
FastGR : Global Routing on CPU-GPU with Heterogeneous Task Graph Scheduler

Siting Liu1,2, Peiyu Liao1,2, Rui Zhang3, Zhitang Chen4, Wenlong Lv4, Yibo Lin1∗, Bei Yu2∗
1Peking University 2Chinese University of Hong Kong

3HiSilicon Technologies Co. 4Huawei Noah’s Ark Lab

Abstract—Routing is an essential step to integrated circuits
(IC) design closure. With the rapid increase of design scales,
routing has become the runtime bottleneck in the physical design
flow. Thus, accelerating routing becomes a vital and urgent task
for IC design automation. This paper proposes a global routing
framework running on hybrid CPU-GPU platforms with a het-
erogeneous task scheduler and a GPU-accelerated pattern routing
algorithm. We demonstrate that the task scheduler can lead to
2.307× speedup compared with the widely-adopted batch-based
parallelization strategy on CPU and the GPU-accelerated pattern
routing algorithm can contribute to 10.877× speedup over the
sequential algorithm on CPU. Finally, the combined techniques can
achieve 2.426× speedup without quality degradation compared with
the state-of-the-art global router.

I. INTRODUCTION

Routing is an important stage in the modern very-large-scale
integration (VLSI) design flow. Modern routing is typically
divided into global routing and detailed routing. Global routing
performs rough routing on a coarse grid graph and generates
routing guidance for detailed routing [1]. Detailed routing works
on a fine grid graph to connect all wires and minimize design
rule violations following the guidance from global routing [2].
In the design flow, global routing also serves as the congestion
predictor for proceeding stages like placement [3], [4]. Due to
the repeated invocation of global routing, its efficiency is very
critical to the design closure.

The essential task in global routing is finding the shortest
paths for each net. Due to the large problem scale, modern
global routing follows a two-stage procedure, consisting of the
pattern routing stage and rip-up and reroute iterations. Pattern
routing serves as the initial routing to limits the search space for
efficiency [5]. The rip-up and reroute iterations always utilize
maze routing to achieve better solution performance [6] by
extensive search to find paths for all nets.

Existing global routing algorithms mainly focus on improving
the efficiency on CPU [7]–[10], while the speedup is limited due
to the threading overhead, limited bandwidth, and cache sizes
of CPUs. With the ever-increasing power of GPUs, accelerating
global routing on heterogeneous CPU-GPU platforms brings new
opportunities for high-performance routing engines.

The literature has extensively explored shortest path searching
with GPU [11], [12]. However, most studies only consider the
most basic single-source shortest path problem and assume only
to find one path on a large graph. This is impractical for routing
since we need to route millions of nets subjecting to various
objectives and constraints like wirelength, number of vias, and
design rules. In this paper, we propose FastGR, a global routing
framework that is accelerated on CPU-GPU platforms with a task

∗Corresponding authors: byu@cse.cuhk.edu.hk, yibolin@pku.edu.cn

graph scheduler and GPU-accelerated algorithms. Our scheduler
works on the heterogeneous platforms with both CPU and GPU.

The main contributions of this paper are listed as follows,
• We propose a novel GPU-accelerated pattern routing algo-

rithm that can route a batch of nets leveraging the massive
parallelism on GPU.

• We propose a high-performance task graph scheduler to
distribute CPU and GPU tasks for workload balancing and
efficiency.

• Experimental results demonstrate that FastGR can achieve
2.426× overall speedup without any quality degradation
compared with the state-of-the-art global router [1]. More
specifically, the GPU acceleration can bring 10.877×
speedup for pattern routing, and the task scheduler can
bring 2.307× speedup for the rip-up and reroute iterations.

The rest of this paper is organized as follows. Section II
introduces the problem formulation, the background of modern
global routers, and net ordering. Section III presents details of
our GPU-based global routing algorithm and the asynchronous
task scheduler. Section IV demonstrates the experimental results
of our proposed global router. Finally, Section V concludes this
paper.

