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Spatial reliability issues
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Lithography hotspots (GENG+,ICCAD’20)
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Temporal reliability issues
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AMS circuits design flow
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ML As a Solution: Why ML?

° Big Data

- Large unstructured data sets flood us
everyday
- Facebook, LinkedIn, Amazon, Google
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Initial neural network model

¢ Deep Neural Networks

Inference

Large number of
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* Hardware advances
- GPU, FPGA, TPU, ...
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ML-based Verification



Shallow model: IR-drop prediction

IncPIRD flow (HO+,ICCAD’19)

¢ Input features: chip/Block size, pitch of metal layer, pulldown and pullup
component in node itself and its neighbors;

* Model: XGBoost;

¢ Output: IR drop value of each instance.
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Shallow model

® Needs complicated feature engines;
¢ Needs more domain knowledge;

¢ Features cannot be extracted by task orientation.

¢ Build a model with a certain “depth”;

¢ Use a learning algorithm to automatically learn a good feature representation.
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Convolutional neural networks:
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CNN-based HSD flow (YANG+DAC'17).
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Generative model
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GAN-based EM-induced voltage prediction flow (ZHOU+,ICCAD’20).
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INPUT SIMULATION OUTPUT
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GCN-based aging degradation flow (CHEN+,TCAD’21)
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Node embedding
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ML-based CAD Flow For DFR



Sizing: Bayesian optimization

minimize LCB(x),—EI(x), —PI(x)
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The multi-objective optimization (LYU+,ICML'18)
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Sizing: Reinforcement learning
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Placement: DREAMPlace Strategies

¢ Cast the non-linear placement problem into a neural network training problem.
¢ Leverage deep learning hardware (GPU) and software toolkit (e.g. Pytorch)

¢ Enable ultra-high parallelism and acceleration while getting the state-of-the-art
results.

16/25



Placement: Routability Estimation x DREAMPlace
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Routing (Mimic the manual layout approach)
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Open challenges and potential
directions



Verify dynamic reliability for large-scale design

¢ Inputing the entire design causes out-of-memory on GPU;

¢ Inputing a subcircuit netlist or layout tile cannot consider corresponding stress
conditions.

¢ Estimate the worst degradation;

¢ Incrementally, heuristically and hierarchically simulate subcircuits to obtain dynamic
stress conditions.
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Integrate reliability model into sizing stage

¢ GP has limited fitting ability for the very complicated model;

¢ CNNs and GCNs cannot be directly integrated into the Bayesian optimization
framework.

¢ Neural processes and graph neural processes, which have the better fitting ability
and provide estimation uncertainty.
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Integrate reliability models into the routing

e It is difficult to model the performance and reliability, such as EMI noise, via routing
layout and integrate ML-based models into routing cost function;

¢ in each search step, ML-based model inference has to be performed, which brings
expensive computation.

¢ The gradient values of the ML-based reliability model can be used as cost values in
the routing stage;

¢ The gradient values are updated by the back-propagation for several routing nets to
achieve a better trade-off between runtime and layout routing reliability quality.
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Conclusion



Conclusion

Conclusion
¢ Itis promising to apply ML techniques to achieve AMS circuits DFR with high
efficiency.

® Some open challenges and promising solutions about ML are discussed in nanometer
AMS circuits DFR.

¢ More studies promote the development of AMS circuits DFR.

24/25



THANK YOU!
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