Mixed-Cell-Height Legalization on CPU-GPU
Heterogeneous Systems

Haoyu Yang!, Kit Fung?,

IhnVIDIA

haoyuy@nvidia.com,

Abstract—Legalization conducts refinements on post-global-
placement cell location to compromise design constraints and
parameters. These include placement fence regions, power/ground
rail alignments, timing, wire length and etc. In advanced technology
nodes, designs can easily contain millions of mutiple-row standard
cells, which challenges the scalability of modern legalization algo-
rithms. In this paper, for the first time, we investigate dedicated
legalization algorithms on heterogeneous platforms, which promises
intelligent usage of CPU and GPU resources and hence provides
new algorithm design methodologies for large scale physical de-
sign problems. Experimental results on IC/CAD 2017 and ISPD
2015 contest benchmarks demonstrate the effectiveness and the
efficiency of the proposed algorithm, compared to the state-of-the-
art legalization solution for mixed-cell-height designs.

I. INTRODUCTION

Legalization is a critical step frequently invoked in modern
backend optimization flow. It is often a required step to clean up
any design rule violations after global placement optimization
or engineering change order (ECO) steps [1] (see Fig. 1). In
advanced technology nodes, legalization has to handle large-
scale designs with complicated design constraints. Million-size
designs are becoming common and constraints like fence regions
and multi-row cells increase the difficulty in searching for legal
solutions [2], [3]. Meanwhile, the quality of legalization has
high impacts on the performance of the follow-up steps like
detailed placement and even routing. Thus, ultrafast yet high-
quality legalization algorithms are desired to speedup design
closure.

Existing legalization algorithms mostly follow a sequential
and greedy procedure. NTUplace series adopt Tetris-like ap-
proaches [4]-[7] to sort the cells from left to right or right to left
and find empty spaces for cells one by one. FastPlace [8], [9] and
BonnPlace [10] series choose to distribute cells into bins first
and then perform row-based algorithms to remove overlaps [11]-
[13]. To handle multi-row cells, Chen et al. [14], [15] propose
to perform full-chip ordered-row legalization algorithm with
relaxed right boundaries and greedily fix the out-of-boundary
cells with Tetris-like approaches. Chow et al. [16] propose
a multi-row local legalization (MLL) algorithm to search for
the insertion points for each multi-row cell in a window and
choose the one with minimum perturbation. Eh?Placer [17], [18]
develops a successive shortest path based algorithm to gradually
push cells away from congested regions and remove overlaps.
While these algorithms can effectively remove overlaps and
design rule violations, they are usually implemented on CPUs
without enough parallelism for acceleration.

Recently, several successful attempts to accelerate placement

Yuxuan Zhao?,
2Chinese University of Hong Kong

Yibo Lin®, Bei Yu?
3Peking University

byul@cse.cuhk.edu.hk, yibolin@pku.edu.cn

(a) Global Placement

(b) Legalization

Fig. 1 Legalization cleans global placement design rule viola-
tions and compromises design constraints and parameters.

algorithms on heterogeneous platforms with CPUs and GPUs
have been demonstrated, including global placement [19], [20]
and detailed placement [21], [22]. By exploring the massive
parallelism in fine granularity, GPU can achieve significant
speedup for tasks that are too small to afford the threading
overhead on CPU. However, very few efforts have been spent
on investigating the possibility of accelerated legalization algo-
rithms so far. Li et al. [23] propose multi-row global legalization
(MGL) that explores the parallelism of Chow’s MLL algorithm
by simultaneously searching the insertion points of multiple
cells that are far away from each other, while the speedup
saturates quickly to 1.13x with 8 or more threads. There are also
attempts to use integer linear programming (ILP) for legalizing
a local region with minimum perturbation [16], [24]. While
disjoint regions can be executed in parallel, the runtime is still
unacceptable due to the exponential complexity of solving ILP
instances.

To accommodate the demand for ultrafast legalization, in this
work, we propose a heterogeneous legalization algorithm for
large-scale mixed-cell-height designs leveraging hybrid CPU-
GPU platforms. We explore the massive parallelism and develop
dedicated GPU acceleration techniques for legalization algo-
rithms in advanced technology nodes. The major contributions
are summarized as follows.

o For the first time, we propose an ultrafast legalization
framework on heterogeneous computing platforms, target-
ing at further speedup design closure.

o We propose dedicated CPU and GPU legalization algo-
rithms that promise efficient utilization of CPU and GPU
resources respectively.

o We also develop a legalization-aware task scheduling al-
gorithm that can efficiently distribute cell legalization jobs
properly on computing resources.

