
L-Shape Based Layout Fracturing for E-Beam Lithography

Bei Yu Jhih-Rong Gao David Z. Pan
ECE Dept. Univ. of Texas at Austin, Austin, TX USA

{bei, jrgao, dpan}@cerc.utexas.edu

Abstract
Layout fracturing is a fundamental step in mask data preparation
and e-beam lithography (EBL) writing. To increase EBL through-
put, recently a new L-shape writing strategy is proposed, which
calls for new L-shape fracturing, versus the conventional rectangu-
lar fracturing. Meanwhile, during layout fracturing, one must min-
imize very small/narrow features, also called slivers, due to manu-
facturability concern. This paper addresses this new research prob-
lem of how to perform L-shaped fracturing with sliver minimiza-
tion. We propose two novel algorithms. The first one, rectangular
merging (RM), starts from a set of rectangular fractures and merges
them optimally to form L-shape fracturing. The second algorithm,
direct L-shape fracturing (DLF), directly and effectively fractures
the input layouts into L-shapes with sliver minimization. The ex-
perimental results show that our algorithms are very effective.

1. Introduction
E-Beam lithography (EBL) [1] is widely deployed in the mask
manufacturing, which is a significant step affecting the fidelity of
the printed image on the wafer and critical dimension (CD) con-
trol. Because of the capability of accurate pattern generation, EBL
is also a promising candidates for sub-22nm logic nodes, along
with extreme ultra violet (EUV) [2] and double/multiple patterning
lithography (DPL/MPL) [3][4]. For EBL writing, a fundamental
step is layout fracturing, where the layout pattern is decomposed
into numerous non-overlapping rectangles. Subsequently the lay-
out is prepared and exposed by an EBL writing machine onto the
mask or the wafer, where each fractured rectangle is shot by one
variable shaped beam (VSB).

As the minimum feature size further decreases, the number of
rectangles in the layout is steadily increased. First, longer writing
time and larger data volume are caused by highly complex optical
proximity correction (OPC). Besides, the introduction of advanced
lithographic techniques, e.g., DPL/MPL, add more masks in the
mask manufacturing. Since the manufacturing cost is directly asso-
ciated with increasing write time and data volume, the cost is also
steadily increased. In addition, the low throughput has been and is
still the bottleneck of EBL writing.

To overcome this manufacturing problem, several optimization
methods have been proposed to reduce the EBL writing time to a
reasonable level [5][6][7]. Among them, the L-shape shot strategy
is a very simple yet effective approach to reduce the e-beam mask
writing time, and thus reduce the mask manufacturing cost and
improve the throughput [5][6]. Besides, this technique can be also
applied to reduce the cost of lithographic process. The conventional
EBL writing is based on rectangular VSB shots. As illustrated
in Fig. 1(a), the electrical gun generates an initial beam, which
becomes uniform through the shaping aperture. Then the second
aperture finalizes the target shape with a limited maximum size.
As an improved technique, the printing process of the L-shape
shot is illustrated in Fig. 1(b). One additional aperture, the third
aperture, is employed to create L-shape shots. To take advantage of
this new printing process, new fracturing methodology is needed to
provide L-shape in the fractured layout. L-shape shot strategy has
the potentiality to reduce the EBL writing time or cost by 50% if

Mask

Electrical Gun

Shaping
Aperture

2nd Aperture

(a)

Mask

Electrical Gun

Shaping
Aperture

2nd Aperture

3rd Aperture

(b)

Figure 1: (a) Traditional rectangular EBL writing process. (b) L-
shape writing process with one additional aperture.

(a) (b)

Figure 2: Examples of polygon fracturing. (a) Rectangular shots
with 4 shot number. (b) L-shape shots with 2 shot number.

< ɛ

Sliver

(a) (b)

Figure 3: (a) Fracturing with one sliver. (b) Fracturing without
sliver.

all rectangles are combined into L-shapes. For example in Fig. 2,
instead of four rectangles, using L-shape fracturing only requires
two L-shape shots.

Note that the layout fracturing problem is different from the
general polygon decomposition problem in geometrical science.
In order to consider yield control and CD control, the minimum
width of each shot should be above a certain threshold value ε. A
shot whose minimum width is < ε is called a sliver. In the layout
fracturing, sliver minimization is an important objective [8]. As
shown in Fig. 3, two fractured layouts can achieve the same shot
number 2. However, because of sliver, the fractured result in Fig. 3
(a) is worse than that in Fig. 3 (b). It shall be noted that the layout
in Fig. 3 can be written in one L-shaped shot without any sliver.

