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Background and Motivation



Background of Mask Optimization
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Background of Mask Optimization

® Rule-based OPC * Model-based OPC

Full image OPC
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Background of Mask Optimization

¢ JLT-based method

Forward simulation process

Input {m} Aerial
Convolution[ > Sigmoid [—> Output
Image {Hm} {Z = Slg(Hm)}
“approximates the aerial “approximates the hard “close to binary”
image formation process” thresholding (resist effect)”
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Backward gradient calculation process
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Background of Mask Optimization

* ML-based method
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Generator —> ]LT —>
Engine
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Deep learning model generate mask or initial mask for iterations

*Haoyu Yang et al. (2019). “GAN-OPC: Mask optimization with lithography-guided generative
adversarial nets”. In: IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
39.10, pp. 2822-2834. 7/26



Background of Mask Optimization

All methods have certain drawbacks:
¢ Rule-based methods lack local fidelity
* Both model-based restricted by the solutions space in advanced technology nodes.

¢ ILT-based methods iteratively call the imaging system while optimizing an objective
function which is time-consuming.

® ML-based OPCs have shown remarkable speed-up in the OPC flows, however not
guaranteed to work for some critical patterns.
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Lithography Simulation Model

* Hopkins diffraction model®> decomposed into a sum of coherent systems:
N2

I(x,y) = > wiM(x,y) @ l(x,y)*, x,y=1,2,..N (1)
k=1

® h: k-th kernel, wy:corresponding weight. "®": convolution.

K
Ix,y) ~ 3 wM(x,y) @ hy(x, )2, @)
k=1

¢ lithography intensity I sent to photoresist model to generate the final binary pattern
Z with exposure resist threshold I

17 if I(xay) > Ith7

. 3)
0, if I(x,y) < Iy,

Z(xay) = {

*Harold Horace Hopkins (1951). “The concept of partial coherence in optics”. In: Proceedings of
the Royal Society of London. Series A. Mathematical and Physical Sciences 208.1093, pp. 263-277. 9/26



OPC Evaluation Criteria
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(a) Visualization of EPE measurement (b) Visualization of PVBand.
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Motivations

Full scale design

Repeating
Patterns

Critical
Pattern

Non-Critical
Pattern

¢ Patterns scattered unevenly with different complexity. — Solver selection

¢ Patterns have large ratio of repetition on a full layout. — Mask Reuse
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Adaptive Framework



Workflow Overview

Insert (Vp, Mp) to library

Design layer

: B -} %
Solver — i Ve

SelectionJ Critical l Space | Vector
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Pattern | Mp/ Shift Rigorous | Mask
Calibration | Nask Solver
Generate Reuse Output
Slice to patterns S ML-Solver |_Mask
Non-critical
Output

Main Contributions:
* Adaptive solver selection
® Mask reuse < Critical Patterns

¢ Dynamic Pattern Library < Fast Pattern Matching
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Extensible OPC Solver Selection

® Simple and Intuitive: Binary classification with cross-entropy loss L:

Zyz log(p;) + (1 — ;) log(1 — p1), 6)

¢ Solver pool extensible, modify loss by adding num of class:

1 N C
N Z Z Yic log(pic)- ()
i c=1
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Full layout slicing
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Repeating patterns with shift

¢ Whether and how can an optimized mask with location shift be reused?
¢ How to match a same pattern accurately within an acceptable time?

* How to measure the geometric similarity of patterns with location shift?
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Mask Reuse

¢ Whether and how can an optimized mask with location shift be reused?

Mask Wafer Image

Target

W
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Shift equivariant o @
o -Sl:ape unchanged
Saz,ay dazay

¢ Shift Equivariance:
5Ax,Ay(P) = Lith0(5Ax7Ay(MP)). (8)

]
ar”

We only need to calculate pattern shift since printed masks share same shift as

corresponding patterns.
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Mask Reuse

¢ Whether and how can an optimized mask with location shift be reused?
¢ Pattern shift calibration

Pixel-wise cross-correlation of P and P’ reflects the pixel-wise similarity
Cross-correlation computation of two large 2-D pattern is time-comsuming,.
Equal to convolution of P and Rotate;gpo (P’).

Accelerated with Fast Fourier Transform (FFT)*:

x*,y* = argmax Conv_FFT(P, Rotate(P')),
! ©)
Ax = x* — Xetry AY =Y — Yor,

*Nicolas Vasilache et al. (2014). “Fast convolutional nets with fbfft: A GPU performance
evaluation”. In: arXiv preprint arXiv:1412.7580. 17/26



Pattern Matching

¢ How to match a same pattern accurately within an acceptable time?

To tackle the problem of computation intensity of the rigorous method, we
maintain a pattern library.

