
DREAMPlace 4.0: Timing-driven Global Placement with
Momentum-based Net Weighting

Peiyu Liao1,2, Siting Liu1,2, Zhitang Chen3, Wenlong Lv3, Yibo Lin1, Bei Yu2

1Peking University 2The Chinese University of Hong Kong
3Huawei Noah’s Ark Lab



Outline

Introduction
VLSI Placement and Challenges
Overall Contribution

Algorithms
Net Weighting Scheme
Preconditioning

Results

Summary



Outline

Introduction
VLSI Placement and Challenges
Overall Contribution

Algorithms
Net Weighting Scheme
Preconditioning

Results

Summary



VLSI Placement and Challenges

Modern VLSI size and design complexity
are growing rapidly.

I Billions of cells in a single design.

I Performance requirements.

I Different design rules and
constraints.

Apple A15 IBM Power10 Apple M1 Max

15 B 18 B 57 B

Placement and timing closure are chal-
lenging tasks in modern VLSI design.

Logic Synthesis

Placement

Timing Closure

Clock Tree Synthesis

Timing Closure

Routing

Timing Closure



VLSI Placement and Challenges

Modern VLSI size and design complexity
are growing rapidly.

I Billions of cells in a single design.

I Performance requirements.

I Different design rules and
constraints.

Apple A15 IBM Power10 Apple M1 Max

15 B 18 B 57 B

Placement and timing closure are chal-
lenging tasks in modern VLSI design.

Logic Synthesis

Placement

Timing Closure

Clock Tree Synthesis

Timing Closure

Routing

Timing Closure



VLSI Placement and Challenges

Modern VLSI size and design complexity
are growing rapidly.

I Billions of cells in a single design.

I Performance requirements.

I Different design rules and
constraints.

Apple A15 IBM Power10 Apple M1 Max

15 B 18 B 57 B

Placement and timing closure are chal-
lenging tasks in modern VLSI design.

Logic Synthesis

Placement

Timing Closure

Clock Tree Synthesis

Timing Closure

Routing

Timing Closure



VLSI Placement and Challenges

Good wirelength does not mean good timing.

I Making nets on critical paths shorter is beneficial to timing.

I We have to sacrifice wirelength of those nets sharing common cells.

I Other paths may become critical after some cell movements during global
placement.



VLSI Placement and Challenges

Good wirelength does not mean good timing.

I Making nets on critical paths shorter is beneficial to timing.

I We have to sacrifice wirelength of those nets sharing common cells.

I Other paths may become critical after some cell movements during global
placement.



VLSI Placement and Challenges

Good wirelength does not mean good timing.

I Making nets on critical paths shorter is beneficial to timing.

I We have to sacrifice wirelength of those nets sharing common cells.

I Other paths may become critical after some cell movements during global
placement.



VLSI Placement and Challenges

I It is hard to directly optimize timing in normal wirelength-driven placement.

I Timing-driven placement seeks cell locations to optimize timing violations.

sTNS =
∑
j∈PO

sj , sWNS = min
j∈PO

sj . (1)

I How can we optimize timing violations in global placement?

min
x .y

∑
e∈E

W (e; x , y) + λD(x , y).

I Provide hints to placer by net weighting.

min
x.y

∑
e∈E

we W (e; x , y) + λD(x , y)

so that the placer will try to make nets with higher weights shorter.



VLSI Placement and Challenges

I It is hard to directly optimize timing in normal wirelength-driven placement.

I Timing-driven placement seeks cell locations to optimize timing violations.

sTNS =
∑
j∈PO

sj , sWNS = min
j∈PO

sj . (1)

I How can we optimize timing violations in global placement?

min
x .y

∑
e∈E

W (e; x , y) + λD(x , y).

I Provide hints to placer by net weighting.

min
x.y

∑
e∈E

we W (e; x , y) + λD(x , y)

so that the placer will try to make nets with higher weights shorter.



VLSI Placement and Challenges

I It is hard to directly optimize timing in normal wirelength-driven placement.