« Experimental results on ISPD 2015 [3] and IC/CAD 2017
contest benchmarks [2] demonstrate that the proposed
algorithm can achieve 2 x —4x speedup without quality

1 A
Col—=cuf Co

(@ () (©
— Power/Ground Rail = Local Legalized Cell
21 Candidate Insertion Points Target Cell GP Location

Fig. 2 Visualization of multi-row global legalization algorithm
in [23]: (a) Local cell search; (b) Insertion interval evaluation;
(c) Target cell legalization.

degradation compared to the state-of-the-art multi-threaded
legalizer [23].

II. PRELIMINARIES

A. Legalization Basis

Given a set of multi-row cells € = {¢;} and their global
placement location (x;,y;), legalization dispatches placed cells
to compromise design constraints. As introduced in IC/CAD
2017 Contest [2], legalized cells are (1) not overlapping with
each other (2) aligned with layout power lines and (3) entirely
placed within assigned fences and regions. According to [3],
fence regions are hard constraints that cells assigned to a fence
region must be placed inside its boundary, and cells not assigned
to it must be placed outside that boundary.

Additionally, to preserve the optimized global placement
quality, legalization is expected to introduce smallest cell dis-
placements. Let (x}, ;) be the location of a legalized cell ¢;. The
legalization displacement §; is defined with Manhattan distance

bi = |zi — x| + |ys — il (H
A good legalization will make as smallest movements as possi-

ble. Thus the legalization quality is hence evaluated with average
displacement score following [2]:

1 1
Sam = = di, @
’ ‘:}(' f;f |eh| C;h
where J{ is the set of all possible cell heights, €, is the set of
cells that have height h and |€},| is the total number of instances

in set Cy,.

B. Multi-row Global Legalization

To handle multi-row cells, Multi-row Global Legalization
(MGL) algorithm is proposed recently [23], which is among
state-of-the-art techniques. Fig. 2 visualizes the basic idea of
MGL. The algorithm takes an unplaced cell as input and place
the cell into a local region near its global placement location.
Here, ¢, is the target cell for legalization, and ¢;’s, ¢ = 1,2,3,4
are legalized local cells within the rectangular local region W,,.
MGL tries to find all the possible positions in W, that fit ¢,
and chooses the one achieving the best overall displacement in
the local region after inserting c,. To avoid unnecessary cell
displacements, MGL collects W,, centered at the the global
placement position of c,,. For cells that cannot fit into their local
regions, it also gradually increases the window sizes until all the
cells are legalized. Results of [23] have demonstrated promising
legalization quality. However, with increased complexity and

[
t

30.00

—_
o
T
|

20.00

10.00

MGL Time (s)
o c‘n
|
1
1
—

0.00 : :
IT 4T 10T 500,000 1,000,000

of Threads # of Cells
(a) (b)
Fig. 3 MGL runtime scales with (a) multi-threading enabled

on des_perf_1 and (b) increasing cell number on 8-thread
execution.

- :
B e |G)/ [Biocko
8 CoCrrrrrrrn (ool |
| Cache |§|||||||||||||BloCkl [
B [n e
DRAM | DRAM ‘ (Blociov || || HARGRN

(@) (®) ©

Fig. 4 Comparison between CPU and GPU architectures. (a)
Multi-core CPU architecture. (b) GPU architecture. (c) GPU
thread hierarchy.

sizes of modern chip designs, legalization overhead cannot be
ignored in the physical design flow. Fig. 3(a) plots the runtime
scaling of MGL with the number of threads and the benefits start
to degrade with eight threads and beyond. With the number of
cells growing to beyond millions, legalization overhead becomes
significant in physical design especially when it needs to be
invoked repeatedly during optimization, as shown in Fig. 3(b).

