
DREAMPlace 4.0: Timing-driven Global Placement with
Momentum-based Net Weighting

Peiyu Liao1,2, Siting Liu1,2, Zhitang Chen3, Wenlong Lv3, Yibo Lin1∗, Bei Yu2∗
1Peking University 2Chinese University of Hong Kong 3Huawei Noah’s Ark Lab

Abstract—Timing optimization is critical to integrated circuit
(IC) design closure. Existing global placement algorithms mostly
focus on wirelength optimization without considering timing. In
this paper, we propose a timing-driven global placement algorithm
leveraging a momentum-based net weighting strategy. Besides,
we improve the preconditioner to incorporate our net weighting
scheme. Experimental results on ICCAD 2015 contest benchmarks
demonstrate that our algorithm can significantly improve total
negative slack (TNS) and meanwhile be beneficial to worse negative
slack (WNS).

I. INTRODUCTION

Circuit placement is a challenge of finding good locations
for individual circuit components [1]. Since placement is only
an interior stage of chip design, it is important to define
the evaluation and target of placement. Most of the previous
placement algorithms focus on minimizing total wirelength.
However, in the placement stage, a wirelength model is only
for an approximation so it is almost impossible to make it
accurate. Besides, a general focus on the total wirelength will
simply ignore those timing-critical paths. In contrast, timing-
driven placement is designed specifically targeting wires on these
timing-critical paths.

Timing optimization can be performed in both global and
detailed placement stages. Timing-driven global placement aims
at achieving roughly good total negative slack (TNS) and worst
negative slack (WNS), while timing-driven detailed placement
usually focuses on WNS optimization by performing local per-
turbation to the current placement solution. Timing optimization
in placement can be categorized into net-based approaches and
path-based approaches.

Net-based approaches care about nets in the design. They try
to optimize timing by translating feedbacks of timing analysis
into net weights or constraints. Static net weighting, including
slack-based [2]–[5] and sensitivity-based [6]–[8] approaches,
compute net weights only once before timing-driven placement.
However, during global placement, cell locations are unreliable
for us to perform effective timing analysis at earlier stages.
On the other hand, they are also very likely to change sig-
nificantly and thus make static net weighting ineffective. Dy-
namic net weighting [2], [9]–[11] updates net weights gradually,
with placement solution at different iterations considered. Net
constraint-based approaches [12]–[16] limit the maximum length
of specific nets. The formulation of net constraints varies from
particular placers [1].

Path-based approaches [17]–[20] directly work on paths
instead. They aim at explicitly reducing the delay of selected

∗Corresponding authors: yibolin@pku.edu.cn, byu@cse.cuhk.edu.hk

paths by moving cells. Path-based approaches usually formulate
the optimization problem as mathematical programming and
can achieve better qualities compared to net-based approaches.
However, a large design may introduce a large number of paths,
and therefore the run-time issue should be considered seriously
in the analysis of path-based approaches.

Both net-based and path-based approaches have pros and
cons regarding different metrics. The tradeoff is unavoidable
for designers to optimize timing. Unlike detailed placement, the
cell locations have much more freedom during global placement.
Therefore, we prefer relatively generic approaches, can incorpo-
rate updates of cell locations at different iterations, and do not
have intolerable runtime issues.

In this paper, we propose a timing-driven global placement
engine with momentum-based net weighting. We choose the net-
based approach for its scalability to global perturbation of cells
in global placement. The major contributions are summarized as
follows.

• Momentum-based net weighting. The weighting scheme
plays an important role in our timing-driven global place-
ment algorithm. At each timing iteration, we expect to
assign weights to different nets by incorporating the current
slacks within the existing criticality information. The net
weights will be updated gradually by considering the new
weights, computed according to slacks, to be a momentum
term, which is analogous to the momentum method that is
widely used in backpropagation learning [21].

• Preconditioning technique for net weighting. The pre-
conditioner proposed by the original ePlace [22] algorithm
does not consider different net weights. Considering that
we may assign very different net weights to different nets
to optimize timing, the numerical stability may get nega-
tively affected, especially for those cells incident to critical
paths. We enhance our preconditioner to adapt different net
weights when optimizing cell locations.

