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Abstract
As the technology node of integrated circuits rapidly goes
beyond 5nm, synthesis-centric modern very large-scale
integration (VLSI) design flow is facing ever-increasing
design complexity and suffering the pressure of time-to-
market. During the past decades, synthesis tools have be-
come progressively sophisticated and offer countless tun-
able parameters that can significantly influence design
quality. Nevertheless, owing to the time-consuming tool
evaluation plus a limitation to one possible parameter
combination per synthesis run, manually searching for op-
timal configurations of numerous parameters proves to be
elusive. What’s worse, tiny perturbations to these param-
eters can result in very large variations in the Quality-of-
Results (QoR). Therefore, automatic tool parameter tun-
ing to reduce human cost and tool evaluation cost is in
demand. Machine-learning techniques provide chances to
enable the auto-tuning process of tool parameters. In this
paper, we will survey the recent pace of progress on ad-
vanced parameter auto-tuning flows of physical synthesis
tools. We sincerely expect this survey can enlighten the
future development of parameter auto-tuning methodolo-
gies.

I Introduction
In the synthesis-centric modern VLSI design flow, IC de-
signers first specify the functionality of a circuit and then
leverage the synthesis-centric flow to accomplish the cir-
cuit through a chain of steps coarsely including logic syn-
thesis, physical synthesis, and mask synthesis. Quite a
few steps in the flow need to search for the solution to
large-scale NP-hard problems. Under advanced technol-
ogy nodes, high-quality design entails designers’ substan-
tial attempts, huge costs on time and other resources. To
combat such design complexities and be flexible to meet
various types of design requirements, computer-aided de-
sign (CAD) tools incorporated with an ocean of sophis-
ticated algorithms have been developed to aid and speed
the closure of an integrated circuit (IC) design. However,
it is a double-edged sword. Numerous tunable parameters
with different data types are exposed as hints for human
beings and impact the QoR of the tool outcome. The
huge tool parameter space coupled with multiple design

objectives makes the exhaustively manual tuning virtu-
ally impossible for novice or even experienced engineers.
Even worse, synthesis runs may take several hours or even
days. Consequently, both academia and the industry have
started to place great emphasis on tool parameter auto-
tuning.
Design space exploration techniques that aim at navi-

gating for optimal solutions (values, designs, or configu-
rations) in large design space have been heavily harnessed
in our community [1–9]. To a certain extent, the param-
eter tuning problem which can be treated as parameter
space searching is analogous to design space exploration
(DSE) [1]. Consequently, many optimization frameworks
developed under the DSE problem formulation can be em-
ployed as reference.
Typically, the tool parameter auto-tuning problem re-

lates to optimizing multiple QoR metrics concurrently.
Distressingly, these QoR metrics (e.g. delay, power, and
area) are conventionally in conflict or coupled. The trade-
offs are inevitably taken into account. Besides, modeling
the whole tuning process in an explicit mathematical ex-
pression seems to be arduous or even impossible. To put
it from another angle, it belongs to “black-box” optimiza-
tions. As we know, the objective functions have explicit
formulations in “white-box” optimization problems, which
can be directly addressed by numerous numerical meth-
ods. The contrary is the “black-box” optimization case.
The surrogate function is proposed as an alternative to
be optimized in the “black-box” problem.
Over the past decade, a large amount of pioneered

works [10–17] concentrate on parameter auto-tuning tech-
niques in the CAD field. For example, a cutting-edge tool
auto-tuner [11] based on the multi-armed bandit (MAB)
is used in FPGA and high-level synthesis (HLS) compi-
lations [14, 16]. However, these techniques highly depend
on heuristics and lack generality. With more heuristics
deployed to meet capacity and turnaround time require-
ments, tools themselves including such tuning process be-
come unpredictable, especially when driven to their lim-
its [18]. Machine learning (including deep learning and re-
inforcement learning) techniques which have gained great
success in other domains such as computer vision and nat-
ural language processing pervade our community [19–31].



