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Introduction



Arithmetic Block Identification

¢ Identify arithmetic blocks in gate-level netlists

* Lots of applications
® Functional verification [[CCAD"18, DAC19]
¢ Logic optimization [DATE"15]
¢ Malicious logic detection [IDTC10,
ISTFA’16, DAC'19]

* In this work, we focus on adder identification
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Related Approaches

e Structural methods

¢ Concentrate on circuit topology
® © Efficient with customized algorithms
¢ © Often mathematically incomplete

® Functional methods

¢ Functionally analyze the circuit for potential arithmetic components
® ® Accurate and solver-ready
¢ ® Ultra-long runtime

® Machine learning methods

® Alternate solutions to recognition and classification
¢ © Dedicated to one given unknown functional block
® © Facing significant challenges dealing with large-scale netlists
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Our Methodology

We propose a graph learning-based arithmetic block identification framework

Netlist

GNN

Fuzzy Match
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Designing Graph Neural
Networks for DAG



Graph Neural Networks

¢ Enable powerful representation learning on graphs

¢ Follow a neighbor aggregation scheme: node embeddings are computed by
recursively aggregating and transforming embeddings of neighboring nodes

a? = acerEGATE({h{™" 1 u e N(v)}),

WP = comBINE(@P, HY)
* Not customized for any specific task

Question: How to design a better GNN architecture to encode DAGs?
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Bidirectional Graph Neural Network

DAG:s are directed

* Motivation: encode information from both directions

Train two GNNS, one for G and one for G . In other words, one aggregates
information from predecessors and the other from successors.

Combine the two embeddings as the final embedding.

h, = COMBINE(hD, hd)
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Asynchronous Graph Neural Network

¢ DAGs are acyclic
® Motivation: improve GNN efficiency utilizing the acyclic property

¢ Resembling distributed logic simulation, asynchronous message passing starts from
the leaf nodes of the fanin cone and all the way up to the target node

(a) Distributed Logic Simulation (b) Synchronous GNN (c) Asynchronous GNN
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ABGNN for DAG Embedding

We propose two architectural structures
e bidirectional GNN for directed graphs
¢ asynchronous GNN for acyclic graphs

We combine them in our final architecture, asynchronous bidirectional graph
neural network (ABGNN), which is customized for DAG embedding.
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Netflow for Input-Output
Matching



Datapath Extraction with Maximum-Flow Algorithm

¢ After identifying adder boundaries, we further want to match the input bits S with
the corresponding output bits T.

* We formulate a maximum flow problem to find the routes between inputs and
outputs

Add a pseudo source node S* and a pseudo sink node T in the graph
Add edges from Sx to every node in S, as well as every node in T to T
The newly added edges from S* to nodes in S are assigned unit capacity
The rest edges are assigned capacity of 2
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A Brent-Kung Adder Example




Experimental Results



¢ Developed the graph object detection framework in Python
¢ Libraries: DGL, PyTorch, networkx

¢ Refer to EPFL logic synthesis libraries when implementing baseline methods
¢ Dataset: open-source RISC-V CPU designs

BOOM for training

Rocket for testing

Netlists generated by Chisel, synthesized with Synopsys Design Compiler
Synthesize various adder architectures for each design
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Comparison with Baseline Methods

| TETC'13 | DATE'15 | DATE'19 | Ours
‘ Input ‘ Output ‘ Time(s) ‘ Input ‘ Output ‘ Time(s) ‘ Input ‘ Output ‘ Time(s) ‘ Input Output ‘ Time(s)
Brent Kung | 0.826 | 0.672 302.0 | 0.554 | 0.493 134 | 0.875+0.022 | 0.820+0.013 | 11.6+3.9 | 0.9504-0.000 | 0.954:-0.020 | 10.2+1.8
Cond-sum | 0.825 | 0.598 380.6 | 0.770 | 0.787 14.6 | 0.808+0.013 | 0.744+0.020 | 13.0+3.7 | 0.94940.000 | 0.866--0.014 | 10.9+0.6
Hybrid 0.815 | 0.389 5972 | 0.179 | 0.042 154 | 0.820-£0.032 | 0.699+0.026 | 15.145.1 | 0.94740.000 | 0.957-+0.018 | 12.0+0.7
Kogge-Stone | 0.823 | 0.648 5252 | 0.755 | 0.783 15.8 | 0.763+0.015 | 0.810+0.011 | 13.243.5 | 0.94440.000 | 0.961-0.010 | 11.0+0.9
Ling 0.803 | 0.456 315.6 | 0.249 | 0.022 16.5 | 0.874+0.013 | 0.653+0.074 | 16.3+5.5 | 0.95440.000 | 0.944+0.015 | 13.2+0.9
Sklansky | 0.823 | 0.626 4674 | 0.484 | 0.483 14.7 | 0.864:0.017 | 0.845+0.017 | 14.143.7 | 0.9604-0.000 | 0.938--0.010 | 11.9+0.5

Case

Average | 0.819 | 0565 | 4313 | 0499 | 0435 | 151 | 0.834+0.019 | 0.761:£0.027 | 13.9:4.2 | 0.95140.000 | 0.937::0.015 | 11.5:0.9

¢ Our proposed method greatly outperforms prior works on all the testcases
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Comparison with State-of-the-Art GNNs

We evaluate our proposed ABGNN with several state-of-the-art Graph Neural
Networks, including GAT, GIN, and GraphSAGE

Our model achieves the best performance on all the cases with much higher recall
and F; scores, showing its superiority on DAG representation learning

Up to 6.2% Recall gain

Up to 9.5% F score gain
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Ablation Study

¢ Asynchronous GNN reduces runtime with no accuracy degradation:

Task | Model | Recall | Fi-score | Runtime (ms)
Inout asynchronous | 0.951+0.000 | 0.956+0.000 122.1

p synchronous | 0.943+0.003 | 0.951+0.002 152.2
Output asynchronous | 0.937+0.015 | 0.940+0.012 77.6

p synchronous | 0.933+0.012 | 0.937+0.009 94.6

¢ Bidirectional GNN improves performance:

Task | Model | Recall | Fy-score
Input bidirectional 0.9514+0.000 | 0.956+0.000
p unidirectional | 0.933+0.002 | 0.93540.002
Output bidirectional 0.9374+0.015 | 0.940+0.012
tp unidirectional | 0.89140.001 | 0.8294+0.011
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Conclusion

¢ Identifying arithmetic blocks is a vital procedure for various tasks
¢ In this paper, we proposed:

® agraph learning-based framework for efficient arithmetic block recognition

¢ aspecialized GNN for DAG representation learning

¢ anetwork flow approach to match input and output wires predicted by the
GNN model

® We conducted comprehensive experiments on open-source RISC-V CPU designs to
evaluate our methods
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