• Experimental results on the ICCAD2015 contest benchmark
suites [23] show that on average we can achieve 46.83% im-
provements on TNS, and 30.27% improvements on WNS,
compared to the state-of-the-art placer [24] after global
placement and legalization.

The rest of the paper is organized as follows. Section II provides
some preliminaries including brief foundations of nonlinear
placement, static timing analysis, and timing optimization. Sec-
tion III presents the overall flow of our timing-driven global
placement algorithms and the detailed explanations. Section IV
demonstrates the experimental results and some related analysis,
followed by Section V summarizing the whole paper.

II. PRELIMINARY

A. Nonlinear Global Placement

At the global placement stage, a given circuit is considered to
be a graph where vertices model gates. Placers are expected to
place millions of instances to appropriate locations such that
the total wirelength can be minimized. The netlist N = (E, V)
consists of a net set E and a node (cell) set V . Suppose that we
have n nodes in the design (i.e. |V | = n), the global placement
seeks locations (x,y) ∈ Rn × Rn that minimize the total half-
perimeter wirelength W (x,y). If we assign a net weight we for
each net e ∈ E, the optimization formulation can be modified
to minimizing the weighted sum

min
x,y

∑
e∈E

weW (e;x,y). (1)

There are many modern techniques to smoothly approximate
the half-perimeter wirelength model W (e;x,y). Nonlinear
placement adopts a nonlinear differentiable approximation of
W (e;x,y). A widely-used approximation is the weighted-
average (WA) model [25], [26],

W̃x(e, γ;x,y) =

∑
i∈e xie

xi
γ∑

i∈e e
xi
γ

−
∑

i∈e xie
− xiγ∑

i∈e e−
xi
γ

,

W̃ (e, γ;x,y) = W̃x(e, γ;x,y) + W̃y(e, γ;x,y),

(2)

where W̃x(e, γ;x,y) and W̃y(e, γ;x,y) are the net wirelength
along horizontal and vertical direction, respectively. γ is a
hyperparameter to control the precision of this approximation.
A typical non-linear placement problem can be formulated as

min
x,y

∑
e∈E

weW (e;x,y) + λD(x,y), (3)

where E is the net set, W (e; ·, ·) is the wirelength function that
calculates the total wirelength of a specific net e ∈ E, function
D(·, ·) indicates the total density penalty and λ is the correspond-
ing density weight. This is a typical unconstrained optimizatin
problem with arguments x,y being the cell locations.

The objective function (3) is required to be everywhere
differentiable so that we can use gradient-based methods to
optimize the variables. Additionally, the term W (e;x,y) is a
nonlinear approximation of the net wirelength.

B. Static Timing Analysis

The timing-driven placement has to be guided by timing analy-
sis. Static timing analysis (STA) evaluates the setup/hold tim-
ing performance of a circuit under best-case and worst-case
scenarios based on its delay-annotated timing graph [27], [28].
It performs forward and backward propagation to compute the
arrival time and the required arrival time for each node in the
graph, respectively [29].

More specifically, we model the given circuit as a directed
acyclic graph (DAG). Each node in the DAG corresponds to
a pin in the circuit, and each edge in this graph represents a
directed pin-to-pin connection. A complete STA process evalu-
ates the delays of nets and cells, and then computes the arrival
time and required arrival time of pins through propagation. For
a specific pin p, assume that we have its arrival time tat(p) and

required arrival time trat(p), then the slack of p is defined as the
difference of its required arrival time minus arrival time,

s(p) = trat(p)− tat(p). (4)

Slack is an important metric to evaluate the timing quality of a
placement solution. The worst negative slack (WNS) is the most
commonly used timing metric, defined as the worst one among
all negative slacks of timing endpoints,

swns = min
t∈Pend

s(t), (5)

where Pend indicates the set of all timing endpoints, and swns
is the worst negative slack. We assume that there exists at one
t ∈ Pend such that s(t) < 0, otherwise the timing constraints are
perfectly satisfied. Another well-known timing closure objective
is the total negative slack (TNS), defined as the sum of all
negative slacks of timing endpoints,

stns =
∑

t∈Pend,s(t)<0

s(t), (6)

where stns stands for the total negative slack [16].