Powered by machine learning techniques, quite a few pa-
rameter auto-tuning works [10, 32–38] behave excellent
performance.
As is observed in previous arts, CAD tool parameter

auto-tuning has the potential to be widely exploited in
modern synthesis-centric design flow including three syn-
thesis stages: high-level synthesis (HLS), logic synthe-
sis, and physical synthesis. HLS optimizes register trans-
fer level (RTL) implementations with parameters such as
loop manipulation, function inlining, memory configura-
tion and etc. Under constraints such as clock period, logic
synthesis optimizes the QoR metrics like area and power
of a netlist via restructuring Boolean logic and mapping
it to standard cells. Physical synthesis flow, which covers
partitioning, floorplanning, placement, clock tree synthe-
sis, and routing through CAD tools, determines the lay-
out performance. It plays an essential role in advanced
circuit design. It is worth pointing out that nowadays, a
physical synthesis tool has over ten thousand command-
option combinations. The status quo is that such com-
plicated tools which are difficult to fathom lead to unpre-
dictable outcomes. A gap emerges between physical syn-
thesis tools and IC designers’ methodologies. The auto-
tuning of physical synthesis tools which feed predictions
and guidance into the physical synthesis flow without hu-
man intervention is imperative. In this survey, we will
focus on tool parameter auto-tuning in physical synthe-
sis.
The rest of the paper is organized as follows. Section II

will give an overview of the parameter auto-tuning of the
physical synthesis tools. Section III and Section IV will
introduce the heuristic-based works and machine learning
method-based frameworks, respectively. Section V will
conclude the whole paper and discuss possible future di-
rections as well.

II Problem Descriptions
For a better understanding, we draw a visualization of a
parameter auto-tuning of physical synthesis tool in Fig. 1.
Given the gate-level netlist of a design with other files
like timing constraints, technology libraries, the parame-
ter auto-tuning of a physical synthesis tool is expected to
automatically find out the optimal parameter configura-
tions so that the post-P&R performance of a design can
achieve or even beyond the expectation. During tuning,
the auto-tuning module (i.e., tuning engine in Fig. 1) will
obtain some latent information from the physical design
tool’s output (e.g., tool log files and reports containing
QoR metrics values) to guide the tuning process. The re-
source like runtime cost by the auto-tuning process should
be minimized or within the rational budget. Besides, the
QoR metrics to be optimized may be one (e.g., timing) or
multiple (e.g., area vs. power vs. timing), which relates
to the customer’s preference. To be more clear, we also
list some common challenges existing in parameter auto-
tuning of physical design tools. 1) A vast number of tool
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Fig. 1.: The parameter auto-tuning of a physical synthesis
tool.

parameters may need to be tuned. 2) Multiple QoR met-
rics (e.g., area, power, and delay) to be optimized may
be in conflict. 3) “Black-box” parameter-to-performance
mappings make researchers hard to write down the ex-
plicit function expressions. 4) The tool evaluation is time-
consuming.

III Heuristic Method-based Physical Synthesis
Tool Parameter Auto-tuning

Some prior arts avail heuristic methods to predict tuning
of tool executions. Such methods can provide some quick
and relatively cheap feedback as well as good suggestions
on parameter configuration to IC engineers. Neverthe-
less, it requires much experience, domain knowledge, and
even some tricks to apply the heuristics viably. Besides,
heuristic-based frameworks may be stuck in some sub-
optimal parameter configurations so that the post-P&R
performance of a design is affected.
SynTunSys (STS) in [13, 39] is the first self-evolving

and autonomous system for tuning the input parameters
of logic and physical synthesis tools. Ziegler et al. further
enhance the STS tuning framework in [13] by integrating
an adaptive online learning method and developing the
STS Scheduler (STSS) to tune multiple macros. The main
architecture of STS is shown in Fig. 2. It is composed
of one main tuning loop and one background archiving
loop. In the main loop, the framework embraces running
multiple synthesis jobs in parallel, monitoring the jobs
in flight, analyzing the costs of the jobs, and a decision
engine for the next jobs per iteration. The archiving loop
is used to record the results of all runs from all macros,
users, and projects.
To reduce the huge searching space, the authors com-

bine several specific valued synthesis parameters which
target a singular action and then create a new boolean
variable called the primitive (see Fig. 3). With creating
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Fig. 2.: The framework of the SynTunSys [39].
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Fig. 3.: The illustration of the interaction of parameters,
primitives, and scenarios in the SynTunSys [39].

scenarios consisting of one or more primitives, the search-
ing space is further reduced. Two kinds of decision di-
agrams are developed in STS, as shown in Fig. 4. One
is a base algorithm, namely, a sensitivity test followed
by iterative combinations of scenarios. Another enhanced
version is to choose a certain number of scenarios in each
iteration as parallel synthesis jobs and dynamically adapt
to these scenarios that can return lower costs with higher
probability. It is worth mentioning that the cost of STS
is a linear summation of multiple weighted QoR metrics.
The experimental results of applying STS to the IBM z13
22nm high-performance server processor demonstrate a
36% average improvement in total negative slack and a
7% power reduction.