For traditional rectangular shots, several papers have studied
the layout fracturing problem [8][9][10][11][12]. Kahng et. al pro-
posed an integer linear programming (ILP) formulation, and some

1

978-1-4673-3030-5/13/$31.00 ©2013 IEEE

3C-1

249

matching based speed-up techniques [8][9]. Recently, Ma et. al [11]
presented a heuristic algorithm to generate rectangular shots and
further reduce the sliver. Compared with the rectangular fracturing
problem, the L-shape fracturing problem is new and there is only
limited work, mostly describing methodology, but no systematic
algorithm has been proposed so far. [5] reported the initial results
that L-shape fracturing can further save about 38% of shot count,
but no algorithmic details are provided. For the general decompo-
sition problem of polygon into L-shapes, several heuristic methods
are proposed [13][14]. However, since these heuristic methods only
consider horizontal decomposition, which would result in numer-
ous slivers, they cannot be applied to the layout fracturing problem.

This paper presents the first systematic study for EBL L-shape
fracturing considering the sliver minimization. We propose two
algorithms for the L-shape fracturing problem. The first method,
called RM, starts from rectangles generated by any previous frac-
turing framework, and merge them into L-shapes. A maximum
weighted matching algorithm is proposed to find the optimal merg-
ing solution, where the shot count and the sliver can be mini-
mized simultaneously. To further overcome the intrinsic limitations
of rectangular merging, we propose another fracturing algorithm,
called DLF. Through effectively detect and take advantage of some
special cuts, DLF can directly fracture the layout into a set of L-
shapes in O(n2logn) time. The experimental results show that our
algorithms are very promising for both shot count reduction and
sliver minimization. In addition, DLF can even achieve significant
speed-up compared with previous state-of-the-art rectangular frac-
turing algorithm [11].

The rest of the paper is organized as follows. Section 2 presents
the basics and problem formulation. Section 3 provides RM, the
merging based algorithm, which will also be used as a baseline.
In Section 4 we propose the DLF algorithm to directly fracture
polygons into L-shapes. Section 5 presents experimental results,
followed by conclusion in Section 6.

2. Definitions and Problem Formulation
We first introduce some notations and definitions to facilitate the
problem formulation. For convenience, we use the term polygon to
refer to rectilinear polygons in the rest of this paper.

Let P be an input polygon with n vertices, we define the con-
cave vertices as follows.

Definition 1 (Concave Vertex). The concave vertex of a polygon is
one at which the internal angle is 270o.

Let c be the number of concave vertices in P , [15] gave the
relationship between n and c: n = 2c+4. If the number of concave
vertices c is odd, polygon P is called odd polygon; otherwise, P is
called even polygon.

Definition 2 (Cut). A cut of a polygon P is a horizontal or vertical
line segment at least one of whose endpoints is incident on a
concave vertex. The other endpoint is obtained by extending the
line segment inside P until it first encounters the boundary of P .

If both endpoints of a cut are concave vertices in the original
polygon, then the cut is called a chord. If a cut has odd number of
concave vertices to one side or another, then the cut is called an
odd-cut. If an cut is not only odd-cut but also chord, it is called an
odd-chord. These concepts are illustrated in Fig. 4, where vertices
b, e, h are concave vertices, edges b̄h, ēj are odd-cuts, and edge b̄h
is chord. Note that b̄h is an odd-chord.

Definition 3 (L-shape). An L-shape is a polygon shaped in the form
of the letter L.

An L-shape can be also viewed as a combination of two rectan-
gles with a common coordinate. There are two easy ways to check

a b

c d

e f

gh

ik j

Figure 4: Concepts of concave vertices and cuts.

whether a polygon is an L-shape. First, we can check whether the
number of vertices equals to 6, i.e., n = 6. Besides, we can check
whether there is only one concave vertex, i.e., c = 1.

Definition 4 (Sliver Length). For an L-shape or a rectangle, if
the width of its bounding box B is above ε, its sliver length is 0.
Otherwise, the sliver length is the length of B.

Problem 1 (L-shape based Layout Fracturing). Given an input
layout which is specified by polygons, our goal is to fracture it into
a set of L-shapes and/or rectangles to minimize the number of shots,
and meanwhile minimize the silver length of fractured shots.

