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Abstract—The probabilistic packet marking (PPM) algorithm is a promising way to discover the Internet map or an attack graph that the

attack packets traversed during a distributed denial-of-service attack. However, the PPM algorithm is not perfect, as its termination

condition is not well defined in the literature. More importantly, without a proper termination condition, the attack graph constructed by the

PPMalgorithmwouldbewrong. In thiswork,weprovideaprecise terminationcondition for thePPMalgorithmandname thenewalgorithm

the rectifiedPPM (RPPM)algorithm.Themost significantmerit of theRPPMalgorithm is thatwhen the algorithm terminates, the algorithm

guarantees that the constructed attack graph is correct, with a specified level of confidence. We carry out simulations on the RPPM

algorithmandshow that theRPPMalgorithmcanguarantee the correctnessof the constructedattackgraphunder1) different probabilities

that a routermarks the attack packets and 2) different structures of the network graph. TheRPPMalgorithmprovides an autonomousway

for the original PPM algorithm to determine its termination, and it is a promising means of enhancing the reliability of the PPM algorithm.

Index Terms—Network-level security and protection, probabilistic computation.

Ç

1 INTRODUCTION

THE denial-of-service (DoS) attack has been a pressing
problem in recent years [1]. DoS defense research has

blossomed into one of the main streams in network security.
Various techniques such as the pushback message [2], ICMP
traceback [3], and the packet filtering techniques [4], [5], [6],
[7] are the results from this active field of research.

The probabilistic packet marking (PPM) algorithm by
Savage et al. [8] has attracted the most attention in
contributing the idea of IP traceback [9], [10], [11], [12],
[13], [14]. The most interesting point of this IP traceback
approach is that it allows routers to encode certain
information on the attack packets based on a predetermined
probability. Upon receiving a sufficient number of marked
packets, the victim (or a data collection node) can construct
the set of paths that the attack packets traversed and, hence,
the victim can obtain the location(s) of the attacker(s).

1.1 The Probabilistic Packet Marking Algorithm

The goal of the PPM algorithm is to obtain a constructed graph
such that the constructed graph is the same as the attack graph,
where an attack graph is the set of paths the attack packets
traversed, and a constructed graph is a graph returned by the
PPMalgorithm. To fulfill this goal, Savage et al. [8] suggested
a method for encoding the information of the edges of the
attack graph into the attack packets through the cooperation
of the routers in the attack graph and the victim site.
Specifically, the PPM algorithm is made up of two separated
procedures: the packetmarking procedure,which is executedon
the router side, and the graph reconstruction procedure,which is
executed on the victim side.

The packet marking procedure is designed to randomly
encode edges’ information on the packets arriving at the
routers. Then, by using the information, the victim executes
the graph reconstruction procedure to construct the attack
graph. We first briefly review the packet marking proce-
dure so that readers can become familiar with how the
router marks information on the packets.

1.1.1 A Brief Review of the Packet Marking Procedure

The packet marking procedure aims at encoding every edge
of the attack graph, and the routers encode the information in
threemarking fields of an attack packet: the start, the end, and
the distance fields (wherein Savage et al. [8] has discussed the
design of the marking fields). In the following, we describe
how a packet stores the information about an edge in the
attack graph, and the pseudocode of the procedure in [8] is
given in Fig. 1 for reference.

When a packet arrives at a router, the router determines
how the packet can be processed based on a random
number x (line number 1 in the pseudocode). If x is smaller
than the predefined marking probability pm, the router
chooses to start encoding an edge. The router sets the start
field of the incoming packet to the router’s address and resets
the distance field of that packet to zero. Then, the router
forwards the packet to the next router. When the packet
arrives at the next router, the router again chooses if it should
start encoding another edge. For example, for this time, the
router chooses not to start encoding a new edge. Then, the
router will discover that the previous router has started
marking an edge, because the distance field of the packet is
zero. Eventually, the router sets the end field of the packet to
the router’s address. Nevertheless, the router increments the
distance field of the packet by one so as to indicate the end of
the encoding. Now, the start and the end fields together
encode an edge of the attack graph. For this encoded edge to
be received by the victim, successive routers should choose
not to start encoding an edge, that is, the case x > pm in the
pseudocode, because a packet can encode only one edge.
Furthermore, every successive router will increment the
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distance field by one so that the victimwill know the distance
of the encoded edge.

1.1.2 Termination of the PPM Algorithm

According to the above description of the packet marking
procedure, although a packet has already encoded an edge,
successive routersmay choose to start encoding another edge
randomly.As a result, when apacket arrives at the victim, the
packet may encode any of the edges of the attack graph, or a
packetmay not encode any edges. Therefore, if the victim can
collect a sufficiently large number of marked packets, the
victim can successfully construct all the paths in the attack
graph by using the graph reconstruction procedure.

When the graph reconstruction procedure returns a
constructed graph, it implies the termination of the PPM
algorithm. However, the termination condition has not thor-
oughly been investigated in the literature. It turns out that the
termination condition is important, because it determines the
correctness of the constructed graph: If it stops too early, the
constructed graphwill not contain enough edges of the attack
graph and, thus, fails to fulfill the traceback purpose. In
addition, it is also not a proper way to allow the victim to
collect marked packets for a long period before the victim
starts the graph reconstruction procedure, because the victim
would never know howmuch time is long enough. Hence, a
proper termination condition canalsohelp in speedingup the
traceback process.

In [8], Savage et al. have provided an estimation of the
number of marked packets required before the victim can
have a constructed graph that is the same as the attack graph
under a single-attacker environment. LetX be the number of
marked packets required for the victim to reconstruct a path.

