
FastGR : Global Routing on CPU-GPU with
Heterogeneous Task Graph Scheduler

Siting Liu1,2, Peiyu Liao1,2, Rui Zhang3, Zhitang Chen4, Wenlong Lv4, Yibo Lin1, Bei Yu2

1Peking University 2Chinese University of Hong Kong
3HiSilicon Technologies Co. 4Huawei Noah’s Ark Lab

1 / 20



Outline

Introduction

Methods

Results

Summary

2 / 20



Outline

Introduction

Methods

Results

Summary

3 / 20



Physical Design

3 / 20



Problem Formulation
Given a placement, a netlist and technology information,
I determine the necessary wiring, e.g., net topologies and specific routing segments, to connect

these cells

I while respecting constraints, e.g., design rules and routing resource capacities, and

I optimizing routing objectives, e.g., minimizing total wirelength and reducing congestion.

Netlist

N1 = {C4,D6,B3}
N2 = {D4,B4,C1,A4}
N3 = {C2,D5}
N4 = {B1,A1,C3}

4 / 20



Problem Formulation
We use a set of global routing cells (G-cells) with a group of evenly distributed horizontal and
vertical grids to represent the global routing region.

A grid graph G(V,E) can be defined by treating each G-cell as a vertex (v ∈ V) and creating
an edge (e ∈ E) between every two adjacent G-cells. The edge e has two types: wire edge
and via edge.

Global routing is a minimum cost path searching problem on G(V,E).

Ps

Pt

5 / 20



FastGR: Motivation

Heterogeneous architecture.

• CPU: Strong controller and ALUs.
• GPU: Grid-based computation resources:
max 1024 threads per block.
• GPU: Cheap synchronization within blocks.

Routing solution sample.

• 10+ metal layers.
• Millions of nets.
• Variable objectives and constraints.

6 / 20



FastGR: Motivation - Runtime Breakdown

Pattern Routing
Planning

3D Pattern Routing
with

Layer Assignment

Initial Routing

3D Maze Routing
within

Bounding Box

Maze Routing Planning
(Bounding Box Generation)

No Overflow?
or

Final Iter?

Rip-up and Reroute Iterations

Route Guide
Generation

&
Patching

No

Yes

Runtime breakdown of a modern global router;
PATTERN means the pattern routing stage while MAZE
means the maze routing stage.

7 / 20



FastGR: Overall Contribution

FastGR is a global routing framework that is accelerated on CPU-GPU platforms with a task
graph scheduler and GPU-accelerated algorithms.

I A high-performance task graph scheduler to
distribute CPU and GPU tasks for workload
balancing and efficiency.

I A novel GPU-accelerated pattern routing
algorithm that can route a batch of nets
leveraging the massive parallelism on GPU.

Pattern Routing Planning

Task Graph Scheduler

3D Pattern Routing on GPU

Pattern Routing Stage

3D Maze routing on CPU

Task Graph Scheduler

No Overflow?
or

Final Iter?

Rip-up and Reroute Iterations

Route Guide Generation & Patching

No

Yes

8 / 20



Outline

Introduction

Methods

Results

Summary

9 / 20



Parallelism Among Multi-pin Nets

1

2

3

4

5

6

7

Sample for the bounding box of multi-pin nets.

n1

n6

n2

n3

n4

n5

n7

Sample of 5 levels scheduling.

n1n6

n2

n3

n4
n5

n7

Conflict graph of the sample.

n1 n6

n2

n3

n4

n5

n7

Sample of 3 levels scheduling.

9 / 20



Batch Scheduler1

1

2

3

4

5

6

7

Sample for Batch Scheduler.

1. Sort all nets with a sorting strategy.
N : {n1, n2, n3, n4, n5, n6, n7};B : {}

2. Takes the first net out.
N : {n2, n3, n4, n5, n6, n7};B : {{n1}}

3. choose the independent set.
N : {n2, n3, n4, n5, n7};B : {{n1, n6}}

4. repeat step 2 and step 3.
N : {};B : {{n1, n6}, {n2, n4, n7}, {n3, n5}}

1G. Chen, C.-W. Pui, H. Li, and E. F. Young, “Dr. cu: Detailed routing bysparse grid graph and
minimum-area-captured path search,”IEEE TCAD,vol. 39, no. 9, pp. 1902–1915, 2019.

10 / 20



FastGR: Methods - Heterogeneous Task Graph Scheduler

T1 T6

T2 T3 T4 T5 T7

root task batch

T1 T6

T2 T3 T4 T5 T7

root task batch

All the tasks are split into two parts:
I Root task batch.

I Non-root task batch.

Only two conditions exist between each pair of conflicting tasks.
I One task is in the root batch, and the other is not. The order is from the task in the root batch to

the other.

I Both the tasks are not in the root batch. The order is from the task with a smaller task ID to the
other. Note that the task ID represents the sorting result of all the tasks.

11 / 20



FastGR: Methods - GPU-accelerated Pattern Routing

Ps

Pt

B

B′

Threads

Ps Pt

S3

S4

S2

S1

B3

B4

B2

B1

B′3

B′4

B′2

B′1

T3

T4

T2

T1

Step 1 Step 2 Step 3 Step 4

I the wire connecting Ps and the bend point B;

I the vias connecting different metal layers through the bend points B and B′;

I the wire connecting the bend point B′ and Pt.

12 / 20



FastGR: Methods - GPU-accelerated Pattern Routing

P3 P5

l1,3

l1,4

l1,2

l1,1

B2,3

B2,4

B2,2

B2,1

B3,3

B3,4

B3,2

B3,1

l4,3

l4,4

l4,2

l4,1

I w1 : The via costs from source point to the
source segment.