3. Rectangular Merging (RM) Algorithm
Given the rectangles generated by any rectangular fracturing
methodology, we propose an algorithm, called RM, to merge them
into a set of L-shapes. The main idea is that if two rectangles share
a common coordinate, they can be combined into one L-shape. Al-
though this idea is straightforward, the benefit is obvious that the
previous rectangular fracturing algorithms can be re-used. Besides,
the RM algorithm is used as a baseline in comparison with our
another algorithm, DLF, which will be described in Section 4.

4

3

2

1

(a)

4

3

2

1

(b) (c)

Figure 5: Example of RM algorithm. (a) Graph construction. (b)
Maximum matching result. (c) Corresponding rectangular merging.

Given the input rectangles, the RM algorithm can find the op-
timal L-shape merging solution. Meanwhile, the shot count and
sliver length can be minimized simultaneously.

First we construct a merging graph G to represent the relation-
ships among all the input rectangles. Each vertex in G represents a
rectangle. There is an edge between two vertices if and only if those
two rectangles can be merged into an L-shape. For example shown
in Fig. 5, after rectangular fracturing, four rectangles are generated.
The constructed merging graph G is illustrated in Fig. 5(a), where
the three edges show that there are three ways to generate L-shapes.
L-shape merging can be viewed as edge selection from the merg-
ing graph G. Note that one rectangle can only be assigned to one
selected edge, that is, no two selected edges share a common end
point. For example, rectangle 2 can only belongs to one L-shape,
and thus only one edge can be chosen between edges 1̄2 and 2̄3.

By utilizing the merging graph, the best edge selection can be
solved by finding a maximum matching. Therefore, the rectangular
merging can be formulated as a maximum matching problem. In the
case of Fig. 5, the result of the maximum matching is illustrated in
Fig. 5(b), and the corresponding L-shape fracturing result is shown
in Fig. 5(c).

2

3C-1

250

In order to consider the sliver minimization, we assign weights
to the edges to represent whether the merging would remove one
sliver. For example, if there is still one sliver even two rectangles vi
and vj are merged into one L-shape, we assign less weight to edge
eij . Otherwise, larger weight is assigned. Therefore, the rectangular
merging can be formulated as maximum weighted matching. Even
in general graphs, the maximum weighted matching can be solved
in O(nmlogn) time [16], where the n is the number of vertices,
and the m is the number of edges in G.

4. Direct L-Shape Fracturing (DLF) Algorithm
Although the RM algorithm described above can provide the opti-
mal merging solution for given rectangles, it may suffer from sev-
eral limitations. First, the polygon is fractured into rectangles first,
and followed by a merging stage. This strategy, however, has some
redundant or unnecessary operations. For the case in Fig. 2, instead
of complex rectangles generation, only one cut is enough for the
L-shape fracturing. Second, the rectangular fracturing may ignore
some internal features of L-shape fracturing, which could sacrifices
the whole performance. To overcome all these limitations, in this
section we propose a novel algorithm, called DLF, to directly frac-
ture polygon into L-shapes.

We observe that the solution space for the L-shape fracturing
can be very large. Given a polygon, there can exist several fractur-
ing solutions with the same shot count. For example, as shown in
Fig. 6, the input polygon has at least five different fracturing solu-
tions with two shots.

(a) (b) (c) (d) (e)

Figure 6: Five fracturing solutions with the same shot count.

Note that a cut has the following property: if the polygon is de-
composed through a cut, the concave vertex that is one of the end-
points of the cut is no longer concave in either of the two resulting
polygons. Our L-shape fracturing algorithm, DLF, takes advantage
of this property. Each time a polygon is cut, DLF searches one ap-
propriate odd-cut to decompose the polygon. It was shown in [15]
that odd-cut always exists and bc/2c + 1 “guards” are necessary
and sufficient to cover all the interiors of a polygon with c concave
vertices. Therefore, we can obtain the following lemma.

Lemma 1. A polygon with c concave vertices can be decomposed
into L-shapes with upper bound number Nup = bc/2c+ 1.

