocks and processed in parallel, we launch multiple GPU kernels

to perform the jobs concurrently. Nevertheless, we would like to

introduce several implementation details/considerations that we find

crucial to obtain satisfying performance.

5.1 Dynamic Algorithm Selection
GPU acceleration is not a free lunch. To run applications on GPUs,

we inevitably have to move input data from host memory to device

memory, launch GPU kernels, wait for synchronization, and move

results back from device memory to the host memory. These oper-

ations have overhead. When the degree of parallelism is not high

enough to make full utilization of GPU threads, the overhead might

dominate the overall runtime and decelerates the whole program.

One straightforward way to compensate for such overhead is to

make a dynamic decision of whether executing on GPU helps. For

design rule checking, our experience is to estimate the parallelism

degree by counting the average number of edges per polygon. The

more edges there are in a polygon, the higher chance it has to gain

performance from GPU acceleration. Accordingly, we develop a

simple dynamic algorithm selection strategy that first calculates the

average number of edges per polygon for each tile. If the number is

higher than a threshold, we send it to the GPU branch for parallel

checking; otherwise, we simply run a sequential checking (i.e., CPU

branch) for the tile. The strategy is simple yet effective, as it helps

X-Check to match the efficiency of CPU checkers for small/simple

tasks. The detailed comparisons are shown in Section 6.3.

5.2 Sorting Strategy Selection
Sorting is an essential step in our sweeping algorithm. One of

the available efficient sorting procedures comes from the thrust
library, i.e., thrust::sort. In the actual program, we need to

sort an array of structs by the desired keys, which are some

specific fields in the structs. For example, when the structs
represent edges, we might want to sort them by the 𝑥-coordinates

for the vertical edges, and by 𝑦-coordinates for the horizontal edges

(recall how do we sweep them in the algorithm). The default way to

implement is to pass a comparison function object as an argument to

the thrust::sort function. Specifically, thrust::sort runs

a merge sort procedure for such use cases.

Internally, thrust also provides a radix sort procedure that works
for numeric data types (e.g., int) and default comparators. There-

fore, an alternative solution is to copy the keys out, sort the keys

using radix sort, and permute the structs according to the sorted

results. We call such a solution a Copy-Sort-Permute (CSP) strat-

egy. The code snippet to implement the CSP strategy with thrust
procedures is shown in Listing 1.

Listing 1 Copy-Sort-Permute to sort long arrays.

1 template <typename S>
2 void sort_long_arrays(S *array, int n) {
3 int *keys; // the buffer for keys
4 int *indices; // the buffer for indices
5 S *tmp; // the buffer for permutation
6 // step 0: properly allocate the buffers
7 cudaMallocManaged(...)...
8 // step 1: Copy
9 for (int i = 0; i < n; ++i) {
10 keys[i] = array[i].key;
11 indices[i] = i;
12 }
13 // step 2: Sort
14 thrust::sort_by_key(keys, keys+n, indices);
15 // step 3: Permute
16 thrust::copy_n(
17 thrust::make_permutation_iterator(
18 array, indices),
19 n, tmp);
20 thrust::copy_n(tmp, n, array);
21 }

Intuitively, the CSP strategy should only be used with long arrays

because it definitely involves more steps and extra work, which

would not be desired if sorting itself is already fast enough. In our

practice, we only use CSP for arrays of size larger than 8000. De-

tailed comparisons and more experimental evaluations are shown

in Section 6.3.

5.3 Kernel Granularity
It is possible to allocate GPU threads at various granularities; that

is, each GPU thread can be responsible for solving a subproblem

of various scales. After parallel prefix computation, the primary

decision we face is how to report violations from the prefix struc-

tures and assign those computational tasks to GPU threads. From

coarser-grained to finer-grained, we might assign GPU threads for
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1) tile-wise tasks, 2) polygon-wise tasks, 3) tasks indicated by a pre-

fix structure, and 4) a single violation examination task. To allow

adequate parallelism, option 1) might not be a good choice. To bal-

ance the workload of each thread, options 2) and 3) might not be

desired, as the sizes of polygons differ significantly, and the sizes

of prefix structures may vary by Θ(𝑛) in the extreme case, where

𝑛 is the number of segments in the problem input. Therefore, we

decided to implement option 4) in our practice, where we use the

unique thread id as the global offset to locate its task. Specifically,

for the 𝑡-th thread, its task is the 𝑞-th task in prefix 𝑇𝑝 , such that

𝑡 =
∑𝑝−1
𝑖=0

|𝑇𝑖 | + 𝑞.