II. PRELIMINARY

A. Problem Formulation
To formulate the global routing problem, we firstly use a set of
global routing cells (G-cells) with a group of evenly distributed
horizontal and vertical grids to represent the global routing
region. A grid graph G(V,E) can be defined by treating each
G-cell as a vertex (v ∈ V ) and creating an edge (e ∈ E) between
every two adjacent G-cells. Global routing is a minimum cost
path searching problem on G(V,E). The edge between two G-
cells on the same metal layer is called the wire edge, whose
capacity is equal to the number of tracks that can go through
it, and the routing demand is the number of tracks that need to
go through. The edge between two G-cells with the same 2D
coordinates but on different metal layers is called the via edge,
whose capacity is infinity by many 2D routers while some 3D
routers consider the via capacity, e.g., CUGR [1].

B. Modern global router
The most straightforward method for routing is to select a
specific net order and then route these nets sequentially in
that order. However, the major backward of such a sequential
approach is that it suffers from the net ordering and may lead
to a poor solution because the earlier routed net might block the
routing for its subsequent nets. Modern sequential global routers
always follow a two-stage procedure, the pattern routing stage,
and rip-up and reroute iterations, with net-ordering to guide. In



0 25 50 75 100

19test9m

19test7

19test9

Average

22.67

11.78

17.95

18.91

63.27

45.8

15.4

33.18

14.06

42.42

66.65

47.91

PATTERN
MAZE
Others

Fig. 1 Runtime breakdown of a modern global router; PATTERN
means the pattern routing stage while MAZE means the maze
routing stage.

the most popular framework, it applies maze routing for rip-up
and reroute. Our work also follows this strategy.

The concurrent routing can help to solve the issue caused by
net ordering. It will solve all the nets at the same time. The most
popular concurrent approach is formulating global routing as a
0-1 integer linear programming problem (0-1 ILP). Even though
such an ILP formulation can find the optimal solution when it
exists, 0-1 ILP problem is NP-complete. The extremely high
time complexity limits the feasible problem size, which cannot
tolerate in the industry.

To get an efficient framework, we propose a routing strategy
with a practical routing tasks scheduler for asynchronous paral-
lelization. There exists an efficient two-stage sequential routing
framework, including pattern routing and maze routing. The
pattern routing algorithm gives an efficient routing solution for
all the nets. At the same time, maze routing works as rip-up and
reroute iterations to reroute the nets with violations for a better
solution. In that case, pattern routing stage routes much more
nets than maze routing stage.

C. Runtime breakdown of a modern global router

To illustrate the percentage of the pattern routing stage and
the maze routing iterations in a two-stage router, we select one
modern global router with these two stages. The runtime break-
down of this modern global router on three different benchmarks
and the average runtime breakdown on ICCAD2019 benchmarks
[13] are shown in Fig. 1. Here PATTERN means the runtime
percentage of the pattern routing stage, and MAZE refers to
the runtime percentage of the maze routing iterations for rip-up
and reroute. These three benchmarks include one PATTERN-
dominated design, 19test9, one MAZE-dominated design,
test9m, and one design with nearly the same percentage
of PATTERN and MAZE, 19test7. Fig. 1 shows that it is
PATTERN-dominated on average since the number of nets which
pattern routing stage needs to process is much more than the
maze routing stage.

D. Net ordering within a single multi-pin net

There are several two-pin nets within one single multi-pin net
as shown in Fig. 2(a), we are supposed to determine the net
ordering of these two-pin nets since there is the dependency
between two connected two-pin nets. One of the most popular
methods is to utilize a depth-first search (DFS) traversal to visit
all nodes from a random root. Take Fig. 2 as a sample to show
this method. All the two-pin nets will perform routing in the
reverse order in sequential.

P6

P5

P4P3

P2

P1

(a) two-pin nets

P6

P5

P4P3

P2

P1

e5
e4

e1

e2

e3

(b) two-pin nets with order

Fig. 2 Sample for ordering.

Suppose we choose P6 as the random root in Fig. 2(a). Then,
we perform DFS starting from P6. DFS traversal visits all the
nodes with the order of P6, P5, P4, P3, P2, P1. As shown in
Fig. 2(b), we label all the two-pin nets in the reverse order
e1, e2, e3, e4, e5, which will be the order they perform the routing
algorithm.