Input Polygon

Sliver Aware Chord Selection

Division by Chords

Sliver Aware L-Shape Fracturing
for each Sub-Polygon

Output L-shapes / Rectangles

Add Artificial Vertex
for Speed-Up

Odd-cuts Detection
and Selection

Figure 7: Overall flow of DLF algorithm.
Fig. 7 shows the overall flow of our DLF algorithm. We will

effectively use chords and cuts to reduce the problem size while
containing or even reducing the L-shape fracturing number upper
bound. The first step is to detect all chords (i.e., horizontal or verti-
cal cuts made by concave points), in particular odd-chords as they

may reduce the L-shape upper bound. We will then perform sliver-
aware chord selection to decompose the original polygon P into a
set of sub-polygons. Then for each sub-polygon, we will perform
sliver aware L-shape fracturing, where odd-cuts are detected and
selected to iteratively cut the polygon into a set of L-shapes. The
reason we differ chord and cut during polygon fracturing is that
chord is a special cut with both end points being concave points in
the original polygon. That way, we can design more efficient algo-
rithm for odd cut/chord detection.

4.1 Sliver Aware Chord Selection
The first step of DLF algorithm is sliver aware chord selection.
Cutting through chords decomposes the whole polygon P into a
set of sub-polygons. By this way the problem size is reduced. We
can further prove that cutting through a chord does not increase the
L-shape upper bound Nup.

Lemma 2. Decompose a polygon through a chord does not in-
crease the L-shape upper bound number Nup.

Proof. Cut the polygon along this chord, and let c1 and c2 be
the number of concave vertices in the two pieces produced. Since
c = c1 + c2 + 2, then using Lemma 1 we have

bc1/2c+ 1 + bc2/2c+ 1 ≤ b(c1 + c2)/2c+ 2

= b(c− 2)/2c+ 2 = bc/2c+ 1

Chord selection has been proposed in rectangular fracturing
[9][11], but for L-shape fracturing, odd-chord shall be selected as
they can even reduce the number of L-shapes.

Lemma 3. Decomposing a even polygon along an odd-chord can
reduce the L-shape upper bound number Nup by 1.

The proof is similar to that for Lemma 2. The only difference is
that since c is even and c1, c2 are odd, bc1/2c+ 1 + bc2/2c+ 1 <
bc/2c + 1. Note that for an odd polygon, all chords are odd. For a
even polygon, Lemma 3 provides a guideline to select chords. An
example is illustrated in Fig. 8, which contains two chords b̄h and
h̄k. Since the number of concave vertices to both side of chord b̄h
are odd (1), b̄h is an odd-chord. Cut along b̄h, as shown in Fig.
8(a), can achieve two L-shots. However, cut along another chord
h̄k, which is not an odd-chord, would need three shots. Note that
in an odd polygon, although all chords are odd, cutting along them
may not reduce Nup, but it will not increase Nup either.

a b

cd

e f

gh

i

k

j

l

(a)

a b

cd

e f

gh

i

k

j

l

(b)

Figure 8: Examples to illustrate Lemma 3. (a) Cut along odd-chord
b̄h results in two L-shape shots. (b) Cut along chord h̄k would
cause one more shot.

For any even polygon P , we propose the odd-chord search pro-
cedure as follows. Each vertex vi is assigned with one Boolean par-
ity pi. Starting from an arbitrary vertex with any parity assignment,
we proceed clockwise around the polygon. If the next vertex vj is
concave, then pj = ¬pi, where pi is the parity of current vertex vi.
Otherwise pj is assigned to pi. This parity assignment can be com-
pleted during one clockwise traverse in O(n) time. An example of
parity assignment starting from a(0) is shown in Fig. 9, where each
vertex is associated with one parity.

3

3C-1

251

a(0) b(1)

c(0)
d(0)

e(0) f(0)

g(0)h(1)

i(1)j(1)

k(0)l(0)

Figure 9: To detect odd-chords in even polygon, each vertex is
associated with one Boolean parity.

Theorem 1. In a even polygon, a chord āb is odd iff pa = pb.

Given the parity values, the odd-chord detection can be per-
formed using Theorem 1. For each concave vertex vi, a plane sweep
is applied to search any chord containing vi. The plane sweep for
each vertex can be finished in O(logn), and the number of vertices
is O(n). Therefore, in an even polygon odd-chords detection can
be completed in O(nlogn) time.