C. Timing Optimization

Timing-driven placement pays more attention to timing opti-
mization. Rather than the total wirelength of the circuit design,
we prefer objectives that are more suitable to reflect timing
metrics. TNS and WNS are both well-adopted timing metrics,
however, they may emphasize different aspects. Intuitively, WNS
may only provide timing information of a single critical path,
while TNS gives the overall timing information of multiple or
even a large number of critical paths. Empirically, TNS should
be more important to guide the timing optimization during global
placement, as it can integrate information of all critical paths.
On the contrary, WNS should be a more important metric when
optimizing timing precisely in detailed placement.

The complete formulation of timing-driven global placement
can be summarized as follows.

max s(x,y)
s.t. ρb(x,y) ≤ ρt,∀b ∈ B,

(7)

where B is the set of m ×m planar grids (bins) for a positive
integer m, ρb(x,y) denote the density of a bin b ∈ B, ρt
represents the target placement density of each bin, and the
objective function s(x,y) stands for a negative slack function.
Typically, the objective function s(x,y) can be TNS stns(x,y)
or WNS swns(x,y). Equation (7) shares the same cell con-
straints but uses a completely different objective function from
that of wirelength-driven analytical placement. Unlike wire-
length functions that usually have closed-form representations
with respect to cell locations directly, slack functions cannot
be represented explicitly. That is the reason why we decide
to optimize timing indirectly by implementing net weighting
schemes in the wirelength optimization.

III. ALGORITHMS

The overall flow of our placement framework with timing
analysis is illustrated in Fig. 1. Compared to modern gradient-
based analytical placers, we must determine whether to perform
timing analysis at each gradient-based iteration.

Global Placement

Placement Optimization

Gradient Computation

Cell Location Optimization

Is Timing Iteration?
No

Yes

Timing-aware Net weighting

RC Tree Generation

Static Timing Analysis

Net Weight Updates

Converge?

Yes

No

Legalization

Fig. 1 Our overall flow with timing optimization.

p1 s1

s2

p2

p3

p4

(a) A Steiner tree example

p1 s1

p3

s2

p2

p4

(b) The corresponding RC tree

Fig. 2 A 4-pin net example of Steiner tree and the corresponding
RC tree constructed for net delay calculation.

A. RC Tree Construction
We must construct RC trees for nets manually at every timing
iteration, as the cell locations are going to be changed in every
backward step. Given a possibly illegal placement solution, we
are provided with all pin locations for each net.

For a specific net, we start with the pin locations it con-
tains. A FLUTE [30] call will be performed to construct the
rectilinear Steiner minimal tree of this net. This Steiner tree
generally reflects how the timing propagation will be performed
internally inside the timer we use. We take a simple 4-pin net
as an example to illustrate how to construct the RC tree for
a certain net in Fig. 2(a) and Fig. 2(b). The abstract RC tree
hierarchy is shown in Fig. 2(b). To construct RC information
from interconnects, we require the resistance value per unit
length r′ and the capacitance value per unit length c′, which
should be pre-determined for the given design.

B. Delay Calculation
We can enrich details on Fig. 2(b) by adding some abstract
resistors and capacitors for edges in the RC tree, illustrated in
Fig. 3. Here the Elmore delay model [31] is used to approximate
actual delays. More specifically, we use Π−model to break wires
into RC sections. After we fill the RC information into the RC
tree initialized by the timer, we then naturally proceed to the

p1
s1 s2

p2
p3

p4

Cp1s1
2

Cp1s1
2

Rp1s1

Cs1s2
2

Cs1s2
2

Rs1s2

C2

Cs2p2
2

Cs2p2
2

Rs2p2C3

Cs1p3
2

Cs1p3
2

Rs1p3

Cs2p4
2

Cs2p4
2

Rs2p4 C4

Fig. 3 The Elmore delay model for the above 4-pin net example.

static timing analysis.

C. Momentum-based Net Weighting

Net weights are assigned to all nets in the design so that some
prior knowledge of how much contribution to the objective func-
tion these nets will make can be fed into the placer during global
placement. The optimizer will implicitly get a stronger will to
place cells containing pins included in nets with higher weights
closer. Without any doubt, critical nets should be reasonably
assigned higher weights to remind the placer to place cells
related to them closer.