I Timing-driven placement seeks cell locations to optimize timing violations.

sTNS =
∑
j∈PO

sj , sWNS = min
j∈PO

sj . (1)

I How can we optimize timing violations in global placement?

min
x .y

∑
e∈E

W (e; x , y) + λD(x , y).

I Provide hints to placer by net weighting.

min
x.y

∑
e∈E

we W (e; x , y) + λD(x , y)

so that the placer will try to make nets with higher weights shorter.



Prior Works

I Most timing-driven optimization techniques are performed incrementally.

I Path-based approaches may not be suitable for global placement as the runtime
overhead is large.

I Prior works on timing-driven global placement using net weighting are compared
in the following table.

Work Dynamic Slack-based History Information

Riess’95 X X
Eisenmann’98 X X
Kong’02 X
Kahng’04 X X
Ren’05 X
Ours X X X



Overall Contribution

We integrate timing optimization into electrostatic-based global placement.

I Momentum-based net weighting. At each timing iteration, we expect to assign
weights to different nets by incorporating the current slacks within the existing
criticality information.

I Preconditioning technique for net weighting. The preconditioner proposed by
the original ePlace1 algorithm does not consider different net weights. We enhance
the preconditioner to adapt different net weights when optimizing cell locations.

Experimental results using the ICCAD 2015 incremental TDP contest benchmarks
show that our net weighting scheme is effective.

1Jingwei Lu et al. (2015). “ePlace: Electrostatics-based placement using fast fourier transform and
Nesterov’s method”. In: 20.2, pp. 1–34.



Outline

Introduction
VLSI Placement and Challenges
Overall Contribution

Algorithms
Net Weighting Scheme
Preconditioning

Results

Summary



Overall Flow

Global Placement

Placement Optimization

Gradient Computation

Cell Location Optimization

Is Timing Iteration?
No

Yes

Timing-aware Net weighting

RC Tree Generation

Static Timing Analysis

Net Weight Updates

Converge?

Yes

No

Legalization

We focus on the following questions.

I How to determine whether to perform timing
analysis at each gradient-based iteration.

I How to construct RC trees and feed them
into the timer for static timing analysis.

I How to update net weights according to the
results of static timing analysis.



Overall Flow

How to determine whether to perform timing analysis at each gradient-based iteration?

I Cell locations at earlier stages of global placement are unreliable.

I We do not have enough budget to optimize cell locations at very late stages of
global placement, as they almost converge.

I Timing analysis is time-consuming, so it should not be called too frequently.

I Empirically, we perform timing analysis every 15 iterations after the 500th
iteration of global placement, when the overflow is less than 0.5.



Overall Flow

How to determine whether to perform timing analysis at each gradient-based iteration?

I Cell locations at earlier stages of global placement are unreliable.

I We do not have enough budget to optimize cell locations at very late stages of
global placement, as they almost converge.

I Timing analysis is time-consuming, so it should not be called too frequently.

I Empirically, we perform timing analysis every 15 iterations after the 500th
iteration of global placement, when the overflow is less than 0.5.



RC Tree construction

How to construct RC trees and feed them into the timer for static timing analysis?

I We need to translate cell locations into certain RC information.

I The Elmore delay model is used. In global placement stage, routing is not done
yet, so it is not meaningful to consider very accurate timing model.

I We use FLUTE2 to generate Steiner trees.

p1 s1

s2

p2

p3

p4

(a) A Steiner tree example

p1 s1

p3

s2

p2

p4

(b) The corresponding
RCT

2Chris Chu and Yiu-Chung Wong (2007). “FLUTE: Fast lookup table based rectilinear Steiner
minimal tree algorithm for VLSI design”. In: IEEE TCAD 27.1, pp. 70–83.



Net Criticality

Our placement database considers criticality value as a guide to update net weights.

Let c
(m)
e denote the criticality of net e at the m-th timing iteration.

I For arbitrary net e, the initial criticality value c
(0)
e defaults to be 0.