After all chords are detected, chord selection is applied to
choose as many chords as possible to divide the input polygon into
a set of independent sub-polygons. Note that if a chord is selected
to cut the polygon, it releases the concavity of its two endpoints.
Therefore, if two chords intersect with each other, at most one
of them could be selected. For example, in Fig. 9, chords b̄h and
h̄k cannot be selected simultaneously. The relationship among the
chords can be represented as a bipartite graph [9], and the vertices
in left and right columns indicate the horizontal and vertical chords,
respectively. Therefore, finding the most chords compatible with
each other corresponds to finding the maximum independent set in
the bipartite graph, which can be reduced to maximum matching
problem, and therefore, can be done in polynomial time. It shall be
noted that if the input polygon is a even polygon, because of The-
orem 1, we prefer to choose odd-chords. Therefore, the bipartite
graph is modified by assigning weights to the edges. In addition,
sliver minimization is integrated into the chord selection. When an
odd-chord candidate is detected, we calculate the distance between
it and the boundary of the polygon. If the distance is less than ε,
cutting this odd-chord would cause sliver, then we will discard this
candidate.

4.2 Sliver Aware L-Shape Fracturing
After chord selection, the input polygon P is decomposed into
m sub-polygons (denoted as P1, P2, ..., Pm). For each polygon
Pi, we will recursively fracture it until reaching final L-shapes
and/or rectangles. Our fracturing algorithm is based on odd-cut
selection. The main idea is that each time we pick up one odd-cut,
and decompose the polygon into two pieces through this odd-cut.
Iteratively we fracture the polygon into several L-shapes. Note that
our fracturing algorithm considers the sliver minimization, i.e., we
try to minimize the sliver length during fracturing.

The first question is how to detect all the odd-cuts efficiently.
Our method is similar to that for odd-chord detection. Each vertex
vi is assigned an order number oi, and a Boolean parity pi. Start at
an arbitrary vertex, each vertex vi is assigned an order oi. We ini-
tialize the Boolean parity p to zero, and proceed clockwise around
the polygon. If the next vertex vi is normal, label its pi as p; if vi is
concave, assign p to ¬p, and label its pi with the new p value. For
each concave vertex va, we search cuts from two directions (hori-
zontal and vertical) from it. Here we denote (a, b̄c) as the cut with
one endpoint at vertex va and the other endpoint at edge b̄c. For
each cut (a, b̄c) detected, whether it is an odd-cut can be checked
in constant time using the following Theorem 2.

Theorem 2. In an odd polygon, a cut (a, b̄c) is an odd-cut if and
only if the following condition is satisfied:{

pa = pb, if oa > ob
pa 6= pb, if oa < ob

Due to space limit, the detailed proof is omitted. An example
of odd-cut detection is shown in Fig. 10. There are three concave
vertices, vb, vf and vi in the odd polygon. Start from each concave
vertex, we have searched all six cuts. Applying Theorem 2, we find
out two odd-cuts (b, f̄g) and (i, c̄d).

a(1,0)b(2,1)

c(3,1)d(4,1)

e(5,1) f(6,0)

g(7,0) h(8,0)

i(9,1)
j(10,1)

Figure 10: Odd-cut detection using order number and parity.

Algorithm 1 LShapeFracturing(P)

Require: Polygon P .
1: if P is L-shape or rectangle then
2: Output P as one of results;
3: return
4: end if
5: Find all odd-cuts;
6: Choose cut cc considering the sliver minimization;
7: if Cannot find legal odd-cut then
8: Generate an auxiliary cut cc;
9: end if

10: Cut P through cc into two polygons P1 and P2;
11: Update one vertex and four edges;
12: LShapeFracturing(P1);
13: LShapeFracturing(P2);

The details of our L-shape fracturing are described in Algorithm
1. Given the input polygon P , if it is already an L-shape or rectan-
gle, then the fracturing is completed. Otherwise, we find all odd-
cuts as described above (line 5). From all the odd-cuts detected,
we choose one cc, and cut the P into two pieces P1 and P2 (lines
10 − 11). Then we recursively apply L-shape fracturing to P1 and
P2 (lines 12− 13).

Note that during the polygon decomposition, we do not need
to re-calculate the order number and parity of each vertex. Instead,
when a polygon is divided into two parts, we only update one vertex
and four edges, while all other information can be maintained. If
polygon P is cut through odd-cut (a, b̄c), a new vertex, namely d,
is generated. For the new vertex d, its order number od = ob and its
parity pd = pb. Edge b̄c is replaced by edges b̄d and d̄c. Besides,
two edges ād and d̄a are inserted. The update method is simple and
easy to implement. An example of such update is shown in Fig. 11.