IV Machine Learning Method-based Physical
Synthesis Tool Parameter Auto-tuning

In this section, we survey the recent progress on the
machine learning method-based parameter auto-tuning
frameworks. This kind of method uses either a one-time
effort training method or iterative optimization scheme
(e.g., Bayesian optimization, active learning), where ma-
chine learning models act as a regressor or surrogate
model of the associated flow.

default
Parameters

a

b

c

d

e

f

g

h

i

j

i = 0

lowest 
cost

b

i

d

f

j

g

h

a

c

e

co
st

 r
an

k
in

g

highest 
cost

Sensitivity Test

intial
primitives,
arbitrarily 
ordered

(10 scenarios in parallel,
1-hot for each primitive)

potential 
set 

(size = k)

b

b

j

j

b

d

j

j

d

d

j

f

d

f

g

i = 1

k jobs
(combination 

order = 3)

estimated cost 
of 

is the average 
cost of
&     & 

b j d

b j d

estimated cost 
of 

is the average 
cost of

& 

d

d

f

f

co
st

 r
an

k
in

g

i = 2

b j d f

b j d f g

j d g h

true cost known
from i = 1

k jobs
(combination 

order = 3)

Fig. 4.: The learning decision algorithm of the SynTunSys
[39].

A One-time Effort Training Framework

In a one-time effort training framework, the parameter
tuning issue is cast into a classical machine learning prob-
lem. During training, certain machine learning models are
calibrated by training data (e.g., feature representations
of tool parameters with golden QoR metric values). Then
the performance is tested on the testing dataset like un-
seen netlists.

[36] is inspired by the solution to matrix factorization
issue in collaborative recommender systems, and spans
the problem to the high-dimension space via using ten-
sor decomposition and an artificial neural network. It
considers parameter auto-tuning of CAD tools for logic
synthesis and physical design (LSPD). The whole recom-
mender system-based tuning framework is displayed in
Fig. 5. In the off-line training stage, a neural network
model for collaborative filtering is trained via QoR results
in the archive to make QoR metric predictions. After the
model is calibrated, the recommendation for the target
macro with a pre-defined QoR cost function is performed
in an online fashion. This one-time effort framework ex-
ploits the single-layer perceptron network. In light of the
over-parameterized regime, neural networks have the ad-
vantage of high accuracy but require more data than non-
parameterized models like Gaussian process.
Agnesina et al. [37] optimize the placement parameters

via a deep reinforcement learning framework (see Fig. 6)
fed with a mixture of handcrafted features covering graph
topology theory along and graph embeddings extracted
from the netlist via graph neural networks (GNNs) [40].
In [37], an RL agent is constructed to tune the parameters
of the placement tool automatically, aiming at minimiz-
ing wirelength. The agent learns from interacting with
the placement tool over a number of discrete time steps.
At each time step, the agent receives a state and chooses
an action from a set of possible actions regarding its pol-
icy mapping states to actions. In return, the agent re-
ceives a reward and transitions to the next state. This
process continues until the agent meets a terminal state
after which the process restarts. A state vector in [37]
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Fig. 6.: Deep reinforcement learning-based parameter tun-
ing of a placement tool [37].

consists of manually designed topological graph features
(e.g., average degree, maximum clique and so on), fea-
tures from netlist extracting by Graph Neural Network,
and tool parameters. The experimental results on Open-
Cores, ISPD2012 contest, and two RISC-V single cores
benchmarks demonstrate the method generalizes well to
unseen netlists. But the defect also exists. The deep rein-
forcement learning framework (i.e., A2C) utilized is hard
to train and reproduce, and it is hungry for oceans of
training data.

B Iterative Refinement Framework
The iterative optimization scheme often has several key
features: initialization, modeling, sampling. During ini-
tialization, a machine learning model has been initialized
by a small amount of data. In modeling, it captures do-
main knowledge about the regularity of the design space
by using the learning models like XGBoost [41], Gaus-
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Fig. 7.: The diagram of the workflow proposed in [34].

sian process (GP) models. The learning model will be
used to predict QoR metric values for parameter config-
urations that have not been evaluated by the synthesis
tool. The sampling step is performed to select points
for the fine-tuning of learning models. During sampling,
based on the predictions (sometimes with predictive un-
certainties), some Pareto-optimal driven frameworks [4,7]
do additional work, namely, classification on the inputs.
They iteratively discard points that are either redundant
or suboptimal, and it terminates when no more points can
be removed. With high probability, the remaining points
define an optimal or Pareto set of the given parameter
space.
A state-of-the-art Bayesian optimization technique