I The momentom of criticality value of net e is defined as

c
(m)
mom,e =


0, if s

(m)
wns ≥ 0;

max

{
0,

s
(m)
e

s
(m)
wns

}
, otherwise,

(2)

where s
(m)
e , s

(m)
wns are the net slack of e and the worst negative slack at the m-th

timing iteration, respectively.

I We care negative slack only.



Net Criticality

Our placement database considers criticality value as a guide to update net weights.

Let c
(m)
e denote the criticality of net e at the m-th timing iteration.

I For arbitrary net e, the initial criticality value c
(0)
e defaults to be 0.

I The momentom of criticality value of net e is defined as

c
(m)
mom,e =


0, if s

(m)
wns ≥ 0;

max

{
0,

s
(m)
e

s
(m)
wns

}
, otherwise,

(2)

where s
(m)
e , s

(m)
wns are the net slack of e and the worst negative slack at the m-th

timing iteration, respectively.

I We care negative slack only.



Net Criticality

Our placement database considers criticality value as a guide to update net weights.

Let c
(m)
e denote the criticality of net e at the m-th timing iteration.

I For arbitrary net e, the initial criticality value c
(0)
e defaults to be 0.

I The momentom of criticality value of net e is defined as

c
(m)
mom,e =


0, if s

(m)
wns ≥ 0;

max

{
0,

s
(m)
e

s
(m)
wns

}
, otherwise,

(2)

where s
(m)
e , s

(m)
wns are the net slack of e and the worst negative slack at the m-th

timing iteration, respectively.

I We care negative slack only.



Net Criticality

How to iteratively update criticality value?

I We consider logarithm criticality value instead.

c̃
(m)
e = ln(1 + c

(m)
e ), c̃

(m)
mom,e = ln(1 + c

(m)
mom,e). (3)

I Criticality update rule.

c̃
(m+1)
e = αc̃

(m)
e + (1− α)c̃

(m)
mom,e , (4)

where α ∈ [0, 1] is a hyperparameter.

I Equation (4) considers both history logarithm criticality c̃
(m)
e and the momentum

term computed at the current timing iteration, to avoid possible oscillation.



Net Criticality

How to iteratively update criticality value?

I We consider logarithm criticality value instead.

c̃
(m)
e = ln(1 + c

(m)
e ), c̃

(m)
mom,e = ln(1 + c

(m)
mom,e). (3)

I Criticality update rule.

c̃
(m+1)
e = αc̃

(m)
e + (1− α)c̃

(m)
mom,e , (4)

where α ∈ [0, 1] is a hyperparameter.

I Equation (4) considers both history logarithm criticality c̃
(m)
e and the momentum

term computed at the current timing iteration, to avoid possible oscillation.



Net Criticality

How to iteratively update criticality value?

I We consider logarithm criticality value instead.

c̃
(m)
e = ln(1 + c

(m)
e ), c̃

(m)
mom,e = ln(1 + c

(m)
mom,e). (3)

I Criticality update rule.

c̃
(m+1)
e = αc̃

(m)
e + (1− α)c̃

(m)
mom,e , (4)

where α ∈ [0, 1] is a hyperparameter.

I Equation (4) considers both history logarithm criticality c̃
(m)
e and the momentum

term computed at the current timing iteration, to avoid possible oscillation.



Net Weighting

The core part is to update net weights according to the critivality values.

I Considering that net weights are always positive, we use logarithm net weight,

w̃
(m)
e = lnw

(m)
e .

I The net weighting scheme is determined by w̃
(m+1)
e = w̃

(m)
e + c̃

(m)
e .

I The scheme also follows w
(m+1)
e = (1 + c

(m)
e )w

(m)
e

3, however, the criticality value
is calculated according to specific slack values given by STA, and updated
differently considering history information.

I If we write c̃
(m)
e as ∆w̃

(m)
e , we have

∆w̃
(m+1)
e = α∆w̃

(m)
e + (1− α)c̃

(m)
mom,e , (5)

which is in fact a momentum-based update.

I we work on all nets instead of those only on critical paths.

3Hans Eisenmann and Frank M Johannes (1998). “Generic global placement and floorplanning”.
In: Proc. DAC, pp. 269–274.