C. CPU Versus GPU

Fig. 4 illustrates the differences between the representative
multi-core CPU architecture and GPU architecture. Although
modern CPU and GPU share similar design hierarchy with
ALUs, caches, controller and main memory, these components
usually come with different scale and characteristics. CPUs are
usually designed with small number of powerful ALUs that
support a complicated instruction set, with the help of large
data caches and strong control units. GPUs, on the other hand,
are equipped with computing unit grids of thread blocks and
simple control units, which favor massive parallel execution of
light-weighted tasks [25] and bring opportunities for efficient
legalization algorithms.

III. HETEROGENEOUS LEGALIZATION
A. Overall Flow

The overall flow of our heterogeneous legalization framework
is summarized in Fig. 5, which includes task scheduling, CPU
and GPU legalization kernels. The target of task scheduling is to
provide high parallelism and attain legalization quality. This is
achieved by assigning cells to the correct device (CPU or GPU)
at a proper runtime phase. CPU and GPU legalization kernels
are the central components that complete the legalization tasks.

Global Placement

<~ Cell Grouping
1 ~-» 2 --» ... —-» N
< Fetch Group in Order

Unlegalized Cell in Group

Legalized Group

A

Fig. 5 Flow Summary of Heterogeneous Legalization.

Unlegalized Cells
Legalized Cells

B. CPU Legalization

We first introduce the CPU Legalization algorithm that places a
given cell into a legalized location with minimum movements
w.r.t. its GP position. Overall the CPU legalization algorithm
includes local region extraction, cell insertion point evaluation
and cell legalization, which resembles MGL [23] with improved
techniques for better runtime.

Local Region Extraction. According to the objectives of
legalization, a cell ¢, should not be moved far away from
its GP position to preserve the GP quality. Therefore, the cell
legalization/placement region is supposed to be close to its
initial coordinates. Here, following [16], we select a rectangular
window W,, with size (h, w) that is centered at ¢,,’s GP position.
'W,, will be the region where legalization of c,, happens and cells
outside 'W,, will not be affected. Intuitively, CPU legalization
can be applied on multiple cells simultaneously as long as their
corresponding windows are not overlapped with each other. We
will discuss the details of supporting parallelization run later in
Section III-D.

After we get the initial search space W,,, we need to collect all
the legalized cells (local cells) that touch the window, which will
interact with the target cell to be legalized. The simplest way is
looping over all the placed cells and comparing their coordinates
with W,,, as shown in Fig. 6(a). However, in modern large scale
designs, there are usually millions of cells to check, which is
far more than the number of threads that can be allocated on
both CPU and GPU. Thus the O(n) complexity makes this step
be the runtime bottleneck. To address the concern, we propose
an indexed approach to balance the parallelism and resource
demands. Here we store all the legalized cells hierarchically into
different bins instead of flattened arrays that can reduce the cell
query operation into O(logn). Observing that cells are seldom
moved vertically during the legalization procedure, the entire
chip is divided into bins along y-axis. Such bin construction
strategy significantly reduces local cell search region as well
as controls the overhead that assign legalized cell into certain
bins. However, this technique will also cause overhead while
maintaining those bins. Thus it can be disabled if the test case
is extremely small. Now we only need to examine over the bin
regions that touch the legalization window as in Fig. 6(b). Fence

| |
Cr

[ed]

() (b) (©

Fig. 6 Local region extraction with bin-aided local cell search:
(a) Bin extraction; (b) Local cell search on bins that touch the
given search window; (c) Extracted region with local cells.

€2
————————— >

- - P mmmmmmmmmm >
Co Co (&
— &

(d) Interval Jo (f) Interval J4

(e) Interval J3

Fig. 7 Enumeration of placement intervals in different rows.
Intervals in adjacent rows can be jointed together to support
multi-row cell insertion: (a) An example search window with
2 local cells; (b) Bottom row interval with ¢; and co pushed
to right; (c) Bottom row interval with ¢; pushed to left and c;
pushed to right; (d) Bottom row interval with ¢; and ¢y pushed
to left; (e) Top row interval with ¢; and co pushed to left; (f)
Top row interval with co pushed to right.

regions and non-local cells are processed similarly as in MGL.