Net Criticality. Our placement database considers criticality
value as a guide to update net weights. Let ce and swns denote
the criticality value of a specific net e and the worst negative
slack, respectively. We can define the momentum of criticality
value of a net e as

cmom,e =


0, if swns ≥ 0;

max

{
0,

se
swns

}
, otherwise,

(8)

where se is the net slack of e. If the worst negative slack swns
is non-negative, everybody should be satisfied and we will do
nothing to the net weights. Otherwise, swns < 0 is negative, and
the criticality value is defined as the maximum value between 0
and the slack ratio se/swns.

If a net e has a non-negative slack se ≥ 0, its criticality
momentum will be set to cmom,e = 0, otherwise, it will be the
ratio se

swns
= |se|
|swns| . For net e, The higher slack value |se| we

obtain, the higher criticality momentum cmom,e it will have.
Intuitively, the criticality indicates the probability of net e to

be critical. Since we may obtain different timing-critical paths
reported by the timer at each iteration, the criticality values
should also be updated iteratively. A critical net may be related
to multiple critical paths, and different nets may have different
negative slacks. Hence, we are supposed to handle different
critical nets in different ways. Nets with more negative slacks
are considered to be more sensitive to timing metrics, and we
should assign higher weights to them accordingly.

Define the criticality value of a net e at the m-th iteration
as c

(m)
e . From Equation (8), we know that s(m)

e and s
(m)
wns ,

which represent the net slack and the WNS at the m-th iteration
respectively, can be re-calculated at each timing iteration. Then
we obtain a criticality value c(m)

e of net e at the m-th iteration,
which corresponds to the criticality updates.

Net weighting Scheme. We introduce a momentum-based net
weighting scheme. For a specific net e, let w̃(m)

e = lnw
(m)
e and

w̃(m−1)

w̃(m)

momentum stepvmom

history stepvhis

actual step
w̃(m+1)

Fig. 4 A simple example illustrating how the momentum step
vectors will affect the actual gradients.

∆w̃
(m)
e be the logarithmic net weight of we and its increment

at the m-th timing iteration, respectively.

w̃(m+1)
e = w̃(m)

e + ∆w̃(m)
e , m ∈ N. (9)

The increment value ∆w̃
(m)
e is treated as the gradient determined

by the timing metrics. Considering that we will obtain a new
criticality momentum at each timing iteration. We expect the net
weight w(m)

e to be emphsized by its criticality c(m)
e . For integer

m ∈ N, the increment relationship can be modeled by

∆w̃(m)
e = c̃(m)

e ,

∆w̃(m+1)
e = α∆w̃(m)

e + (1− α)c̃(m)
mom,e,

(10)

where c̃
(m)
e = ln(1 + c

(m)
e), c̃(m)

mom,e = ln(1 + c
(m)
mom,e) are

the transformed criticality values and increments. The decay
coefficient α ∈ [0, 1] is a hyperparameter. The term ∆w̃

(m)
e can

be considered as the velocity, from Equation (9).
The scheme in Equations (9) and (10) is inspired by the

momentum-based gradient descent algorithm on backpropaga-
tion during neural network training. In backpropagation, the
momentum term should be the negative gradient of the objective,
so that the actual gradient increment value can be guided while
remembering the history update at each iteration. Here we apply
the momentum step to the update of criticality value. If a net
has a positive criticality value instead of zero, its weight should
be increased according to the magnitude of criticality. Besides,
if a net is reported to be critical at most timing iterations, it may
have a large net weight. The weight differences are acceptable
as long as no value overflow is reported.

We adopt the annotations in matrix calculus, then the scheme
illustrated in Equations (9) and (10) can be reformulated as

∆w̃(m+1) = α∆w̃(m) + (1− α)c̃(m)
mom, (11)

where w̃(m) , ∆w̃(m), and c̃
(m)
mom indicate the logarithmic net

weights, their increments, and the transformed momentum vector
calculated by Equation (8), respectively, at the m-th timing
iteration. All these vectors have the same size that is exactly
the total number of nets in the design. More specifically, the
i-th entry of each of these vectors indicates an attribute of the
net with index i. A simple example illustrating how momentum-
based net weighting works is shown in Fig. 4.