E. Net ordering in routing
Besides the net ordering scheme within the single multi-pin net,
the net ordering among multi-pin nets attracts much more atten-
tion. There are several approaches to generate a net sequence
for routing, but it is difficult to determine the best. Because
an earlier routed net may impede routing for the following net
with limited routing resources, net ordering significantly impacts
routing solution quality. As a result, a net-ordering strategy for
general routing situations is desirable.

Unfortunately, such a universally good scheme is hard to find.
Some earlier studies [14] concluded that no single net-ordering
strategy could perform better than others in all routing problems.
Finding the optimal net ordering scheme has been proven to be
NP-hard, which means there is no polynomial-time complexity
algorithm to solve this net-ordering problem. Although the net-
ordering method may not be the best, several popular net-
ordering schemes still exist: (1) The ascending (descending)
order of the number of pins within their bounding boxes. If there
are more pins inside its bounding box, it is more likely to block
other nets in this bounding box. (2) The ascending (descending)
order of their wirelength. Routing the shorter nets first always
leads to better routability since this kind of net often has less
routing flexibility than the longer ones. The other similar metric
is the bounding box area.

Researchers always apply the above net-ordering methods in
sequential routing [8], [15], but parallelism exists among these
multi-pin nets. We utilize this parallelism for acceleration. There-
fore, we propose a heuristic task graph scheduler to distribute
tasks and then reach parallelization on hybrid platforms.

III. ALGORITHM

A. Overview
The overall flow of FastGR is shown in Fig. 3. To begin with,
we declare a task graph scheduler framework and apply it to
both parts in our router, the pattern routing stage and rip-up
and reroute iterations, to guide the execution order of different
routing tasks. The task graph is constructed from the conflicted
relationship between each pair of tasks. Note that a conflict
between two routing tasks means that they cannot be processed
simultaneously. Our proposed task graph scheduler is used to
decide the execution order of all these tasks in the task graph.

We pass the routing tasks obtained from the pattern routing
planning strategy into the task graph scheduler in the pattern



Pattern Routing Planning

Task Graph Scheduler

3D Pattern Routing on GPU

Pattern Routing Stage

3D Maze routing on CPU

Task Graph Scheduler

No Overflow?
or

Final Iter?

Rip-up and Reroute Iterations

Route Guide Generation & Patching

No

Yes

Fig. 3 Overall flow of FastGR.

routing stage. Then we utilize the 3D pattern routing on GPU
with the order of the task graph. As for the rip-up and reroute
iterations, we get the parallelism among all the maze routing
tasks from our task graph scheduler and then call 3D maze
routing to maximize the parallelism of the reroute stage on CPU.
After several rip-up and reroute iterations, we generate route
guides and patches for the detailed routing.

We will discuss the details of our task graph scheduler, our
GPU-based 3D pattern routing algorithm, and our task graph
generation methods in both two stages in the following sections.

B. Task graph scheduler
We propose a two-stage task graph scheduler to get the order
from a set of tasks. The first stage is to construct the task
graph from the conflicted relationship between each pair of tasks.
Then we determine the execution order for each conflict edge
in our task graph to schedule all these tasks. After generating
the task graph, we extract one root task batch with the conflict
information from this graph. Note that there is no conflict in the
root task batch. We split all these tasks into two parts, the root
tasks and the non-root tasks. Since there is no conflict within
the root tasks, only two conditions exist between each pair of
conflicting tasks.

• One task is in the root batch, and the other is not. The
order is from the task in the root batch to the other.

• Both the tasks are not in the root batch. The order is from
the task with a smaller task ID to the other. Note that the
task ID represents the sorting result of all the tasks.

With this strategy, our task graph scheduler can assign the
execution order between each pair of conflicting tasks. Take
Fig. 4 as an example. Given a task conflict graph, we pick out an
independent root task batch using the batch extraction algorithm
described in Algorithm 1. Then we can get the final execution
order for the task graph with our task graph scheduler.