Net Weighting

The core part is to update net weights according to the critivality values.

I Considering that net weights are always positive, we use logarithm net weight,

w̃
(m)
e = lnw

(m)
e .

I The net weighting scheme is determined by w̃
(m+1)
e = w̃

(m)
e + c̃

(m)
e .

I The scheme also follows w
(m+1)
e = (1 + c

(m)
e )w

(m)
e

3, however, the criticality value
is calculated according to specific slack values given by STA, and updated
differently considering history information.

I If we write c̃
(m)
e as ∆w̃

(m)
e , we have

∆w̃
(m+1)
e = α∆w̃

(m)
e + (1− α)c̃

(m)
mom,e , (5)

which is in fact a momentum-based update.

I we work on all nets instead of those only on critical paths.

3Hans Eisenmann and Frank M Johannes (1998). “Generic global placement and floorplanning”.
In: Proc. DAC, pp. 269–274.



Net Weighting

The core part is to update net weights according to the critivality values.

I Considering that net weights are always positive, we use logarithm net weight,

w̃
(m)
e = lnw

(m)
e .

I The net weighting scheme is determined by w̃
(m+1)
e = w̃

(m)
e + c̃

(m)
e .

I The scheme also follows w
(m+1)
e = (1 + c

(m)
e )w

(m)
e

3, however, the criticality value
is calculated according to specific slack values given by STA, and updated
differently considering history information.

I If we write c̃
(m)
e as ∆w̃

(m)
e , we have

∆w̃
(m+1)
e = α∆w̃

(m)
e + (1− α)c̃

(m)
mom,e , (5)

which is in fact a momentum-based update.

I we work on all nets instead of those only on critical paths.

3Hans Eisenmann and Frank M Johannes (1998). “Generic global placement and floorplanning”.
In: Proc. DAC, pp. 269–274.



Net Weighting

The core part is to update net weights according to the critivality values.

I Considering that net weights are always positive, we use logarithm net weight,

w̃
(m)
e = lnw

(m)
e .

I The net weighting scheme is determined by w̃
(m+1)
e = w̃

(m)
e + c̃

(m)
e .

I The scheme also follows w
(m+1)
e = (1 + c

(m)
e )w

(m)
e

3, however, the criticality value
is calculated according to specific slack values given by STA, and updated
differently considering history information.

I If we write c̃
(m)
e as ∆w̃

(m)
e , we have

∆w̃
(m+1)
e = α∆w̃

(m)
e + (1− α)c̃

(m)
mom,e , (5)

which is in fact a momentum-based update.

I we work on all nets instead of those only on critical paths.

3Hans Eisenmann and Frank M Johannes (1998). “Generic global placement and floorplanning”.
In: Proc. DAC, pp. 269–274.



Net Weighting

w̃ (m−1)

w̃ (m)

momentum stepvmom

history stepvhis

actual step
w̃ (m+1)

I Prevent drastic update.

I Update net weights based on history
steps.

I Adjust weighting update direction
according to the momentum step
determined by STA results.



Preconditioning

In numerical optimization, preconditioning is a very important step to reduce the
condition number of an optimization problem.

I The ePlace4 preconditioner only considers diagonal entries of the Hessian matrix.

I Let f be the overall objective function of global placement. The i-th entry of the
Hessian matrix Hf with respect to horizontal location x is

∂2f

∂x2i
=

∑
e∈E

we
∂2W (e; x , y)

∂x2i
+ λ

∂2D(x , y)

∂x2i
≈

∑
e∈E

we + λqi , (6)

where qi is the quantity of electrical charge of the i-th node.

4Jingwei Lu et al. (2015). “ePlace: Electrostatics-based placement using fast fourier transform and
Nesterov’s method”. In: 20.2, pp. 1–34.



Preconditioning

In numerical optimization, preconditioning is a very important step to reduce the
condition number of an optimization problem.

I The ePlace4 preconditioner only considers diagonal entries of the Hessian matrix.