¢ store the features and optimized masks of previously encountered critical patterns

¢ use the result of saved masks with samiliar geometric structure as initial mask, hence
reduce the iteration time
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Pattern Matching

¢ How to match the patterns? - Pattern Library

® Sparse neighborhood graph structure
¢ Graph is divided into hierarchical layers
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Pattern Matching

Hierarchical Navigable Small World (HNSW)?

¢ the overall number of distance computations is roughly proportional to a product of
the average number of greedy algorithm hops by the average degree of the nodes on
the greedy path

Algorithm 1
INSERT (hnst, 4, M, Mss, efConstruction, m)
Input: multilayer graph hnsi, new element g, number of established
connections M, maximum number of connections for each element
per layer Mass size of the dynamic candidate list efConstruction, nor-
Pattern Library, ‘malization factor for level generation m.
Output: update hnsw inserting element g
1 W@ /listfor the currently found nearest elements
2 ep « getenter point for hnsw
»>() 3 Lelevelofep // top layer for hnsw
4 1 |In(unif(0..1))mc] // new element’s level
Matched 5 forle—L... I+
6 W SEARCH-LAYER(q, ep, ¢f=1, l)
Pattern 7 ep « getthe nearest element from W'to g

Query x

Pattern

> e 8 forle«— min(L, 1) ... 0
... P . 9 W« SEARCH-LAYER(, ep, efConstruction, 1)
> 10 neighbors « SELECT-NEIGHBORS(q, W, M, L) / alg. 3 or alg. 4

11 add bidirectionall connectionts from neighbors to g at layer I
12 for eache € neighbors // shrink connections if needed
13 eConn e tlayer
14 if [eConn | > M/ shrink connections of e
11f le= 0 then Muss = Mo
15 eNewConn « SELECT-NEIGHBORS(e, eConn, Munss le)
//alg.3or alg. 4

Layer2 Layer1 Layer0

16 set nei tlayer L to eNewConn
17 epe W
18ifI>L

Yu A Malkov and Dmitry A Yashunin (2018). “Efficient and robust approximate nearest
neighbor search using hierarchical navigable small world graphs”. In: [EEE transactions on pattern
analysis and machine intelligence 42.4, pp. 824-836. 20/26




Pattern Embedding

* How to measure the geometric similarity of patterns with location shift?

* embedding for all critial patterns

¢ positive samples are patterns that are same or similar

° negative samples are patterns that are different

¢ Inlearned embedding space, nearest neighbor tend to share similar geometric
pattern

¢ similarity measurement: Euclidean Distance

k

deucia(Ve,, Ve,) = |[Ve, = Vi[5 = | Y (Ve — Vp,1)2. (10)
i=0
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Pattern Matching

¢ Recap on Contrastive Learning

Negative

Anchor LEARNING
Negative
Anchor

0l
Positive Positive

¢ Data Augmentation: Cropping and shifting
* Supervised Contrastive Loss®:

supCon = Z U Z log eXP(Zi 'Zj/T) ) (11)

icl ]E](z) ZﬂeA(i) exp(zi . Zu/T)

6Prarmay Khosla et al. (2020). “Supervised contrastive learning”. In: Advances in Neural
Information Processing Systems 33, pp. 18661-18673. 22/26



Experimental Results



Results
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Mask convergence speed comparison with/without Pattern Matching.



Results

Table: Comparisons of baseline approaches

Test Case DAMO-DGS’ ILT-GPU® AdaOPC

D #EPE  PVB(um?) RT(s) | #EPE  PVB(mm?®) RT(s) | #EPE  PVB(um?)  RT(s)
1 22 23323 5.20 23 23329 4115 22 23232 5.50
2 26 26729 5.26 25 26762 485 24 26580 5.41
3 27 26938 522 24 26720 55.92 24 26718 5.37
4 36 27975 5.18 29 28127 70.57 25 27934 5.40
5 35 28805 532 30 28925 66.89 30 28927 5.44
6 30 26960 5.31 25 26762 55.81 24 26775 5.38
7 33 26382 5.23 28 26453 59.47 28 26281 5.43
8 32 30646 5.38 25 29450 54.88 27 29341 5.42
9 25 24054 5.25 24 24053 70.62 23 24022 543
10 24 21939 5.29 23 21701 37.59 22 21644 5.53
Avg. 29.0 26375 5.26 256 26228 56.14 24.9 26145 543
Ratio 1.165 1.009 0970 | 1.028 1.003 10340 | 1.000 1.000 1.000

’Guojin Chen et al. (2021). “Damo: Deep agile mask optimization for full chip scale”. In: IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems.

8Thih-Rong Gao et al. (2014). “MOSAIC: Mask optimizing solution with process window aware
inverse correction”. In: 2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC). IEEE,
pp. 1-6. 25/26
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