6 Experimental Results
We implement our algorithms in C++ and CUDA, and conducted

experiments on an Intel Xeon 2.90 GHz Linux machine with 128

GB RAM and one NVIDIA GeForce RTX 3090 GPU. We compile our

programs with NVCC 11.4 and GNU GCC 10.3. Since KLayout [23]

(version 0.26.6) is utilized to complete the end-to-end DRC flow,

we use the default DRC functionality in KLayout (8 threads) as the

baselines. The designs tested in the experiments are all synthesized

from the OpenROAD project [27].

6.1 Runtime Comparisons
We first compare the overall runtime of design rule checks be-

tween X-Check and KLayout. The results are shown in Table 1 (width
check) and Table 2 (space check, enclosing check).

Width check is the most simple task among the checks, as it exam-

ines violations within each polygon. Although it is less meaningful

to discuss speedup when the program already runs fast, we still

observe mild performance gain (1.13× and 1.18×) in the two largest

cases (i.e., Metal1 of bp_be and Metal1 of bp). Besides, despite
the dynamic algorithm selection process, such overhead is negligible

(<0.1s) in all the cases.

For enclosing check and space check, the CPU version takes a

much longer time to complete. Therefore, X-Check achieves a much

higher speedup in these cases. For enclosing check, GPU-enabled

X-Check achieves up to 1257.76× speedup, with an average of 61.36×.
For space check, X-Check offers up to 280.66× speedup and an aver-

age of 45.00× improvement. The significant speedup confirms the

effectiveness of our proposed parallel sweepline paradigm.

6.2 Runtime Breakdown
We care about the breakdown of runtime because 1) we want

to understand where does the speedup come from, and 2) want to

foresee where is the new bottleneck for potential further speedup.

Width Check Runtime Breakdown. As we have achieved mild

speedup for width check, it is desired to profile the application after

GPU acceleration for further analysis. Therefore, we collected the

runtime statistics of each thread for the largest test case bp, with a

particular interest in the comparison between the merge stage and
the check stage. The results are shown in Figure 7. Each horizontal

bar is for one thread, where the purple portion is for themerge stage,
and the gold portion is for the check stage. For KLayout, the check
stage takes from 21.3% to 56.6% of the runtime, with an average

of 39.8%. After GPU acceleration, the check stage in X-Check takes

from 1.5% to 21.4% of the runtime, with an average of 6.5%. The

result matches that in Table 1, indicating the source of the current

speedup, as well as explaining the limited performance gain.

(a) KLayout (b) X-Check

Figure 7: Runtime breakdown of width check on Metal 1 of
the bp design. The purple and gold portions are for themerge
and the check stages, respectively.

Figure 8: Runtime breakdown of enclosing check on Metal 1
of thebp design. The purple portion is formerge, gold for sort,
blue for prefix build, orange for violation report, and black for
the rest, respectively.

Enclosing Check Runtime Breakdown. We are also curious

about the runtime breakdown of the slow cases. Therefore, we also

profiled X-Check on the enclosing check for the bp design. The

results are shown in Figure 8. In the figure, each horizontal bar is

for one tile, where the purple portion is for merge, gold for sort, blue
for prefix build, orange for violation report, and black for the rest,
respectively. Some tiles do not have valid enclosing checks to be

performed, so there is no time spent on sort, prefix build, and check.
The lowest bar has a substantial portion for ‘the rest’ because it is

the first tile and carries some warm-up jobs for GPU. From the figure,

the merge stage still takes a significant portion of time (up to 82.5%

and averaged 55.9%), indicating the new runtime bottleneck after

GPU acceleration of the sweepline algorithm for violation report.

6.3 Ablation Study
In this section, we further investigate the effectiveness of some

implementation techniques we discussed in Section 5.

Dynamic Algorithm Selection. As introduced, it is not desired
to invoke GPU execution if the estimated parallelism is limited.

To illustrate the importance of such a strategy, we compare the

width check runtime for Metal 2 of all the designs. For these

cases, the average edges per polygon are small - it is unlikely to have

performance gain by involving GPU computation. The experimental

results, as shown in Figure 9, have confirmed the case.

