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Introduction



• Identify arithmetic blocks in gate-level netlists

• Lots of applications

• Functional verification [ICCAD’18, DAC’19]
• Logic optimization [DATE’15]
• Malicious logic detection [IDTC’10,

ISTFA’16, DAC’19]

• In this work, we focus on adder identification

Arithmetic Block Identification
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• Structural methods

• Concentrate on circuit topology
• , Efficient with customized algorithms
• / Often mathematically incomplete

• Functional methods

• Functionally analyze the circuit for potential arithmetic components
• , Accurate and solver-ready
• / Ultra-long runtime

• Machine learning methods

• Alternate solutions to recognition and classification
• , Dedicated to one given unknown functional block
• / Facing significant challenges dealing with large-scale netlists

Related Approaches
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We propose a graph learning-based arithmetic block identification framework

Netlist GNN Fuzzy Match

Our Methodology
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Design Netlist

DAG

Node Embedding

Boundary Prediction

Input-Output Matching

Identified Blocks predicted inputs

predicted outputs

Overall Flow
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Designing Graph Neural
Networks for DAG



• Enable powerful representation learning on graphs

• Follow a neighbor aggregation scheme: node embeddings are computed by
recursively aggregating and transforming embeddings of neighboring nodes

a(k)
v = AGGREGATE({h(k−1)

u : u ∈ N (v)}),

h(k)
v = COMBINE(a(k)

v , h(k−1)
v )

• Not customized for any specific task

Question: How to design a better GNN architecture to encode DAGs?

Graph Neural Networks
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• DAGs are directed

• Motivation: encode information from both directions

• Train two GNNs, one for G and one for G>. In other words, one aggregates
information from predecessors and the other from successors.

• Combine the two embeddings as the final embedding.
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Bidirectional Graph Neural Network
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• DAGs are acyclic

• Motivation: improve GNN efficiency utilizing the acyclic property

• Resembling distributed logic simulation, asynchronous message passing starts from
the leaf nodes of the fanin cone and all the way up to the target node
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(b) Synchronous GNN
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(c) Asynchronous GNN

Asynchronous Graph Neural Network
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We propose two architectural structures
• bidirectional GNN for directed graphs

• asynchronous GNN for acyclic graphs

We combine them in our final architecture, asynchronous bidirectional graph
neural network (ABGNN), which is customized for DAG embedding.

ABGNN for DAG Embedding
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Netflow for Input-Output
Matching



• After identifying adder boundaries, we further want to match the input bits S with
the corresponding output bits T.

• We formulate a maximum flow problem to find the routes between inputs and
outputs

• Add a pseudo source node S∗ and a pseudo sink node T∗ in the graph
• Add edges from S∗ to every node in S, as well as every node in T to T∗
• The newly added edges from S∗ to nodes in S are assigned unit capacity
• The rest edges are assigned capacity of 2

Datapath Extraction with Maximum-Flow Algorithm
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A Brent-Kung Adder Example
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Experimental Results



• Developed the graph object detection framework in Python

• Libraries: DGL, PyTorch, networkx

• Refer to EPFL logic synthesis libraries when implementing baseline methods

• Dataset: open-source RISC-V CPU designs

• BOOM for training
• Rocket for testing
• Netlists generated by Chisel, synthesized with Synopsys Design Compiler
• Synthesize various adder architectures for each design

Setup
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Case
TETC’13 DATE’15 DATE’19 Ours

Input Output Time(s) Input Output Time(s) Input Output Time(s) Input Output Time(s)

Brent Kung 0.826 0.672 302.0 0.554 0.493 13.4 0.875±0.022 0.820±0.013 11.6±3.9 0.950±0.000 0.954±0.020 10.2±1.8
Cond-sum 0.825 0.598 380.6 0.770 0.787 14.6 0.808±0.013 0.744±0.020 13.0±3.7 0.949±0.000 0.866±0.014 10.9±0.6

Hybrid 0.815 0.389 597.2 0.179 0.042 15.4 0.820±0.032 0.699±0.026 15.1±5.1 0.947±0.000 0.957±0.018 12.0±0.7
Kogge-Stone 0.823 0.648 525.2 0.755 0.783 15.8 0.763±0.015 0.810±0.011 13.2±3.5 0.944±0.000 0.961±0.010 11.0±0.9

Ling 0.803 0.456 315.6 0.249 0.022 16.5 0.874±0.013 0.653±0.074 16.3±5.5 0.954±0.000 0.944±0.015 13.2±0.9
Sklansky 0.823 0.626 467.4 0.484 0.483 14.7 0.864±0.017 0.845±0.017 14.1±3.7 0.960±0.000 0.938±0.010 11.9±0.5

Average 0.819 0.565 431.3 0.499 0.435 15.1 0.834±0.019 0.761±0.027 13.9±4.2 0.951±0.000 0.937±0.015 11.5±0.9

• Our proposed method greatly outperforms prior works on all the testcases

Comparison with Baseline Methods
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• We evaluate our proposed ABGNN with several state-of-the-art Graph Neural
Networks, including GAT, GIN, and GraphSAGE

• Our model achieves the best performance on all the cases with much higher recall
and F1 scores, showing its superiority on DAG representation learning

• Up to 6.2% Recall gain

• Up to 9.5% F1 score gain

Comparison with State-of-the-Art GNNs
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• Asynchronous GNN reduces runtime with no accuracy degradation:

Task Model Recall F1-score Runtime (ms)

Input asynchronous 0.951±0.000 0.956±0.000 122.1
synchronous 0.943±0.003 0.951±0.002 152.2

Output asynchronous 0.937±0.015 0.940±0.012 77.6
synchronous 0.933±0.012 0.937±0.009 94.6

• Bidirectional GNN improves performance:

Task Model Recall F1-score

Input bidirectional 0.951±0.000 0.956±0.000
unidirectional 0.933±0.002 0.935±0.002

Output bidirectional 0.937±0.015 0.940±0.012
unidirectional 0.891±0.001 0.829±0.011

Ablation Study
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• Identifying arithmetic blocks is a vital procedure for various tasks

• In this paper, we proposed:

• a graph learning-based framework for efficient arithmetic block recognition
• a specialized GNN for DAG representation learning
• a network flow approach to match input and output wires predicted by the

GNN model

• We conducted comprehensive experiments on open-source RISC-V CPU designs to
evaluate our methods

Conclusion
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THANK YOU!
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