I Let f be the overall objective function of global placement. The i-th entry of the
Hessian matrix Hf with respect to horizontal location x is

∂2f

∂x2i
=

∑
e∈E

we
∂2W (e; x , y)

∂x2i
+ λ

∂2D(x , y)

∂x2i
≈

∑
e∈E

we + λqi , (6)

where qi is the quantity of electrical charge of the i-th node.

4Jingwei Lu et al. (2015). “ePlace: Electrostatics-based placement using fast fourier transform and
Nesterov’s method”. In: 20.2, pp. 1–34.



Outline

Introduction
VLSI Placement and Challenges
Overall Contribution

Algorithms
Net Weighting Scheme
Preconditioning

Results

Summary



Results

s1 s3 s4 s5 s7 s10 s16 s18

0

200

400

600

800

TNS (−105ps)

DREAMPlace

DREAMplace+5

Ours

s1 s3 s4 s5 s7 s10 s16 s18

0

200

400

600

800

1000

WNS (−103ps)

DREAMPlace

DREAMplace+5

Ours

I Compared to DREAMPlace: 47% TNS and 30% WNS improvement.

I Compared to DREAMPlace+5: 20% TNS and 9% WNS improvement.

5Hans Eisenmann and Frank M Johannes (1998). “Generic global placement and floorplanning”.
In: Proc. DAC, pp. 269–274.



Results

I We conduct the experiments on the ICCAD2015 contest benchmark suites. The
TNS and WNS values at each placement iteration after the 300th iteration for
superblue18 are shown in the following figure.

300 400 500 600 700

-90

-80

-70

-60

-50

-40

-30

TNS

(105ps)

Placement Iterations

TNS (net weighting)
TNS (equal weights)

timing iteration

(c) The TNS curve in placement

300 400 500 600 700

-20

-18

-16

-14

-12

-10

-8

WNS

(103ps)

Placement Iterations

WNS (net weighting)
WNS (equal weights)

timing iteration

(d) The WNS curve in placement



Results

I The wirelength-driven placer is DREAMPlace6. The timer we use is OpenTimer7.

I At nearly every timing iteration, marked with red color, TNS can get improved at
once, especially when starting to break the balance of net weights.

I WNS will quickly and significantly be optimized after one or two net weighting
steps. After that, it almost remains stable during the later stages of global
placement.

I At later stages, other critical or nearly critical paths will be taken more into
consideration, and that is an important reason why it is hard to further optimize
WNS during global placement.

6Yibo Lin et al. (2020). “Dreamplace: Deep learning toolkit-enabled gpu acceleration for modern
vlsi placement”. In: IEEE TCAD.

7Tsung-Wei Huang and Martin DF Wong (2015). “OpenTimer: A high-performance timing
analysis tool”. In: Proc. ICCAD, pp. 895–902.



Results

The runtime breakdown on ICCAD2015 contest benchmark superblue18.

9.35 %
Parsing & Initialization

7.03 %
Timing Analysis

30.34 %

Core Placement

5.93 %

Net Weighting44.3 %

RC Tree Construction

3.05 %

Others

I We are still facing the runtime bottleneck dominated by the RC tree construction.

I Modifying net weights will also affect the total number of iterations to converge.

I Considering that STA must be called multiple times to incorporate changes of cell
locations, the overhead of RC tree construction and STA should be the main
focus for acceleration.



Outline

Introduction
VLSI Placement and Challenges
Overall Contribution

Algorithms
Net Weighting Scheme
Preconditioning

Results

Summary



Summary

I We propose a momentum-based net weighting scheme for timing-driven global
placement and improve the preconditioner accordingly.

I The evaluation results on ICCAD2015 contest benchmarks show that we can
achieve a significant improvement on both TNS and WNS.

I The results of this paper enlighten us that, although most timing-aware
optimization methods are performed at incremental stages, it is still very effective
to consider timing at the earlier stages of physical design, especially global
placement.



Thank You!


	Main Talk
	Introduction
	VLSI Placement and Challenges
	Overall Contribution

	Algorithms
	Net Weighting Scheme
	Preconditioning

	Results
	Summary


