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Background



Global View of DNN Deployment Framework
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Preliminaries — Programming Model
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Deployment Configuration
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Map the computations to the programming model.

All of the settings (e.g., blocks, threads, and etc.) to be determined are encoded as a feature
vector x which is termed a deployment configuration.
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Preliminaries — Problem Formulation

Design Space

For each DNN layer, the design space D contains all of the candidate configurations.

Typically, there are more than millions of candidates for each layer.

Optimization Objective

For each layer, find the deployment configuration x,. € D which has the best performance.

¢ Extremely large design space
¢ Slow compilation process

¢ Underutilized historical information
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Our Solution

Deep Gaussian Transfer Learning



Our Solution — Deep Gaussian Transfer Learning

Transfer Learning Based on Deep Gaussian Processes

¢ Layer-wise optimization

¢ Stage 1 preparation: learn a deep Gaussian process model from historical data
® model pre-training

® Stage 2 transfer: transfer knowledge of the DGP model to new tasks
¢ model tuning

e Stage 3 optimal searching: guide the optimization of new tasks with the tuned DGP
model

¢ the tuned DGP model is used as the cost model in the searching algorithm
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Our Solution — Stage 1: Preparation

° taskif:x =y

* historical feature vectors X = {x1,...,xy}, objective GFLOPS values y = {y1,....yn}

Deep Gaussian process: Multi-layer GP Model

* function values of L layers: {f!,...,fL},f° =
* hyper-parameters in the I-th layer: ¢’

¢ sparse Gaussian approximations

train the model through maximum log likelihood estimation:
N
max | > Eogu.z)log Pilf; 6] Zm )P0, ()
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Our Solution — Stage 2: Transfer

® Historical data: source task

¢ New deployment task: target task
Similarities and Differences

¢ Similar types of layers and hardware architectures.

¢ Different task hyper-parameters and different amounts of resources.

Two Steps

¢ Find a good tuning data set (from the target data set)

¢ Transfer the knowledge efficiently
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Our Solution — Stage 2: Transfer

Find A Good Tuning Set

Randomly sample an initial set of configurations (target task)

Use the learned DGP model (source task) to predict performance values

Choose the configurations with top predicted values, denoted as X'

* Compile and deploy the configurations to get the real performance values y'

Transfer Knowledge — Maximum-a-posteriori Estimation

¢ Prior parameters 6, new parameters 6

* According to the Bayes’ theorem, find the optimal 8, to maximize the posterior
distribution P(6|y'):

A~ ~

P(6ly") < P(6) - P(y'|6), )
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Our Solution — Stage 3: Optimal Searching

¢ The tuned DGP model is served as the performance estimator.
¢ No need to compile and deploy configurations.

¢ Use traditional searching algorithms (e.g., simulated annealing) to search the optimal
configuration.
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Experimental Results



Experimental Settings

° AutoTVM!
* CHAMELEON (ICLR20) 2
* GGA (DAC20)3

Quality Metrics

¢ Inference latency
® Search time: time cost to find the best solution

* Hyper-volume (HV) = Redu. of Inference Latency x Redu. of Search Time x 100

!Chen, Tianqj, et al. "Learning to optimize tensor programs." NeurIPS, 2018.
2Ahn, Byung Hoon, et al. "Chameleon: Adaptive code optimization for expedited deep neural
network compilation." ICLR, 2020.

*Mu, Jiandong, et al. "A history-based auto-tuning framework for fast and high-performance
DNN design on GPU." DAC, 2020. 14/18



Experimental Results

Ablation Studies on the Proposed DGP

¢ The pre-trained DGP model and XGBoost (used in AutoTVM) are directly used to
predict the GFLOPS values of the new deployment tasks.

¢ RMSE (root-mean-square-error) is used to characterize the prediction errors.
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Experimental Results

* AutoTVM

¢ Transfer learning based on the randomly-sampled tuning set

¢ Transfer learning based on the tuning set which is sampled by our pre-trained DGP
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Experimental Results

Table: Comparisons of Search Time and End-to-end Model Inference Latency

| AutoTVM | CHAMELEON (ICLR'20) | Ours
Model Search Inference | Search Inference HV Search  Search  Inference Inference Hv
(h) (ms) Redu. (%) Redu. (%) (h) Redu. (%) (ms) Redu. (%)
MobileNet-vl | 31.14 0.8980 - - - 10.06 67.69 0.7664 14.65 9.9168
AlexNet 6.28 1.3467 72.16 5.88 4.2409 2.14 65.96 1.2537 6.91 4.5573
VGG-16 19.92 6.7847 82.56 3.44 2.8418 4.61 76.83 6.4972 4.24 3.2556
ResNet-18 32.04 1.8248 76.67 4.16 3.1915 9.47 7043 1.7305 5.17 3.6423

* DAC’20 tests on ResNet-18, reduces the search time by 93.17% and reduces the
inference latency by 3.26%. HV is 3.0307, worse than ours and ICLR"20.

¢ Our method can achieve best final deployment performance and accelerate the
search process at the same time.
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