Sliver minimization is integrated into our L-shape fracturing
algorithm. In Algorithm 1, when picking up one cut from all odd-
cuts, we try to avoid any sliver. For example, as illustrated in
Fig. 12(a), there are three odd-cuts, but all of them would cause
sliver. Instead of selecting any of them, we generate an auxiliary
cut in the middle (see Fig. 12(b)). Because of the auxiliary cut,
the polygon can be fractured without introducing any sliver. In
addition, if there are several odd-cuts not causing sliver, we pick the
cut using the following rules: (1) We prefer the cut which partitions

4

3C-1

252

(3,1)(3,1)

a(1,0)b(2,1)

c(3,1)d(4,1)

e(5,1) f(6,0)

g(7,0) h(8,0)

i(9,1)
j(10,1)

g(7,0) h(8,0)

a(1,0)

j(10,1)
i(9,1)

b(2,1)

d(4,1)

e(5,1) f(6,0)

c(3,1)

Figure 11: Only one vertex and four edges need to be updated
during polygon decomposition.

the polygon into two balanced sub-polygons; (2) If the polygon
is more horizontal than vertical, we prefer a vertical cut, and vice
verse.

< ɛ

< ɛ
< ɛ

(a) (b)

Figure 12: Auxiliary cut generation. (a) Here every odd-cut would
cause sliver. (b) Decompose through on auxiliary cut can avoid
sliver.

Given a polygon with n vertices, finding all concave vertices
need O(n) time. For each concave vertex vi, searching cut starting
from it needs O(logn) time. Using Theorem 2, checking whether
the cut is odd-cut needs O(1), thus finding all odd-cuts needs
O(nlogn) time. Note that given a polygon with c concave ver-
tices, if no auxiliary cut is generated, the L-shape fracturing can
be completed through bc/2c odd-cuts. When auxiliary cuts are ap-
plied, there are at most c − 1 cuts to fracture the input polygon.
Therefore, we can achieve the following theorem.

Theorem 3. The sliver aware L-shape generation can find a set of
L-shapes in O(n2logn) time.

It shall be noted that if our objective is only to minimize the
shot number, no auxiliary cut would be introduced, thus at most
bc/2c+ 1 L-shapes are generated. In other words, the shot number
would be less or equals to the theoretical upper bound Nup.

4.3 Speedup Technique
We observe that in practice during the execution of Algorithm 1,
many odd-cuts do not intersect. In other words, many odd-cuts
are compatible, and could be used to decompose the polygon at
the same time. Instead of only picking one odd-cut at one time,
we can achieve further speed-up by selecting multiple odd-cuts
simultaneously.

If the polygon is an odd polygon, this speed-up is easily imple-
mented. In the odd polygon, there is only one type of odd-cut: a
cut that has an odd number of concave vertices to each side. Parti-
tioning the polygon along such odd-cut can leave all other odd-cuts
remaining to be odd-cuts. For example, Fig. 13(a) shows an odd
polygon, where all three odd-cuts are compatible, and can be picked
up simultaneously. Through fracturing the polygon along the three
odd-cuts, the L-shape fracturing problem is resolved directly.

However, this speed-up technique cannot be directly applied to
an even polygon, since it may cause more shot number. The reason
is that when an even polygon is cut into two pieces, some odd-cuts
may no longer be odd-cuts in the sub-polygons. For example, as
shown in Fig. 14(a), in this even-polygon all six cuts are odd-cuts
and compatible. However, if we use all these compatible cuts for

Figure 13: Speed-up for odd polygon, where all three odd-cuts are
compatible.

fracturing, we would end up with seven rectangular shots, which
is obviously sub-optimal. To overcome this issue, for each even-
polygon we introduce one artificial concave vertex. Through this
artificial concave vertex, the polygon is translated into an odd
polygon. Because of Lemma 4, this translation does not increase
the total shot number. As shown in Fig. 14(b), in the modified odd
polygon, all compatible odd-cuts can be used for fracturing without
causing more shot number.

Lemma 4. Introducing one artificial concave vertex to an even
polygon does not increase the L-shape upper bound Nup.

(a)

Artificial Concave Vertex

(b)

Figure 14: Speed-up for even polygon. (a) all cuts are odd-cuts. (b)
Introducing one artificial concave vertex, translate the even polygon
into an odd polygon.

Through employing this speed-up technique, for most cases,
the odd-cut detection can be applied only once, therefore the DLF
algorithm could be completed in O(nlogn) time in practice.