If the momentum increment c̃(m)
mom,e has a very small magni-

tude in the late period of global placement, the vector ∆w̃(m)

will approximately decay by the factor α with the increment

of iteration m, and correspondingly the net weight w(m) will
gradually stabilize. Therefore, we will keep emphasizing those
nets that remain critical during placement.

Unlike [9] or other similar dynamic net weighting schemes,
we work on all nets instead of those only on critical paths. Every
net is assigned a non-trivial criticality value related to its slack
at a timing iteration, and then proceeds to the net weighting.

D. Preconditioning
In numerical optimization, preconditioning is a very important
step to reduce the condition number of an optimization problem.
For a general unconstrained problem minx f(x), conventional
preconditioning approaches aim at solving the inverse matrix of
the Hessian H−1f . Considering that the industrial designs may
contain millions of instances, and such computation will have a
huge overhead, the real implementation will become extremely
unbearable.

The ePlace [22] preconditioner only considers diagonal entries
of the Hessian matrix. The objective function f is set to Equa-
tion (3) by default. Without loss of generality, we only consider
the horizontal direction here. Vector x ∈ Rn represents the
horizontal cell locations. The i-th diagonal entry of the Hessian
matrix H−1f will be

∂2f

∂x2i
=
∑
e∈E

we
∂2W (e;x,y)

∂x2i
+ λ

∂2D(x,y)

∂x2i
. (12)

In the ePlace [22] algorithm, for any net e ∈ E, the term
∂2W (e;x,y)

∂x2
i

is simply binary. We also adopt this approximation.
More specifically, only if the i-th node is incident to net e will
the term be set to 1. This very rough evaluation will approximate
the first term in Equation (12) as∑

e∈E
we
∂2W (e;x,y)

∂x2i
≈
∑
e∈Ei

we, (13)

where Ei is the net subset incident to the i-th node. Our net
weighting scheme will not affect the density term, therefore we
adopt the same approximation as [22] for preconditioning.

∂2D(x,y)

∂x2i
= qi

∂2φi(x,y)

∂x2i
≈ qi, (14)

where qi is the quantity of electrical charge of the i-th node.
The approximate preconditioning matrix on single horizontal
direction will be

H̃fx,x = diag

(∑
e∈E1

we + λq1, · · · ,
∑
e∈En

we + λqn

)
. (15)

When net weights are all equal to 1,
∑

e∈Ei we will be degraded
to |Ei| which stands for the total number of nets incident to the i-
th node. Together with the vertical direction, the preconditioned
gradient vector will be ∇fprecond = H̃−1f ∇f .

IV. EXPERIMENTAL RESULTS

A. Experimental Setup
We conduct the experiments on the ICCAD 2015 contest bench-
mark suites [23]. TABLE I shows the parameters of the circuit
designs. All the cases are relatively large and most of them
contain millions of cells and nets. No movable macros are
included in the benchmark suites. Our algorithm is implemented

TABLE I Statistics of the ICCAD2015 contest benchmarks [23].

case name #cells #nets #pins #rows

superblue1 1209716 1215710 3767494 1829
superblue3 1213253 1224979 3905321 1840
superblue4 795645 802513 2497940 1840
superblue5 1086888 1100825 3246878 2528
superblue7 1931639 1933945 6372094 3163
superblue10 1876103 1898119 5560506 3437
superblue16 981559 999902 3013268 1788
superblue18 768068 771542 2559143 1788

in C++ based on the open-source placer DREAMPlace [24] and
the open-source timer OpenTimer [32]. Remarkably, we manage
to make full use of GPU resources in both core placement [24]
and timing analysis [33]. For a fair comparison, we follow the
exact default hyperparameter settings of DREAMPlace [24].

B. TNS and WNS Improvement
It is important to determine when we should set up observation,
perform timing analysis and update net weights. it is impossible
to perform timing analysis at each iteration, as it will introduce
huge overhead. Empirically, cell locations at the earlier stages
are highly overlapped, and thus unreliable for timing analysis. A
possibly appropriate time to perform timing analysis is when the
cells are roughly even out by density forces. In our experiments,
we evaluate timing metrics and update net weights every 15
iterations after the 500th iteration of the global placement.
Additionally, we use hyperparameters manually customized in
Equation (11) to update net weights. We use the evaluation script
provided by the ICCAD 2015 contest to evaluate our placement
result. The results are listed in TABLE II. All the results are
evaluated after Abacus legalization [34]. As shown in the table,
we can achieve a significant improvement on both TNS (46.83%
on average) and WNS (30.27% on average), compared to the
DREAMPlace [24] without any timing-aware optimization.