C. Pattern routing stage: Task graph generation
We treat a batch of multi-pin nets as one routing task in the
pattern routing stage because the number of nets which need
to route is quite large. To utilize the parallelism among all
the multi-pin nets, we first split the multi-pin nets into several
batches with a batch extraction algorithm referring to [2], which

T1 T6

T2 T3 T4 T5 T7

root task batch

T1 T6

T2 T3 T4 T5 T7

root task batch

Fig. 4 Sample for task graph scheduler with 7 tasks; The edge
in task graph represents the conflict relation between the two
connected tasks.

is described in Algorithm 1, to maximize the parallelism within
batches.
Algorithm 1 Batch extraction algorithm

Require: nets : the set of nets which need to process the
pattern routing.

Ensure: batch : a set of nets batches.
1: e← nets[0];
2: Remove e from nets and declare a new empty batch
batch← {e};

3: for ei ∈ nets do
4: if ei has no conflict with all the nets in batch then
5: Push ei into batch;
6: Remove ei from nets;
7: end if
8: end for
9: return batch;

Given a set of multi-pin nets nets, we first sort all the nets
with a sorting strategy, which we will discuss in Section IV-B.
Suppose that we sort all the nets with ascending bounding box
areas. Then pick out the first nets e (Line 1), the net with the
largest bounding box area in the set of remaining nets, into one
new empty batch batch. After that, we scan the whole set of
nets in order and filter out the net which have no conflict with all
the nets already in batch (Lines 3 to 8). Anytime we find one
net that meets this condition, we update the set of remaining nets
nets and the new batch batch. After such a complete scan,
we have obtained a batch batch with the nearly most number
of independent nets. We need to repeat the batch scheduler until
the set of remaining nets is empty. Finally, we can obtain a set
of nets batches with no conflict in a little overhead.

Since there is no bounding box overlap within each batch,
we can simultaneously route the nets in the same batch so that
we can treat one batch as one task to construct the task graph
in the pattern routing stage. According to the batch extraction
algorithm described in Algorithm 1, the task graph we construct
from these batches will be a complete graph with edges between
every two tasks. Applying our proposed task graph scheduler, we
will execute all these tasks in sequential to avoid conflicts.

Fig. 5 illustrates the programming architecture of our GPU-
friendly pattern routing for all these routing tasks. Each batch
in Fig. 5 represents one routing task, and each task includes
several multi-pin nets which need to route. As shown in Fig. 5,
we call the 3D pattern routing kernel on the host to solve the
routing task. We will assign the kernel to the grid on the device,
and many blocks in this grid can be utilized simultaneously with
different calculation flows. We use all the threads in one block
to process at the same time. Therefore, we apply each block to



Net 0

P1 P2

P3

P4

Net 1

P1

P2

P3

Net 2

P1 P2

P3

P4

· · ·

Batch

Block 0 routes Net 0:
• P1 → P2

• P2 → P4

• P3 → P4

Block 1 routes Net 1:
• P1 → P3

• P2 → P3

Block 2 routes Net 2:
• P4 → P3

• P2 → P3

• P1 → P3

· · ·
Host

Device

Kernel Kernel
• • • • • •

Kernel

Grid

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block

Thread Thread Thread

Thread Thread Thread

Thread Thread Thread

Thread Thread Thread

Batch

Net n
P1 P2

Net n-1

P2

P1

P3

P4

P5 P6

Net n-2

P1 P2

P3

· · ·
Fig. 5 Programming architecture for the pattern routing stage; On the host, the kernels are called in sequential and each of them
is used to process one batch of nets. The nets in the same batch will be routed simultaneously on different blocks on the device.

process one single multi-pin net, and the threads in this block
will process the same computation instructions.

D. Pattern routing stage: GPU-friendly pattern routing

For parallelism, we use several blocks on GPU to process the
same number of multi-pin nets in the same batch individually
since all the nets can be processed simultaneously, as we
discussed before. We will split all n multi-pin nets into several
batches and process them in order because their task graph is
complete. Then, for each multi-pin net in one block, several
two-pin nets should be routed in an order decided by DFS
traversal. Pattern routing is a widely-used method to solve
the global routing problem for two-pin nets. We reformulate
the conventional pattern routing algorithm and utilize GPU
computing power, which is demonstrated in Fig. 6.