Insertion Point Evaluation. The next step is to evaluate
the insertion points for the target cell. This includes single-row
insertion interval search, multi-row insertion interval search and
insertion point evaluation. A single-row insertion interval is a
continuous empty area on a row that allows new cell insertion.
Candidate intervals consist of cell-to-cell and cell-to-boundary
spaces. Let ¢; and ¢, be the cells that form a single-row interval.
To find the maximum width of a single-row interval, we push ¢;
and ¢, of each interval to the left most and right most position in
'W.,, while not overlapping with other local cells. To place the
multi-row height cells, we need multi-row insertion intervals
which can be formed by combining the single-row insertion
intervals. An example of insertion point enumeration is depicted
in Fig. 7.

Cell Legalization. After finding out the best insertion point,
we can insert the target cell and move the other local cells in
case overlapping occurs. To do so, we build up the neighboring
relationship of the local cells and then we can do a breath-
first search to place target cell and spread away the overlapped
local cells. If a local cell is moved left/right, check whether it
will overlap to its left/right neighbor and resolve overlapping by
further finetuning.

C. GPU Legalization

The core of GPU legalization algorithm lies in the design
of GPU kernel functions which should support multi-level
parallelism to maximize computation power. To accommodate
the GPU thread hierarchy, each thread block is responsible

Threads Cell Search Assignment
W; 0 — PlacedCell0 —> 0 [—> 2
| > PlacedCelll —» 1 |— 2
Block i =
§
N-1 —»{ Placed CellN-1 —» 0 —>» &
(@
Threads Window Refinement
W; 0 — Row 0 > New Row 0 |— £
I > Rowl | NewRowl |- &
Block i =
N-1 —» RowN-1 (— New RowN-1|—+ &
Row 0 — W; Wi
Row 1 —
Row 2 — Refine
Row 3 — | I

()

Fig. 8 GPU local region W, extraction. CUDA thread manage-
ment for (a) local cell search and (b) search window refinement,
where each thread block is responsible for the search window
of one target cell.

to legalize one cell. Note that there are also multiple threads
available in each block which enables algorithm design for lower
level parallelism.

GPU Local Region Extraction. In CPU legalization, local
regions are extracted by checking legalized cells sequentially.
GPU thread hierarchy offers a huge speed up when large amount
of threads can be allocated to conduct local cell search. In
our design, one thread block targets at one search window and
all available threads are working simultaneously to search for
local cells, as shown in Fig. 8(a). We adopt atomic operation
[25] to collect local cells of a given search window in case
of conflicts when multiple threads are making modifications
on same memory space. At the end of this stage, all threads
will be synchoronized to assign placed cells to each individual
search window W;. The search window will be further refined by
considering cells (fixed cells) that touch the window boundary.
Because all cells in the same row are sorted according to
their coordinates, we apply row-level parallelization (each
thread searches fixed cells in a single row) in this step (see
Fig. 8(b)). Compared to sequential CPU runs, above strategy
benefits from GPU thread hierarchy that promises tremendous
runtime improvement.

GPU Insertion Point Evaluation. Similar to the search
window refinement, we also apply row-level parallelism when
extracting single-row insertion intervals with each thread takes
care of one row. The difficulty comes from multi-row intervals,
because there might be a large amount of multi-row com-
binations that is far beyond the number of available threads
in a thread block. CPU easily handles such situation with
queue data structure that is not naturally available in GPU
programming. Brute force solution is hence more preferable that

we generate all possible combinations of single-row intervals
and filter out invalid ones that include illegal combinations and
intervals that are not large enough to place the target cell. The
total number of combinations grows exponentially to the search
window size. To avoid minor cases when there is an extremely
large number of valid combinations that hinders parallelization,
we will disable recursive window search and distribute failed
case to CPU for further processing. Regarding the stage of
insertion point evaluation, we assign each thread to calculate
the cost of a candidate interval and get the best location in each
interval. A parallel reduction will be conducted afterwards on
one predetermined thread to get the best insertion location.