Also, we implement the classic dynamic net weighting scheme
in [9]. Originally, this net weighting scheme is designed for
timing-driven quadratic placement. We integrate the net weight-
ing part for timing optimization into our implementation and
make a comparison. The results are listed in the second column
of TABLE II. We use boldface to emphasize the best one among
the three results, and color the second one with brown. As shown
in the table, our net weighting scheme can outperform [9] a lot
on TNS. This result brings us very positive enlightenment that it
is absolutely useful to consider timing-aware optimization at the
global placement stage. Both TNS and WNS can be improved a
lot compared to DREAMPlace without any timing optimization.

C. Visualization
To visualize the impact of net weighting on TNS and WNS, we
take superblue18 as an example and plot the TNS and WNS
values after the 300th iteration in Fig. 5. Starting from the 300th
iteration, the cells have begun repelling each other, and therefore
the wirelength keeps increasing, which also decreases TNS and
WNS. The blue curves correspond to the results without timing
optimization, while the red curves illustrate how the objectives
vary with net weighting. We scatter red squares to emphasize
the timing iterations.

300 400 500 600 700

-90

-80

-70

-60

-50

-40

-30

TNS
(105ps)

Placement Iterations

TNS (net weighting)
TNS (equal weights)

timing iteration

(a) The TNS curve in placement

300 400 500 600 700

-20

-18

-16

-14

-12

-10

-8

WNS
(103ps)

Placement Iterations

WNS (net weighting)
WNS (equal weights)

timing iteration

(b) The WNS curve in placement

Fig. 5 The TNS and WNS values at each placement iteration
after the 300th iteration for superblue18.

9.35%
Parsing & Initialization

7.03%
Timing Analysis

30.34%

Core Placement

5.93%

Net Weighting44.3%

RC Tree Construction

3.05%

Others

Fig. 6 The runtime breakdown on ICCAD2015 contest bench-
mark superblue18.

• At nearly every timing iteration, marked with red color in
Fig. 5, TNS can get improved at once, especially when
starting to break the balance of net weights.

• WNS will quickly and significantly be optimized after one
or two net weighting steps. After that, it almost remains
stable during the later stages of global placement.

Providing that our net weighting algorithm works on every net
instead of those only on some critical paths at a timing iteration,
it is quite reasonable to be effective when optimizing TNS, which
may incorporate numerous critical or nearly critical paths. As for
WNS, which may only give information about the worst path, it
will be quickly optimized when first applying net weighting. At
later stages, other critical or nearly critical paths will be taken
more into consideration, and that is an important reason why it
is hard to further optimize WNS during global placement.

D. Runtime Breakdown
Compared to DREAMPlace [24] which is very powerful to
optimize cell locations with GPUs, timing-driven placement
must take extra costs to perform STA and translate the feedbacks
to certain operations. Hence, it is unavoidable to significantly
sacrifice runtime performance for timing optimization.

The runtime results are listed in the third column of TABLE II,
with column name RT. Our weighting scheme is faster than
[24] + [9], as we do not need to explicitly extract critical
paths.Compared to [24] without any timing-aware optimization,
we roughly take 5 times runtime to optimize negative slacks.

Fig. 6 plots the runtime breakdown for superblue18. We
are still facing the runtime bottleneck dominated by the RC

TABLE II Comparison among DREAMPlace [24], DREAMPlace [24]+ [9], and our algorithm. The best results are emphasized
with boldface, and the second-best results are colored in brown.