5. Experimental Results
We implemented our two L-shape fracturing algorithms, RM and
DLF, in C++. Since RM needs a rectangular fracturing method to
generate initial rectangles, we implemented a state-of-the-art algo-
rithm proposed in [11]. Based on the generated rectangles, RM al-
gorithm is applied to merge them into a set of L-shapes. LEDA
package [17] is adopted for the maximum weighted matching algo-
rithm.

The experiments are performed on an Intel Xeon 3.0GHz Linux
machine with 32G RAM. ISCAS 85&89 benchmarks are scaled
down to 28nm logic node, followed by accurate lithographic sim-
ulations performed to the Metal 1 layers. All involved lithography
simulations in the Calibration Phase are applied under industry-
strength RET (OPC). For all the resulting post-OPC layers, Ope-
nAccess 2.2 [18] is adopted for interfacing.

Table 1 shows the results of our DLF algorithm in comparison
with the approaches in [11] and the RM algorithm. Since the frame-
work [11] is adopted to provide the input rectangles, the RM algo-
rithm is denoted as “[11]+RM”. Column “poly#” lists the number
of polygons of each test circuit. All fracturing methods are evalu-
ated with the sliver parameter ε = 5nm. For each method, columns
“shots”, “sliver”, and “CPU” denote the shot number, total sliver
length, and runtime, respectively. First we compare the fracturing
algorithm in [11] and the RM algorithm. From the table we can
see that as an incremental algorithm, the RM algorithm can fur-
ther reduce the shot number by 37%, and the sliver length by 45%.
Meanwhile, the runtime increasing is reasonable: RM algorithm in-
troduces 41% more runtime. Besides, we compare our DLF algo-
rithm with other two methods. We can see that DLF demonstrates
the best performance, in terms of both runtime and performance.
Compared with traditional sliver aware rectangular fracturing [11],
it can achieve around 9× speed-up. Besides, the shot number and
the sliver length can be significantly reduced (39% and 82%, re-
spectively). Even compared with RM algorithm, DLF is better in

5

3C-1

253

Table 1: Runtime and Performance Comparisons

Circuts poly# [11] [11]+RM DLF
shots sliver (µm) CPU(s) shots sliver (µm) CPU(s) shots sliver (µm) CPU(s)

C432 1109 6898 48.3 8.51 4371 23.5 10.0 4214 7.4 1.87
C499 2216 13397 96.0 16.9 8325 45.0 19.5 8112 11.8 2.6
C880 2411 17586 160.5 24.93 11020 84.4 29.7 10653 28.6 3.8
C1355 3262 23283 185.2 29.44 14555 87.8 33.6 13936 24.8 5.1
C1908 5125 35657 333.6 48.78 22352 181.1 57.3 21540 88.0 7.68
C2670 7933 56619 525.4 84.11 35424 274.4 96.9 34102 114.8 11.89
C3540 10189 74632 668.5 114.33 46617 360.0 133.7 44901 129.8 15.98
C5315 14603 108761 950.4 176.89 67795 488.9 200.8 65222 190.2 23.85
C6288 14575 103148 819.2 175.65 64987 382.0 201.0 62416 86.1 22.64
C7552 21253 151643 1334.6 242.77 94902 717.6 280.0 91157 290.7 32.02
S1488 4611 37126 303.7 55.03 22984 146.2 64.7 22099 31.6 8.14

S38417 67696 454307 4040.2 727.1 285049 2293.0 1020 275054 729 88.5
S35932 26267 163956 1470.4 228.02 103960 808.3 256.4 100629 284 34.85
S38584 168319 1096363 10045.2 2268.6 690054 5777.0 3565.2 666906 1801.7 216.39
S15850 34660 231681 2012.8 329.99 145745 1085.1 414.6 140879 320 44.7

avg. - 171670 1533.0 302.1 107876 850.3 425.6 104121 275.9 34.7
ratio - 1 1 1 0.63 0.55 1.41 0.61 0.18 0.11

terms of performance: it can further reduce the shot number and
the sliver length by 3.2% and 67%, respectively.

Figure 15: Comparison on algorithm scalability.
In order to evaluate the scalability of our algorithm, we sum-

marize all the run time from Table 1, and display in Fig. 15. Here
the X axis denotes the number of polygons (e.g., the problem size),
and the Y axis shows the runtime. We can see that DLF algorithm
scales better than both [11] and RM algorithm.