GPU Cell Legalization. For target cells that can be suc-
cessfully inserted, we will still have CPU to spread local cells
and resolve overlapping sequentially, as local cells are strictly
bonded together that leaves little room for parallelization. It
should be also noted that there is no recursive call in GPU
legalization to increase search windows. Thus, it is inevitable
to have failed cases in target cell insertion as will be discussed
in the following section. The overall GPU legalization is sum-
marized in Algorithm 1, which takes the input of a batch of
target cells that can be legalized simultaneously and generates
legalized cells and information of failed cells. Each GPU thread
block is in charge of legalization of one target cell in Cz and
different blocks will work in parallel (lines 2—17). Within each
thread block, multiple threads will first search local cells in
the given search window (lines 3—4); each thread will search
single-row insertion intervals in one legalization row (lines 5-6)
followed by the enumeration of multi-row intervals (lines 8-9);
for thread blocks that find a valid insertion point for their target
cells, multiple threads will simultaneously evaluate the cost of
all valid insertion points and place the target cell in the best
interval (lines 10-16); finally, we will update the information of
all legalized cells and their positions (line 17).

Algorithm 1 GPU Legalization

Require: Batch of target cells Cg = {cu:,¢ = 1,...,N} to be
legalized simultaneously, their GP position (2,i, Yu,:), collection
of all legalized cells € = {¢;},j = 1, ..., M and their GP positions
P ={(zj,y;)} local cell search window (hu, s, Wu:);

Ensure: Updated legalized cell collection €, P and failed cell collec-
tion Cy.

1: Gf <+~ Cp;
2: for each blockIdx: B € [0, N — 1] do

3: for each threadldx: T € [0, M] do

4: Compare W,, g with cr € C;

5: for each threadldx: T € [0, R — 1] do

6: Get single-row intervals in one row 7" of W, p;

7: Collect all single-row intervals in Wy, g;

8: for each threadldx: 7' € [0,C — 1] do

9: Check validity of 7™ multi-row intervals;

10: if W, p contains valid insertion interval then

11: C <+ CUcy,B;

12: €f<—8f/cu,3;

13: for each threadldx: T € [0,C, — 1] do

14: I7 + Evaluate legalization cost of T™ interval;

15: Get the best insertion position according to Irs;

16: Legalize cell c,, g and spread local cells in W,,, g to resolve
overlapping;

17: Update C, P;

The elaborations show that the major difference between
multithreading CPU and GPU is their scale and depth of paral-
lelization. CPU legalization works in parallel scheme with each
CPU thread handling one target cell legalization and insertion
point evaluation are managed by queue structure sequentially.
GPU legalization supports large-scale batches that run with
much more target cells being processed at the same time by
grids of thread blocks while multiple insertion candidates of
one target cell are evaluated simultaneously with massive thread
resources in each thread block.

D. Task Scheduling

Another key part of our heterogeneous legalization framework
is task scheduling which needs to efficiently assign legalization
tasks to CPU or/and GPU devices. The core strategy is to assign
majority of easy tasks to GPU and leave minority of stubborn
cells to CPU. Details of our scheduling techniques include cell
grouping, batch fetching and stubborn cell handling.

Cell Grouping. The processing order of the cells will affect
the final performance heavily. A well accepted ordering strategy
is to legalize large cells before small ones, because small cells
can be more easily placed and have lower chance to cause
the extra displacement to their neighbor cells [16], [23]. In
Algorithm 1, failed cells will be put aside instead of increasing
their search window size for further processing. Thus, cell
processing orders will be inevitably interrupted. If, on the
other hand, we strictly following the pre-determined order, our
parallelism will be seriously broken. To balance the runtime
and performance, we propose a grouping strategy that separates
the cells into different groups by cell sizes. Group orders are
strictly maintained while the process orders within a group can
be changed.

Batch Fetching. The key idea of parallel legalization is to
place cells simultaneously. This requires that search windows
of parallelly processed cells must not overlap with each other
to avoid conflicts. We employ an R-tree structure to store
the search windows which allows us to build window records
in O(Npaen log N) and detect overlapping in O(log N), where
Npaieh 1s the maximum number of cells (batch size) to be placed
at the same time and N is the total number of cells.

CPU Assists Legalization of Stubborn Cells. To make
proper and efficient task scheduling, we have to consider the
following challenge: there will be a super large amount of
available insertion intervals (grows exponentially with local cell
count and target cell height) in one search window, which
is extremely memory consuming. Although a queue structure
is applied in CPU when dealing with large scale insertion
candidates, it is inefficient to adopt the same trick in CUDA
kernels, due to weak support of dynamic memory in GPU
devices. Thus, we leave the target cells to the CPU legalization
directly if their corresponding local cell counts exceed certain
threshold. Besides the above situation, we also pass cells to CPU
if GPU failed to find any insertion point within a fixed search
window, because recursive calls can be more efficient on CPU.