I w2 : The wire costs from source segment
to the bend point.

I W : The via costs in bend points between
different layers.

I w4 : The wire costs from bend point to the
target point.

Let L be the number of metal layers. ci be the ith step’s cost result vector, with the jth entry ci,j, 0 < j ≤ L.
c0 is a zero vector.
wi represents the edge weights for step i with size L, i ∈ {1, 2, 4}.
W means the weights matrix for step 3 with size L× L, where Wi,j represents the via costs between the ith layer
and the jth layer.
Step 1, 2, 4 :

ci = ci−1 + wi, i ∈ {1, 2, 4}. (1)

13 / 20



FastGR: Methods - GPU-accelerated Pattern Routing

P3 P5

l1,3

l1,4

l1,2

l1,1

B2,3

B2,4

B2,2

B2,1

B3,3

B3,4

B3,2

B3,1

l4,3

l4,4

l4,2

l4,1

I w1 : The via costs from source point to the
source segment.

I w2 : The wire costs from source segment
to the bend point.

I W : The via costs in bend points between
different layers.

I w4 : The wire costs from bend point to the
target point.

Let L be the number of metal layers. ci be the ith step’s cost result vector, with the jth entry ci,j, 0 < j ≤ L.
c0 is a zero vector.
wi represents the edge weights for step i with size L, i ∈ {1, 2, 4}.
W means the weights matrix for step 3 with size L× L, where Wi,j represents the via costs between the ith layer
and the jth layer.
Step 3:

c3,t = min
0<s≤L

{c2,s + Ws,t}. (2)

14 / 20



FastGR: Methods - GPU-accelerated Pattern Routing

Net 0

P1 P2

P3

P4

Net 1

P1

P2

P3

Net 2

P1 P2

P3

P4

· · ·

Batch
Block 0 routes Net 0:
• P1 → P2
• P2 → P4
• P3 → P4

Block 1 routes Net 1:
• P1 → P3
• P2 → P3

Block 2 routes Net 2:
• P4 → P3
• P2 → P3
• P1 → P3

· · ·
Host

Device

Kernel Kernel• • • • • • Kernel

Grid

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block

Thread Thread Thread

Thread Thread Thread

Thread Thread Thread

Thread Thread Thread

Batch

Net n
P1 P2

Net n-1

P2

P1

P3

P4

P5 P6

Net n-2

P1 P2

P3

· · ·

I Each block processes one multi-pin net.

I Each multi-pin net includes several two-pin nets.

I Each two-pin net has 2 candidate 2D paths (L× L candidate 3D paths) with L-shape, where L is
the number of metal layers.

15 / 20



Outline

Introduction

Methods

Results

Summary

16 / 20



Experimental Setting

I Pattern routing stage: Task graph scheduler & GPU-friendly pattern routing algorithm.

I Maze routing stage: Task graph scheduler.

I Benchmarks: ICCAD2019.

I Device: a 64-bit Linux machine with Intel Xeon 2.2 GHz CPU and one GeForce RTX 2080 GPU.

16 / 20



FastGR: Results - PATTERN Runtime & MAZE Runtime

18
te
st
5

18
te
st
5m

18
te
st
8

18
te
st
8m

18
te
st
10

18
te
st
10

m

19
te
st
7

19
te
st
7m

19
te
st
8

19
te
st
8m

19
te
st
9

19
te
st
9m

0

100

200

300

400

500

PA
TT

ER
N
Ru

nt
im

e
(s
) CUGR FastGR

18
te
st
5

18
te
st
5m

18
te
st
8

18
te
st
8m

18
te
st
10

18
te
st
10

m

19
te
st
7

19
te
st
7m

19
te
st
8

19
te
st
8m

19
te
st
9

19
te
st
9m

0

100

200

300

400

M
AZ

E
Ru

nt
im

e
(s
)

CUGR FastGR

I Our GPU-friendly pattern routing algorithm can contribute 10.877× speedup over the sequential
algorithm on CPU.

I The task scheduler can contribute to 2.307× speedup over the widely-adopted batch-based
parallelization strategy on CPU.

17 / 20



FastGR: Results - Total Runtime & Score

18
te
st
5

18
te
st
5m

18
te
st
8

18
te
st
8m

18
te
st
10

18
te
st
10

m

19
te
st
7

19
te
st
7m

19
te
st
8

19
te
st
8m

19
te
st
9

19
te
st
9m

0

200

400

600

800

To
ta
lR

un
tim

e
(s
)

CUGR FastGR

18
te
st
5

18
te
st
5m

18
te
st
8

18
te
st
8m

18
te
st
10

18
te
st
10

m

19
te
st
7

19
te
st
7m

19
te
st
8

19
te
st
8m

19
te
st
9

19
te
st
9m

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
·108

G
lo
ba

lR
ou

tin
g
Sc

or
e

CUGR FastGR

I As for the overall speedup, we can achieve 2.426× acceleration without solution quality
degradation compared with the SOTA global router.

18 / 20



Outline

Introduction

Methods

Results

Summary

19 / 20



Summary

I Task scheduler plays a very important role in routing problem; Our task graph scheduler alone
can contribute 2.307× speedup on CPU. Also, it can help FastGR to get comparable routing
solution quality.

I GPU-accelerated kernel algorithms are vital for the physical design flow; Both the
GPU-accelerated pattern routing algorithm and the task graph scheduler can lead to 10.877×
speedup on GPU.

19 / 20



Thank You!

20 / 20


	Main Talk
	Introduction
	Methods
	Results
	Summary