6. Conclusions
In this paper we have proposed two novel algorithms for EBL with
the new L-shape based layout fracturing for shot number and sliver
minimization. The rectangular merging (RM) based algorithm is
optimal for a given set of rectangular fractures. However, to get
better performance, we show that the direct L-shape fracturing
(DLF) algorithm is superior by directly decomposing the original
layouts into a set of L-shapes. DLF obtained the best results in all
metrics, including shot count, sliver, as well as runtime compared to
the previous state-of-the-art rectangular fracturing with RM. To our
best knowledge, this is the first systematic and algorithmic effort
in EBL L-shaped fracturing with sliver minimization. As EBL is
widely used for mask making and also gaining momentum for
direct wafer writing, we believe a lot more research can be done,
for not only layout fracturing but also EBL-aware physical design.

Acknowledgment
This work is supported in part by NSF and NSFC.

References
[1] L. Pain, M. Jurdit, J. Todeschini, S. Manakli, B. Icard, B. Minghetti,

G. Bervin, A. Beverina, F. Leverd, M. Broekaart, P. Gouraud, V. D.
Jonghe, P. Brun, S. Denorme, F. Boeuf, V. Wang, and D. Henry, “Elec-
tron beam direct write lithography flexibility for ASIC manufacturing:
an opportunity for cost reduction,” in Proc. of SPIE, vol. 5751, 2005.

[2] Y. Arisawa, H. Aoyama, T. Uno, and T. Tanaka, “EUV flare correction
for the half-pitch 22nm node,” in Proc. of SPIE, vol. 7636, 2010.

[3] A. B. Kahng, C.-H. Park, X. Xu, and H. Yao, “Layout decomposition
for double patterning lithography,” in IEEE/ACM International Con-
ference on Computer-Aided Design (ICCAD), 2008, pp. 465–472.

[4] B. Yu, K. Yuan, B. Zhang, D. Ding, and D. Z. Pan, “Layout decom-
position for triple patterning lithography,” in IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), 2011, pp. 1–8.

[5] E. Sahouria and A. Bowhill, “Generalization of shot definition for
variable shaped e-beam machines for write time reduction,” in Proc.
of SPIE, vol. 7823, 2010.

[6] A. Elayat, T. Lin, E. Sahouria, and S. F. Schulze, “Assessment and
comparison of different approaches for mask write time reduction,” in
Proc. of SPIE, vol. 8166, 2011.

[7] K. Yuan, B. Yu, and D. Z. Pan, “E-Beam lithography stencil planning
and optimization with overlapped characters,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems (TCAD),
vol. 31, no. 2, pp. 167–179, Feb. 2012.

[8] A. B. Kahng, X. Xu, and A. Zelikovsky, “Yield-and cost-driven frac-
turing for variable shaped-beam mask writing,” in Proc. of SPIE, vol.
5567, 2004.

[9] ——, “Fast yield-driven fracture for variable shaped-beam mask writ-
ing,” in Proc. of SPIE, vol. 6283, 2006.

[10] B. Dillon and T. Norris, “Case study: The impact of vsb fracturing,” in
Proc. of SPIE, vol. 7028, 2008.

[11] X. Ma, S. Jiang, and A. Zakhor, “A cost-driven fracture heuristics to
minimize sliver length,” in Proc. of SPIE, vol. 7973, 2011.

[12] S. Jiang, X. Ma, and A. Zakhor, “A recursive cost-based approach to
fracturing,” in Proc. of SPIE, vol. 7973, 2011.

[13] H. Edelsbrunner, J. O’Rourke, and E. Welzl, “Stationing guards in
rectilinear art galleries,” Comput. Vision, Graphics, Image Process,
vol. 28, pp. 167–176, 1984.

[14] M. A. Lopez and D. P. Mehta, “Efficient decomposition of polygons
into L-shapes with application to VLSI layouts,” ACM Transactions
on Design Automation of Electronic Systems (TODAES), vol. 1, no. 3,
pp. 371–395, Jul. 1996.

[15] J. O’Rourke, “An alternate proof of the rectilinear art gallery theorem,”
Journal of Geometry, vol. 21, pp. 118–130, 1983.

[16] Z. Galil, “Efficient algorithms for finding maximum matching in
graphs,” ACM Comput. Surv., vol. 18, no. 1, pp. 23–38, Mar. 1986.

[17] K. Mehlhorn and S. Naher, LEDA: A platform for combinatorial and
geometric computing. Cambridge University Press, 1999.

[18] [Online]. Available: http://www.si2.org/?page=69

6

3C-1

254