There is also a corner case that a cell may not be able to
find any possible insertion point after searching through the
entire space. In this case, we have to pull up some placed cell
to get more possible insertion points. We start from smaller

legalized cells to preserve processing order as much as possible
for attaining the legalization performance.

IV. EXPERIMENTS

A. Datasets and Configurations

The proposed legalization framework is implemented using C++
and CUDA on an hybrid CPU-GPU platform, that equipped
with a Intel Core i5-9300HF@2.4GHz processor and NVIDIA
GeForce GTX1660Ti. We adopt OpenMP for CPU multi-
threading implementation. The runtime DAC’18 [23] is evalu-
ated on a slightly different platform that has Intel Xeon E7-4830
v2 and supports up to 20 threads. To validate the effectiveness
and the efficiency of our framework, we conduct experiments on
public benchmarks from ISPD2015 and IC/CAD2017 contests.
For the designs in ISPD2015, 10% of the single row cells are
modified to double-row cells as in [23].

B. Performance Comparison with State-of-the-art Legalizers
In the first experiment, we compare the result of our framework
with a state-of-the-art legalizer proposed in [23]. Details are
listed in TABLE I, where column “Design” lists all test cases
in IC/CAD 2017 contest benchmarks, column “cell #”° shows
the total number of cells to be legalized, column “DAC’18-
MGL” represents the result of [23] running multi-row global
legalization only, column “DAC’18” lists the results of entire
[23] flow that includes MGL and other refinement techniques,
columns “AveDisp” denote the average displacement of all
legalized cells using Equation (2), columns “HPWL” correspond
to a commonly accepted total wire length estimator in placement
subjects, and columns “Time (s)” are the overall runtime of
the legalization task on given designs. From the table we can
observe that when runtime speedup of CPU-based solution
saturates at 8 threads, our heterogeneous offers further 2 x —4x
improvement in execution time without quality loss in terms of
average cell displacements and HPWL.

To demonstrate the scalability of our approach, we also
conduct experiments on five large designs marked with “su-
perblue” from ISPD 2015 contest benchmarks. As can be seen
in TABLE I, the advantage of HL algorithm is still tremendous
over multi-threaded CPU solutions that our method completes
million-cell-size design legalization with 12.98s compared to
around 30s using 8-thread CPU.

We can also observe slightly smaller average cell displace-
ments of our method. This can be explained by the cell grouping
techniques introduced in Section III-D, which ensures most
cells are processed in a predetermined order. Such a scheduling
strategy is especially effective on designs that contain cells with
more different sizes, making our solution more preferable on
challenging cases.

V. CONCLUSION
In this paper, we present a heterogeneous legalization framework
that leverages hybrid CPU-GPU platforms. We carefully design
the algorithm to catch both CPU and GPU architecture character-
istics. With the help of our efficient task scheduling techniques,
HL can distribute cell legalization tasks to their preferable
devices. The experimental results show that our framework
achieves 2 x —4x speed up without quality degradation on

TABLE I Result comparison with state-of-the-art legalizer on IC/CAD 2017 and ISPD 2105 contest benchmarks.