Take a two-pin net Ps → Pt as the example, suppose that the
number of metal layer is 4. The left part in Fig. 6 shows one
solution of Ps → Pt with 3D pattern routing algorithm, and the
path solution includes three parts,

• the wire connecting Ps and the bend point B;
• the vias connecting different metal layers through the bend

points B and B′;
• the wire connecting the bend point B′ and Pt.

Besides of these three parts, we need to consider the vias
connecting the pin segment, which Ps use to connect the bend
point B and the pin segments, which Ps service to connect its
child nodes. This kind of vias is used to combine pair of two-pin
nets in the same multi-pin net.

Let L be the number of metal layers. The 3D L-shaped pattern
routing has L×L layer combinations, although some combina-
tions are invalid because of the routing direction constraint on
each metal layer. We reformulate the L-shape pattern routing
with layer assignment into a four-stage graph computation prob-
lem to enumerate all these L×L combinations simultaneously,
which is more friendly to GPU.

Let c(i) be the cost vector at the end of the ith step, where
c(0) is simply the zero vector to initialize the cost. Additionally,
let w(1),w(2),w(4) be the weights vector in step 1, 2, 4 and
W(3) be the weight matrix in step 3.

Ps

Pt

B

B′

Threads

Ps Pt

S3

S4

S2

S1

B3

B4

B2

B1

B′3

B′4

B′2

B′1

T3

T4

T2

T1

Step 1 Step 2 Step 3 Step 4

Fig. 6 GPU-friendly 3D pattern routing; The whole flow is split
into four steps and the number of metal layer in this sample is
4. The step 1, 2, 4 are the vector addition operation while the
step 3 is the addition-minimum operation.

Referring to the cost scheme in [1], we use costwire(u, v) to
represent the cost of a wire edge, which includes wirelength cost
and congestion cost, and costvia(u, u

′) to mean the cost of a via
edge, where u and u′ are the lower and upper G-cells connected
by a via and v is on the same metal layer with u.

The first step is to calculate the via cost of connecting the pin
segment of Ps and all the children segments of Ps. The nodes
in the first step are represented as Sl, l ∈ {1, 2, 3, 4}, where l
means the index of metal layer. The edge between Ps and Sl

represents that the pin segment of Ps, which is used to connect
with the bend point B, is assigned to lth layer. The weight of
this edge is the via cost to connect this pin segment with all the
children segments of Ps. The formal formulation of lth entry of
the edge weights vector w(1) is as follows,

w
(1)
l = costvia(Sl, Psc), 0 < l ≤ L, (1)

where Psc means all the children nodes of Ps.
The second step is the wire cost connecting the pin segment of

Ps and the bend point B. Bl refers to the bend point connecting
to Ps in lth layer. The weight of edge Sl to Bl is the wire cost
in lth layer to connect these two points. The formal formulation
of lth entry of the edge weights vector w(2) is as follows,

w
(2)
l = costwire(Sl, Bl), 0 < l ≤ L. (2)

The third step works as the layer assignment. The connection
between Bl1 and Bl2 represents the combination of the layer l1



TABLE I Sorting strategies.
ID Sorting Strategy

0 Descending guide area size
1 Ascending guide area size
2 Descending bounding box half perimeter
3 Ascending bounding box half perimeter
4 Descending #pins
5 Ascending #pins

from the source and the layer l2 to the target. The cost of this
edge is the via cost to connect l1 layer and l2 layer. The entry
of the edge weights matrix W(3) at the l1

th row and the l2
th

column is

w
(3)
l1,l2

= costvia(Bl1 , B
′
l2), 0 < l1 ≤ L , 0 < l2 ≤ L. (3)

The forth step is used to calculate the wire cost between the
bend point B′ and the pin segment of Pt. Tl represents the pin
segment of Pt, which is used to connect to the bend point B′l ,
is assigned into lth layer. The edge weight between B′l and Tl is
the wire cost between them. The formal formulation of lth entry
of the edge weights vector w(4) is as follows,

w
(4)
l = costwire(B

′
l, Tl), 0 < l ≤ L. (4)