case DREAMPlace [24] DREAMPlace [24]+ [9] Ours
TNS (105ps) WNS (103ps) RT (s) TNS (105ps) WNS (103ps) RT (s) TNS (105ps) WNS (103ps) RT (s)

superblue1 -252.359 -18.5414 164.69 -121.963 -13.1548 1320.73 -85.0315 -14.1031 977.56
superblue3 -88.4701 -33.2509 153.95 -61.2222 -15.6518 1247.24 -54.7427 -16.4341 952.11
superblue4 -196.498 -21.4654 112.33 -177.800 -11.8600 910.77 -144.380 -12.7808 610.26
superblue5 -208.943 -48.4825 202.87 -108.019 -47.7110 1758.97 -95.7820 -26.7602 1343.46
superblue7 -161.989 -20.3957 249.32 -84.3107 -19.9126 1968.70 -63.8629 -15.2163 1537.42
superblue10 -839.134 -33.7599 308.81 -786.359 -29.0470 1871.55 -768.748 -31.8796 1288.63
superblue16 -438.267 -16.8146 102.88 -175.543 -18.5297 875.13 -124.181 -12.1115 542.15
superblue18 -90.4280 -20.1261 104.06 -69.4700 -11.7831 887.29 -47.2458 -11.8705 657.47

Average Ratio ×2.150 ×1.539 ×0.177 ×1.267 ×1.167 ×1.395 ×1.000 ×1.000 ×1.000

tree construction. It is accomplished on CPUs and thus time-
consuming, especially for large nets. Considering that STA must
be called multiple times to incorporate changes of cell locations,
the overhead of RC tree construction and STA should be the
main focus for acceleration.

V. CONCLUSION

In this paper, we propose a momentum-based net weighting
scheme for timing-driven global placement and improve the pre-
conditioner accordingly. The evaluation results on ICCAD2015
contest benchmarks show that we can achieve a significant
improvement on both TNS and WNS. The results of this
paper enlighten us that, although most timing-aware optimization
methods are performed at incremental stages, it is still very
effective to consider timing at the earlier stages of physical
design, especially global placement.

ACKNOWLEDGEMENT

This work is supported by The Research Grants Council of Hong
Kong SAR (No. CUHK14209420) and HiSilicon.

REFERENCES

[1] I. L. Markov, J. Hu, and M.-C. Kim, “Progress and challenges in VLSI
placement research,” Proceedings of the IEEE, vol. 103, no. 11, pp. 1985–
2003, 2015.

[2] M. Burstein and M. N. Youssef, “Timing influenced layout design,” in
Proc. DAC, 1985, pp. 124–130.

[3] A. E. Dunlop, V. D. Agrawal, D. N. Deutsch, M. Jukl, P. Kozak, and
M. Wiesel, “Chip layout optimization using critical path weighting,” in
Proc. DAC, 1984, pp. 133–136.

[4] H. Chang, E. Shragowitz, J. Liu, H. Youssef, B. Lu, and S. Sutanthavibul,
“Net criticality revisited: An effective method to improve timing in physical
design,” in ispd, 2002, pp. 155–160.

[5] T. Kong, “A novel net weighting algorithm for timing-driven placement,”
in Proc. ICCAD, 2002, pp. 172–176.

[6] B. Halpin, C. R. Chen, and N. Sehgal, “A sensitivity based placer for
standard cells,” in Proceedings of the 10th Great Lakes symposium on
VLSI, 2000, pp. 193–196.

[7] T.-Y. Wang, J.-L. Tsai, and C. C.-P. Chen, “Sensitivity guided net weighting
for placement driven synthesis,” in Proc. ISPD, 2004, pp. 124–131.

[8] Z. Xiu and R. A. Rutenbar, “Timing-driven placement by grid-warping,”
in Proc. DAC, 2005, pp. 585–591.

[9] H. Eisenmann and F. M. Johannes, “Generic global placement and floor-
planning,” in Proc. DAC, 1998, pp. 269–274.

[10] B. M. Riess and G. G. Ettelt, “Speed: Fast and efficient timing driven
placement,” in Proc. ISCAS, vol. 1, 1995, pp. 377–380.

[11] B. Obermeier and F. M. Johannes, “Quadratic placement using an improved
timing model,” in Proc. DAC, 2004, pp. 705–710.

[12] A. B. Kahng, J. Lienig, I. L. Markov, and J. Hu, VLSI physical design:
from graph partitioning to timing closure. Springer Science & Business
Media, 2011.

[13] W. K. Luk, “A fast physical constraint generator for timing driven layout,”
in Proc. DAC, 1991, pp. 626–631.