with weighted and summed cost function is exploited
to handle the multiple objective problems in the CAD
tool (the Synopsys IC Complier tool) parameter auto-
tuning [34]. Fig. 7 illustrates the corresponding flow of
the applied Bayesian optimization algorithm. In each it-
eration, it performs a 3–step process and provides one
sample point. It starts with optimizing the acquisition
function, which returns a set of parameter configurations.
The acquisition function is designed to guide the selec-
tion of the next most potential candidate. In this frame-
work, authors try several famous acquisition functions like
the lower confidence bound (LCB), the probability of im-
provement (POI), and expected improvement (EI). For
the multiple QoR metrics to be optimized, they are scaled
and then summed as a single one utilized in the acqui-
sition function (e.g., Gaussian process upper confidence
bound). The experimental results of 64-bit adder case
show that their proposed Bayesian optimization frame-
work has significant superiority to the genetic algorithm
as well as industrial settings. Despite the fact that the
single-objective Bayesian optimization framework is mod-
ified by the weighted and summed cost function, the de-
fect that the weight-sum trick is not fully appropriate for
handling the multi-objective problem still exists.
The prior art [38] exploits feature importance to guide

the sampling shown in Fig. 8 and utilize an ensemble
boosting tree-based regressor, XGBoost, as the learning
model. In this work, the concept of “important” features
is that these features can influence the final QoR metric
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Fig. 8.: An example of sampling by clustering [38].

quality. When evaluating the QoR metric quality varia-
tion caused by changing the value of one feature, values of
the rest are the same. The larger the variation, the more
important the feature. Based on the rules, then samples
with the same level for important features are grouped.
To navigate the whole parameter space within acceptable
cost, a model-less sampling scheme that randomly selects
one sample from a subset of clusters is performed. These
samples act as the initial dataset.
When it turns to the model-guided sampling in this it-

erative refinement framework, the balancing between “ex-
ploration” and “exploitation” becomes crucial. Here, “Ex-
ploration” means only obtaining new samples from unvis-
ited clusters, while “exploitation” also considers sampling
from promising explored clusters. At the beginning of
the model refinement phase, the framework focuses on
exploration. The reason is that the number of potential
optimal parameter configurations is relatively small and
many clusters have not been explored. After several it-
erations, the focus will be shifted to exploit previously
visited clusters. The XGBoost model is only trained by
the potential optimal parameter configuration. Thereby,
a good trade-off between exploitation and exploration is
achieved.
The whole framework is built upon the active learning

strategy for iterative refinement. In addition, the weight-
sum trick is also employed in this method. Although this
kind of method is classical and commonly used, yet limi-
tations emerge.
As is observed, the trick of weighted-sum cost function

is utilized in many works [13,34,38,39] to handle multiple
QoR metrics. Especially, most of them directly design
a linear summation form to combine QoR metrics with
trade-off coefficients. Nevertheless, the linear weighted-
sum technique transforms the optimization problem into
a single objective, which is not totally equivalent to the
original multi-objective problem since the extra weight-
ing coefficients could be arbitrary [42]. The final solu-

tions still depend on these coefficients which cannot be
easily and optimally chosen. Even worse, it works only
for convex problem formulations, but synthesis-derived
Pareto sets can be non-convex [1], and may contribute
to their performance degradation. Pareto-optimal driven
approaches [4, 7] and multi-objective Bayesian optimiza-
tion [43] may be the potential solution to multi-objective
optimization in parameter auto-tuning issue.

V Conclusion
In this paper, we have surveyed the recent line of arts
in techniques of physical synthesis tool parameter auto-
tuning. Heuristics and machine learning techniques have
been applied in these works. Specially, one-time effort
training framework and iterative refinement optimization
are two kinds of auto-tuning schemes to utilize machine
learning models.
In the future, we believe the following aspects are worth

studying. 1) Parameter space auto-pruning which signif-
icantly reduces tuning runtime overhead is substantial.
2) In iterative refinement frameworks like Bayesian opti-
mization, the Gaussian process is exploited. But it has
limited fitting ability for the very complicated model and
is computationally costly due to cubical scaling concern-
ing the number of data-points. On the other hand, neural
networks as a powerful regressor cannot be directly inte-
grated into the Bayesian optimization framework due to
a lack of predictive uncertainty. One potential solution to
this dilemma is using neural processes [44] which have
lower model complexity and provide estimation uncer-
tainty. 3) Transferring auto-tuning frameworks between
different technology nodes and similar designs would be
beneficial to industries. 4) One recent work [45] integrates
several CAD tools into a unified and standardized system
where machine learning models can give feedback to the
design flow to guide parameter auto-tuning of tools. It is
convincing that collectively considering parameter auto-
tuning of multiple tools exploited in the whole design flow
has great prospects.
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