The vector computation for step 1, 2, 4 are addition operation
and the formulation is as follows,

c(i) = c(i−1) +w(i), i ∈ {1, 2, 4}. (5)

The computation in step 3 is the addition-minimum operation
since we can get the best layer combinations in this layer as-
signment step. The formal formulation is shown in Equation (6),

c
(3)
l2

= min
0<l1≤L

{
c
(2)
l1

+ w
(3)
l1,l2

}
, 0 < l2 ≤ L. (6)

E. Parallel rip-up and reroute iterations
The pattern routing stage always cannot get a violation-free
routing solution for many multi-pin nets. Several rip-up and
reroute iterations should be conducted to reduce the overall
number of violations. We only need to reroute the nets with
violations in our proposed rip-up and reroute method to save
running time. We treat each multi-pin net as one routing task,
which differs from the pattern routing stage. The number of
multi-pin nets in the pattern routing stage is more significant than
the rip-up and reroute iterations. Then, we apply our task graph
scheduler to these routing tasks with their conflict relationship
to get the ordered task graph to guide the execution of the nets
which need to reroute.

Therefore, with the ordered task graph we generated from our
task graph scheduler, we can quickly maximize the parallelism
of rip-up and reroute iteration using Taskflow [16]. Taskflow is a
C++ tasking toolkit that automatically executes parallel programs
with the task dependency graph. It can utilize our ordered task
graph as the task dependency graph and perform the tasks in
maximum parallelism using CPU threads.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup
We implemented our proposed task graph scheduler and GPU-
friendly pattern routing algorithm on the pattern routing stage
of CUGR [1] and integrated the scheduler into the rip-
up and reroute iterations. We evaluate the results using IC-

TABLE II Experimental results of different sorting strategies;
The sorting strategies are only applied to the rip-up and reroute
iterations with maze routing.

Benchmarks Tech TOTAL (s) PATTERN (s) MAZE (s) Score (×107)

18test10

0 150.842 8.642 107.311 4.28
1 143.102 8.63 100.501 4.28
2 119.412 8.664 75.815 4.28
3 120.084 8.655 76.988 4.28
4 137.557 8.651 93.874 4.28
5 131.658 8.883 86.723 4.28

18test10m

0 197.707 4.892 136.109 4.45
1 187.584 4.866 127.72 4.48
2 173.811 4.674 114.838 4.48
3 183.41 4.954 124.884 4.47
4 192.467 4.902 129.837 4.49
5 186.261 4.898 127.028 4.48

CAD2019 benchmarks [13]. We implement all the algorithms
in C++/CUDA and conduct the experiments on a 64-bit Linux
machine with Intel Xeon 2.2 GHz CPU and one GeForce RTX
2080 GPU.

B. Sorting Strategy
The experimental results with different sorting strategies show
that the net ordering affects the final solution quality and the
running time. Since the solution of the pattern routing stage
will affect rip-up and reroute iterations, we choose six different
strategies only applied to the rip-up and reroute iterations to
show the effect of net ordering, and TABLE II demonstrates the
experimental results. With different sorting strategies, the rip-
up and reroute iterations’ running time is different because the
routing order and the number of nets with violation affect the
solution quality.

Furthermore, we apply a score, which considers three parts:
wirelength, vias, and shorts, to reflect the solution quality. The
computation formulation of score s is shown in Equation (7),

s = αW + βV + γS, (7)

where W represents the wirelength, V means the number of vias,
and S is the number of shorts violations. In addition, α, β, γ
are three weights of wirelength, vias number, and shorts number
for the score weighted sum calculation, respectively. Note that
in our experiments, we set α to 0.5, β to 4, and γ to 500 as the
same as the setting in ICCAD2019 contest.