Desien ‘ Cell # ‘ DAC’18-MGL [23] DAC’18 [23] Ours
g AveDisp HPWL Time (8T) | AveDisp HPWL Time (8T) | AveDisp HPWL Time
des_perf_1 112644 0.93 6787834 7.78 0.90 6772200 10.88 1.05 7051190 347
des_perf_a_mdl 108288 1.13 11210840 6.87 1.12 11205727 9.95 0.92 11335860 2.00
des_perf_a_md?2 108288 1.46 11300149 6.42 1.38 11294562 9.37 1.32 11450460 2.00
des_perf_b_mdl 112644 0.75 10832946 7.07 0.73 10798403 8.27 0.70 10992440 6.85
des_perf_b_md2 112644 0.72 10988311 6.84 0.72 10979288 9.10 0.72 11043440 1.75
edit_dist_1_mdl 130661 0.76 20478701 5.45 0.75 20473906 9.32 0.67 20406320 1.67
edit_dist_a_md2 127413 0.70 25927125 6.73 0.70 25916214 9.81 0.73 25939630 1.80
edit_dist_a_md3 127413 0.84 27271077 8.28 0.84 27257634 11.51 0.91 27457800 3.92
fft_2_md2 32281 0.92 2550060 1.73 0.91 2542788 2.96 0.68 2483889 0.45
fft_a_md2 30625 0.64 5550997 1.92 0.63 5545913 2.33 0.65 5551121 0.32
fft_a_md3 30625 0.61 4827920 1.79 0.61 4824641 2.23 0.56 4832620 0.34
pci_bridge32_a_mdl 29517 0.72 2389512 1.57 0.71 2384389 2.45 0.63 2397252 0.58
pci_bridge32_a_md2 29517 0.88 3015534 1.74 0.87 3009951 2.44 0.91 3042192 0.62
pci_bridge32_b_mdl 28914 0.86 3420847 1.90 0.85 3419204 2.27 0.48 3418254 0.62
pci_bridge32_b_md2 28914 0.79 2969299 1.85 0.79 2968204 6.95 0.63 3005030 0.45
pci_bridge32_b_md3 28914 1.05 3040309 1.83 1.03 3039354 2.68 0.87 3074251 0.45
Average 0.86 9535091 4.36 0.85 9527024 6.41 0.78 9592609 1.71
Ratio 1.10 0.99 2.55 1.08 0.99 3.75 1.00 1.00 1.00
superbluell_a 927074 0.52 429927937 33.61 0.51 429937259 37.94 0.26 430124300 9.52
superbluel?2 1287037 0.42 392914566 42.49 0.41 392927840 49.15 0.21 392996000 34.79
superblueld 612583 0.53 280206549 18.99 0.53 280211344 21.75 0.31 280441500 7.83
superbluel6_a 680869 0.47 313833508 20.63 0.46 313844245 23.79 0.12 313847900 7.20
superbluel9 506383 0.47 207879448 19.81 0.47 207883434 20.99 0.25 208004400 5.54
Average 0.48 324952402 27.11 0.47 324960824 30.72 0.23 325082820 12.98
Ratio 2.09 1.00 2.09 2.06 1.00 2.37 1.00 1.00 1.00

IC/CAD 2017 and ISPD 2015 contest benchmarks, compared
to state-of-the-art mixed-cell-height legalizers with CPU multi-
threading. With the surpassing performance, we hope this work
can motivate further research of physical design algorithms
for heterogeneous computing platforms to compromise the
demanding efficiency in modern chip designs. Future works
include flexible task scheduler design with lower CPU-GPU
communication overhead, concurrent execution of CPU and
GPU tasks, memory usage optimization, etc.

ACKNOWLEDGMENT

This work is supported by The Research Grants Council of
Hong Kong SAR (No. CUHK14209420). The authors would
like to thank Haocheng Li from Cadence Design Systems for
his valuable discussion.

REFERENCES

[1] C.J. Alpert, D. P. Mehta, and S. S. Sapatnekar, Handbook of Algorithms
for Physical Design Automation. CRC press, 2008.

[2] N. K. Darav, L. S. Bustany, A. Kennings, and R. Mamidi, “ICCAD-2017

CAD contest in multi-deck standard cell legalization and benchmarks,” in

Proc. ICCAD, 2017, pp. 867-871.

I. S. Bustany, D. Chinnery, J. R. Shinnerl, and V. Yutsis, “ISPD 2015

benchmarks with fence regions and routing blockages for detailed-routing-

driven placement,” in Proc. ISPD, 2015, pp. 157-164.

D. Hill, “Method and system for high speed detailed placement of cells

within an integrated circuit design,” Apr. 9 2002, uS Patent 6,370,673.

T.-C. Chen, T.-C. Hsu, Z.-W. Jiang, and Y.-W. Chang, “NTUplace: a ratio

partitioning based placement algorithm for large-scale mixed-size designs,”

in Proc. ISPD, 2005, pp. 236-238.

M.-K. Hsu, Y.-F. Chen, C.-C. Huang, S. Chou, T.-H. Lin, T.-C. Chen,

and Y.-W. Chang, “NTUplace4h: A novel routability-driven placement

algorithm for hierarchical mixed-size circuit designs,” IEEE TCAD, vol. 33,

no. 12, pp. 1914-1927, 2014.