[14] T. Gao, P. M. Vaidya, and C. Liu, “A Performance Driven Macro-Cell
Placement Algorithm.” in Proc. DAC, 1992, pp. 147–152.

[15] R.-S. Tsay and J. Koehl, “An analytic net weighting approach for perfor-
mance optimization in circuit placement,” in Proc. DAC, 1991, pp. 620–
625.

[16] K. Rajagopal, T. Shaked, Y. Parasuram, T. Cao, A. Chowdhary, and
B. Halpin, “Timing driven force directed placement with physical net
constraints,” in ispd, 2003, pp. 60–66.

[17] A. Chowdhary, K. Rajagopal, S. Venkatesan, T. Cao, V. Tiourin, Y. Para-
suram, and B. Halpin, “How accurately can we model timing in a placement
engine?” in Proc. DAC, 2005, pp. 801–806.

[18] M. A. Jackson and E. S. Kuh, “Performance-driven placement of cell based
IC’s,” in Proc. DAC, 1989, pp. 370–375.

[19] W. Swartz and C. Sechen, “Timing driven placement for large standard
cell circuits,” in Proc. DAC, 1995, pp. 211–215.

[20] T. Hamada, C.-K. Cheng, and P. M. Chau, “Prime: A timing-driven
placement tool using a piecewise linear resistive network approach,” in
Proc. DAC, 1993, pp. 531–536.

[21] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representa-
tions by back-propagating errors,” vol. 323, no. 6088, pp. 533–536, 1986.

[22] J. Lu, P. Chen, C.-C. Chang, L. Sha, D. J.-H. Huang, C.-C. Teng, and C.-K.
Cheng, “ePlace: Electrostatics-based placement using fast fourier transform
and Nesterov’s method,” vol. 20, no. 2, pp. 1–34, 2015.

[23] M.-C. Kim, J. Hu, J. Li, and N. Viswanathan, “ICCAD-2015 CAD
contest in incremental timing-driven placement and benchmark suite,” in
Proc. ICCAD, 2015, pp. 921–926.

[24] Y. Lin, Z. Jiang, J. Gu, W. Li, S. Dhar, H. Ren, B. Khailany, and D. Z. Pan,
“Dreamplace: Deep learning toolkit-enabled gpu acceleration for modern
vlsi placement,” IEEE TCAD, 2020.

[25] M.-K. Hsu, Y.-W. Chang, and V. Balabanov, “TSV-aware analytical place-
ment for 3D IC designs,” in Proc. DAC, 2011, pp. 664–669.

[26] M.-K. Hsu, V. Balabanov, and Y.-W. Chang, “TSV-aware analytical place-
ment for 3-D IC designs based on a novel weighted-average wirelength
model,” IEEE TCAD, vol. 32, no. 4, pp. 497–509, 2013.

[27] N. Maheshwari and S. S. Sapatnekar, “Timing Analysis of Sequential
Circuits,” in Timing Analysis and Optimization of Sequential Circuits.
Springer, 1999, pp. 7–31.

[28] R. B. Hitchcock, “Timing verification and the timing analysis program,”
in Proc. DAC, 1982, pp. 594–604.

[29] D. Z. Pan, B. Halpin, and H. Ren, “21 Timing-Driven Placement,”
Handbook of Algorithms for Physical Design Automation, p. 423, 2008.

[30] C. Chu and Y.-C. Wong, “FLUTE: Fast lookup table based rectilinear
Steiner minimal tree algorithm for VLSI design,” IEEE TCAD, vol. 27,
no. 1, pp. 70–83, 2007.

[31] W. C. Elmore, “The transient response of damped linear networks with
particular regard to wideband amplifiers,” Journal of applied physics,
vol. 19, no. 1, pp. 55–63, 1948.

[32] T.-W. Huang and M. D. Wong, “OpenTimer: A high-performance timing
analysis tool,” in Proc. ICCAD, 2015, pp. 895–902.

[33] Z. Guo, T.-W. Huang, and Y. Lin, “Gpu-accelerated static timing analysis,”
in Proc. ICCAD, 2020, pp. 1–9.

[34] P. Spindler, U. Schlichtmann, and F. M. Johannes, “Abacus: Fast legal-
ization of standard cell circuits with minimal movement,” in Proc. ISPD,
2008, pp. 47–53.