To be more comprehensive, we select two benchmarks to
evaluate the effect of routing order, where 18test10 has nine
metal layers, and 18test10m has only five metal layers. In
TABLE II, we use TOTAL to represent total running time; We
use PATTERN to mean the running time of the pattern routing
part, while MAZE to describe the runtime of maze routing
iterations. As shown in the experimental results TABLE II,
for both these two benchmarks, considering bounding box half
perimeter as the metric to sort nets can have a better effect on
the solution quality, which is also related to the running time.

C. Overall Acceleration
We conducted experiments on 12 different benchmarks of the
ICCAD2019 contest in advanced nodes. Half of them, which
end with “m”, have only five metal layers, while the other six
have nine metal layers. Furthermore, with the discussion in
Section IV-B, we finally order all the routing tasks in both two



TABLE III Experiment results on ICCAD 2019 benchmarks.

Benchmarks
Total runtime (s) Pattern routing runtime (s) Maze routing runtime (s) Score

CUGR Ours Speedup CUGR Ours Speedup CUGR Ours Speedup CUGR Ours Ratio

18test5 80.645 24.130 3.342× 45.111 4.516 9.988× 21.588 5.640 3.828× 16931900 16924090 0.9995
18test5m 83.49 34.640 2.410× 7.445 2.667 2.791× 63.32 18.409 3.440× 18760300 18800190 1.0021
18test8 260.982 99.609 2.620× 118.117 7.969 14.822× 108.986 57.745 1.887× 40870500 40880730 1.0003
18test8m 250.26 134.991 1.854× 18.292 4.866 3.759× 201.58 88.408 2.280× 42924700 42798740 0.9971
18test10 354.347 115.248 3.075× 124.533 9.416 13.226× 199.777 73.915 2.703× 42622300 42585330 0.9991
18test10m 339.471 170.716 1.989× 18.485 5.780 3.198× 291.28 113.259 2.572× 44193400 44448860 1.0058
19test7 527.955 192.480 2.743× 223.947 13.292 16.849× 241.787 111.138 2.176× 71855400 71884100 1.0005
19test7m 340.489 191.982 1.774× 34.208 7.307 4.681× 244.686 118.459 2.066× 67958400 68015290 1.0008
19test8 529.193 173.186 3.056× 333.965 15.351 21.756× 96.888 53.399 1.814× 11394600 113940700 1.0000
19test8m 520.547 332.662 1.565× 51.922 9.598 5.410× 371.748 215.034 1.729× 114748000 114854000 1.0009
19test9 842.18 255.149 3.301× 561.337 20.463 27.432× 129.707 74.663 1.737× 175429000 175499000 1.0004
19test9m 632.577 458.874 1.379× 88.971 13.457 6.612× 400.227 275.312 1.454× 173154000 173252000 1.0006

Average 2.426× 10.877× 2.307× 1.000

stages in ascending bounding box half perimeter to achieve better
performance of the running time and the solution quality.

We evaluate the total runtime, pattern routing runtime, and
the runtime of maze routing iterations to demonstrate the accel-
eration performance of our proposed task graph scheduler and
our GPU-friendly pattern routing algorithm.

As shown in TABLE III, the task scheduler can contribute
to 2.307× speedup over the widely-adopted batch-based par-
allelization strategy on CPU. To shorten the data transmission
running time, we apply the zero-copy technique in our imple-
mentation, which can help us limit the data-passing time in 1s
for all these benchmarks. With the zero-copy technique, our
GPU-friendly pattern routing algorithm can contribute 10.877×
speedup over the sequential algorithm on CPU. The combined
techniques can achieve 2.426× speedup with a comparable
solution quality to the state-of-the-art global router.

Further analysis on pattern routing runtime reveals that the
performance of our GPU-friendly pattern routing algorithm is
strengthened when the case has a larger design scale but weak-
ened when the metal layer number is small. Modern circuits, on
the other hand, have much more metal layers than only five, thus
our GPU-friendly pattern routing is desirable in the industry.