C. Huang, H. Lee, B. Lin, S. Yang, C. Chang, S. Chen, Y. Chang, T. Chen,

and I. Bustany, “Ntuplace4dr: A detailed-routing-driven placer for mixed-

size circuit designs with technology and region constraints,” IEEE TCAD,

vol. 37, no. 3, pp. 669-681, 2018.

M. Pan, N. Viswanathan, and C. Chu, “An efficient and effective detailed

placement algorithm,” in Proc. ICCAD, 2005, pp. 48-55.

[3]

[7]

[8]

[91

[10]
(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

N. Viswanathan, M. Pan, and C. Chu, “FastPlace 3.0: A fast multilevel
quadratic placement algorithm with placement congestion control,” in
Proc. ASPDAC, 2007, pp. 135-140.

U. Brenner, “Bonnplace legalization: Minimizing movement by iterative
augmentation,” IEEE TCAD, vol. 32, no. 8, pp. 1215-1227, 2013.

U. Brenner and J. Vygen, “Legalizing a placement with minimum total
movement,” I[EEE TCAD, vol. 23, no. 12, pp. 1597-1613, 2004.

P. Spindler, U. Schlichtmann, and F. M. Johannes, “Abacus: fast legal-
ization of standard cell circuits with minimal movement,” in Proc. ISPD,
2008, pp. 47-53.

Y. Lin, B. Yu, X. Xu, J.-R. Gao, N. Viswanathan, W.-H. Liu, Z. Li,
C. J. Alpert, and D. Z. Pan, “MrDP: Multiple-row detailed placement
of heterogeneous-sized cells for advanced nodes,” IEEE TCAD, vol. 37,
no. 6, pp. 1237-1250, 2018.

J. Chen, Z. Zhu, W. Zhu, and Y.-W. Chang, “Toward optimal legalization
for mixed-cell-height circuit designs,” in Proc. DAC, 2017, pp. 52:1-52:6.
X. Li, J. Chen, W. Zhu, and Y.-W. Chang, “Analytical mixed-cell-height
legalization considering average and maximum movement minimization,”
in Proc. ISPD, 2019, p. 27-34.

W.-K. Chow, C.-W. Pui, and E. F. Y. Young, “Legalization algorithm for
multiple-row height standard cell design,” in Proc. DAC, 2016, pp. 83:1—
83:6.

N. K. Darav, I. S. Bustany, A. Kennings, and L. Behjat, “A fast, robust
network flow-based standard-cell legalization method for minimizing max-
imum movement,” in Proc. ISPD, 2017, p. 141-148.

N. K. Darav, I. S. Bustany, A. Kennings, D. Westwick, and L. Behjat,
“Eh?Legalizer: A high performance standard-cell legalizer observing tech-
nology constraints,” ACM TODAES, vol. 23, no. 4, 2018.

J. Cong and Y. Zou, “Parallel multi-level analytical global placement on
graphics processing units,” in Proc. ICCAD, 2009, pp. 681-688.

Y. Lin, S. Dhar, W. Li, H. Ren, B. Khailany, and D. Z. Pan, “DREAM-
Place: Deep learning toolkit-enabled GPU acceleration for modern VLSI
placement,” in Proc. DAC, 2019.

S. Dhar and D. Z. Pan, “Gdp: Gpu accelerated detailed placement,” in
Proc. HPEC, 2018, pp. 1-7.

Y. Lin, W. Li, J. Gu, H. Ren, B. Khailany, and D. Z. Pan, “Abcdplace:
Accelerated batch-based concurrent detailed placement on multi-threaded
cpus and gpus,” I[EEE TCAD, pp. 1-1, 2020.

H. Li, W.-K. Chow, G. Chen, E. F. Young, and B. Yu, “Routability-driven
and fence-aware legalization for mixed-cell-height circuits,” in Proc. DAC,
2018, pp. 1-6.

K. Han, A. B. Kahng, and H. Lee, “Evaluation of beol design rule impacts
using an optimal ilp-based detailed router,” in Proc. DAC. 1EEE, 2015,
pp. 1-6.

D. Guide, “Cuda ¢ programming guide,” NVIDIA, July, 2013.