Sorting Strategy Selection. Sorting strategies also affect the

runtime performance. To demonstrate, we compare the runtime of

enclosing check using merely thrust::sort (i.e., merge sort),

merely Copy-Sort-Permute strategy, and amixed strategy that switches

to CSP when the array size is larger than a predefined threshold (8k

in our practice). As shown in Figure 10, the mixed strategy indeed

outperforms both single strategies.

Besides, we further tested sorting synthetic arrays. In this setting,

the array contains structs whose sizes are 48 bytes. The array

lengths vary from 2 to at most 2
25
, and we sort them using both
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Table 1: Runtime Comparisons ofWidth Check

Design Layer #Tiles #Polygons #Edges #Edge/Polygon

Width Check Time (s)

KLayout X-Check Speedup

gcd

Metal1 1 391 24440 62.5 <0.1 0.1 -

Metal2 1 1229 4916 4.0 <0.1 <0.1 -

aes

Metal1 16 17739 2059906 116.1 2.9 3.0 0.97×
Metal2 16 76007 304028 4.0 0.2 0.1 -

bp_be

Metal1 56 34747 27245522 784.1 21.9 19.3 1.13×
Metal2 56 393834 1575336 4.0 0.4 0.4 -

bp

Metal1 144 107706 52595418 488.3 38.9 33.0 1.18×
Metal2 144 833588 3334352 4.0 0.9 0.9 -

Average 1.09×

Table 2: Runtime Comparisons of Enclosing Check and Space Check

Design Layer

Enclosing Check Space Check

KLayout X-Check Speedup KLayout X-Check Speedup

gcd

Metal1 38.4 2.4 16.00× 12.6 2.4 5.25×
Metal2 2.5 2.5 1.00× 6.4 2.4 2.67×

aes

Metal1 15 470.4 12.3 1257.76× 4493.8 67.5 66.57×
Metal2 2227.0 14.5 153.59× 2778.5 9.9 280.66×

bp_be

Metal1 66 194.6 128.6 514.73× 6718.7 123.7 54.31×
Metal2 3089.2 147.4 20.96× 4171.5 16.6 251.30×

bp

Metal1 98 370.4 235.3 418.06× 14 019.7 233.4 60.07×
Metal2 3958.7 276.6 14.41× 5164.4 65.9 78.37×

Average 61.36× 45.00×
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Figure 6: Runtime comparisons of merge sort and
the CSP sorting strategy. CSP outperforms merge
sort when the input arrays are large.
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Figure 9: Runtime comparisons of width check on Metal 2.
Runtimes are in log scale. For the sparse tiles, dynamic algo-
rithm selection significantly reduces runtime.

gcd
aes

bp_be bp

10
1

10
2

10
3

10
4

R
u
n
t
i
m
e
(
s
)

thrust::sort CSP Mixed

Figure 10: Runtime comparisons of enclosing check on
Metal 1 using different sorting strategies. Runtimes are in
log scale. The mixed strategy achieves the fastest runtime in
all cases.

merge sort and the copy-sort-permute (CSP) strategy and compare

the performance. The results are shown in Figure 6, and note that

both axes are in log scale. As can be seen, the CSP strategy runs

significantly faster thanmerge sort for large arrays. CSP outperforms

merge sort when the input arrays are large enough. However, CSP

runs slower for smaller arrays as the overhead cannot be ignored

for those cases. The arrow in the figure points out that CSP wins

when the array size is around 65536 or larger.

7 Conclusion
Design rule checking is crucial in physical verification. As the size

of modern VLSI circuits continues to grow, the demand for parallel,

hardware-friendly DRC algorithms have been highlighted. In this

paper, we have proposed to utilize a parallel sweepline algorithmic

paradigm to solve a series of DRC problems. We have analyzed

the theoretical complexity of the algorithms, implemented them on

GPUs, and further integrated them into an end-to-end DRC flow. We

conducted thorough experiments to demonstrate the effectiveness

of the algorithms: they have achieved an average of 1.09×, 61.36×,
and 45.00× speedup in three different DRC tasks, compared with

a multi-threaded CPU design rule checker. We also provided other

experimental results for further discussion.

In the future, we would like to investigate parallelizing the merge
procedure with the sweepline paradigm, as it appears to be the new

runtime bottleneck. Besides, we feel it necessary to develop more

programming infrastructures for GPUs, including dynamic vectors,

associative data structures, and their thread-safe solutions.
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