V. CONCLUSION

In this paper, we propose a global routing framework, FastGR,
running on hybrid CPU-GPU platforms with a heterogeneous
task graph scheduler and a GPU-accelerated pattern routing algo-
rithm. Evaluation on ICCAD2019 benchmarks demonstrates that
our task graph scheduler alone can contribute 2.307× speedup
on CPU. Applying both our GPU-friendly pattern routing and
the task graph scheduler can lead to 10.877× speedup on GPU.
Overall, we can achieve up to 2.426× speedup with comparable
solution quality results compared with the state-of-the-art global
router. The results of this paper highlight the vital role of GPU-
accelerated kernel algorithms and the task scheduler in routing.
Both of them can assist to reduce design cycles. Finally, we
should keep a close eye on the development of the task graph
scheduler and the utilization of GPUs power in the VLSI design

flow.

ACKNOWLEDGEMENT

This work is supported by The Research Grants Council of Hong
Kong SAR (No. CUHK14209420) and HiSilicon.

REFERENCES

[1] J. Liu, C.-W. Pui, F. Wang, and E. F. Y. Young, “CUGR: Detailed-
Routability-Driven 3D Global Routing with Probabilistic Resource Model,”
in Proc. DAC, 2020, pp. 1–6.

[2] G. Chen, C.-W. Pui, H. Li, and E. F. Young, “Dr. cu: Detailed routing by
sparse grid graph and minimum-area-captured path search,” IEEE TCAD,
vol. 39, no. 9, pp. 1902–1915, 2019.

[3] X. He, T. Huang, W.-K. Chow, J. Kuang, K.-C. Lam, W. Cai, and E. F.
Young, “Ripple 2.0: High quality routability-driven placement via global
router integration,” in Proc. DAC, 2013, pp. 1–6.

[4] J. Hu, J. A. Roy, and I. L. Markov, “Completing high-quality global routes,”
in Proc. ISPD, 2010, pp. 35–41.

[5] R. Kastner, E. Bozorgzadeh, and M. Sarrafzadeh, “Pattern routing: Use and
theory for increasing predictability and avoiding coupling,” IEEE TCAD,
vol. 21, no. 7, pp. 777–790, 2002.

[6] C. Y. Lee, “An algorithm for path connections and its applications,” IRE
transactions on electronic computers, no. 3, pp. 346–365, 1961.

[7] M. Pan, Y. Xu, Y. Zhang, and C. Chu, “FastRoute: An efficient and high-
quality global router,” Proc. VLSI Design, vol. 2012, 2012.

[8] Y. Xu, Y. Zhang, and C. Chu, “Fastroute 4.0: Global router with efficient
via minimization,” in Proc. ASPDAC, 2009, pp. 576–581.

[9] M. D. Moffitt, “Maizerouter: Engineering an effective global router,” IEEE
TCAD, vol. 27, no. 11, pp. 2017–2026, 2008.

[10] Y. Xu and C. Chu, “MGR: Multi-level global router,” in Proc. ICCAD,
2011, pp. 250–255.

[11] H. Djidjev, G. Chapuis, R. Andonov, S. Thulasidasan, and D. Lavenier,
“All-Pairs Shortest Path algorithms for planar graph for GPU-accelerated
clusters,” Journal of Parallel and Distributed Computing, vol. 85, pp. 91–
103, 2015.

[12] D. Delling, A. V. Goldberg, A. Nowatzyk, and R. F. Werneck, “Phast:
Hardware-accelerated shortest path trees,” Journal of Parallel and Dis-
tributed Computing, vol. 73, no. 7, pp. 940–952, 2013.

[13] S. Dolgov, A. Volkov, L. Wang, and B. Xu, “2019 CAD contest: LEF/DEF
based global routing,” in Proc. ICCAD, 2019, pp. 1–4.

[14] L. C. Abel, “On the ordering of connections for automatic wire routing,”
IEEE Transactions on Computers, vol. 100, no. 11, pp. 1227–1233, 1972.

[15] Y.-J. Chang, Y.-T. Lee, and T.-C. Wang, “Nthu-route 2.0: A fast and stable
global router,” in Proc. ICCAD, 2008, pp. 338–343.

[16] T.-W. Huang, C.-X. Lin, G. Guo, and M. Wong, “CPP-TaskFlow: Fast task-
based parallel programming using modern C++,” in Proc. IPDPS, 2019,
pp. 974–983.