Let d be the length of the reconstructed path. In addition,
let pm be the marking probability of every router in the path.
The upper-bound on the expectation E½X� is given in [8,
Equation (1)], and we name this equation the upper-bound
equation throughout this paper

E½X� < lnðdÞ
pmð1� pmÞd�1

: ð1Þ

1.2 Problems When Using the Upper-Bound
Equation as the Termination Condition

Although there is no explicit definition of the termination
condition of the PPM algorithm in [8], it is well accepted that
(1) is the termination condition in the single-attack environ-
ment. The authors also claimed that in a multiple-attacker
environment

The number of packets needed to reconstruct each path is
independent, so the number of packets needed to reconstruct all
paths is a linear function of the number of attackers.

However, we have found that this is not the case in general.
More specifically, (1) should not be treated as the termina-
tion condition of the PPM algorithm.

1.2.1 Failure in the Multiple-Attacker Environment

First, one cannot apply the termination condition to complex
networks such that the reconstruction of one path is
dependent on another. This scenario can be explained in
Fig. 2,which is a binary-tree networkwith 14 routers. The leaf
routers from R7 to R14 are connected to a pool of attackers.
These attackers send out attack traffic toward the victim v,
and this presents a multiple-attacker environment. In this
graph, the attack packets traversed through eight paths that
are identical in structure. However, there are “shared” edges
among thesepaths. This implies that the reconstructionofone
path is dependent on another. Therefore, one cannot treat (1)
as the termination condition under this scenario, and this
restricts the application of the PPM algorithm.

Second, although every path in a given network is
independent, we have found that the number of marked
packets needed to reconstruct the network graph does not
have a linear relationship with the number of paths; that is,
the claimmade in [8] isnot correct.Wehavecarriedout a setof
simulations to show our finding and we start the description
of our simulation setup from the network depicted in Fig. 3.
Thenetwork contains fourpaths that are identical in structure
and, more importantly, there are no shared edges between
any two paths. We name these paths the independent paths. In
addition, we assume that one independent path connects to
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Fig. 1. The pseudocode of the packet marking procedure of the PPM

algorithm.

Fig. 2. A 14-router binary-tree network. The upper-bound equation

cannot be applied under this multiple-attacker environment.

Fig. 3. A 12-router tree network with four independent linear paths,

which is another multiple-attacker environment.
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one attacker and every attacker sends out a similar amount of
attack traffic toward the victim.

We then carry out a simulation to obtain the average
number of marked packets required to reconstruct the
paths. Next, we repeat this simulation, but this time, we add
one more independent path to the network, and there are
now five independent paths. Eventually, we perform a
series of simulations for one to 50 independent paths. Fig. 4
shows the result of this set of simulations. One can observe
that the average number of marked packets required to
construct a correct constructed graph increases as the
number of independent paths increases. In order to show
whether the number of required marked packets linearly
increases with the number of paths or not, we plot the rate of
change in the number of required marked packets in Fig. 5.
Surprisingly, the graph shows an increasing trend in the rate
of change in the number of required marked packets. The
claim about the multiple-attacker environment made in [8]
is therefore wrong.

Theoretically, the packet collecting problem can be
transformed into the “coupon-collecting problem with unequal
probabilities” [15]. The fault made in [8] is to treat the
probability that every encoded edge arrived at the victim
the same, which is wrong (we will discuss this in Section 3).
The solution to the coupon-collection problem with unequal
probabilities is very complex and does not show a linear
property with the number of the independent paths.

In summary, the first problem of using (1) as the
termination condition is that the relationship between the
number of attack paths and E½X� is not known. Therefore,
the PPM algorithm cannot guarantee the correctness under
the multiple-attacker environment.

1.2.2 Another Problem

No matter how accurate the calculation of the expectation
E½X� is, one should not use the expected number of required
marked packets E½X� as the termination condition. Depend-
ing on the underlying probability distribution of the random
variable X, when the mean is reached, there is a nonzero
probability that the constructed graph is still an incorrect one.
For instance, if the probability distribution ofX is a uniform
distribution, then the probability that a correct attack graph is
constructed is just 0.5. In summary, when X has high
variance, the first moment estimation may not be accurate.

Based on the above two problems, we conclude that the
upper-bound equation is not suitable to be the termination
condition of the PPM algorithm.

1.3 Contributions and Paper Structure

In this work, we neither provide an accurate calculation of
E½X� nor discover the probability distribution of the random
variable X. Instead, we modify the PPM algorithm so that
the victim can obtain a correct constructed graph with a
specified level of guarantee. The contributions of this work are
listed as follows:

. We introduce the termination condition of the PPM
algorithm, which is missing or is not explicitly
defined in the literature.

. Through the new termination condition, the user of
the new algorithm is free to determine the correct-
ness of the constructed graph.

. The constructed graph is guaranteed to reach the
correctness assigned by the user, independent of the
marking probability and the structure of the under-
lying network graph.

The structure of this paper is organized as follows:
Section 2 describes the modifications of the PPM algorithm,
and we name the new algorithm the rectified PPM (RPPM)
algorithm. In turn, the termination condition of the RPPM
algorithm is again expressed in terms of the number of
collected marked packets, but the number changes based on
the size of the constructed graph. We name that number the
termination packet number (TPN). Before deriving the calcula-
tion of the TPN, we present the modeling of the packet
marking procedure in Section 3. In Section 4, we derive the
calculation of the TPN. Section 5 provides the simulation
results, which show the correctness and the robustness of the
RPPM algorithm. Section 6 discusses how the RPPM
algorithm adopts the relaxation of the assumptions made in
Section 2. In Section 7, we discuss some deployment issues of
the RPPM algorithm. Last, Section 8 concludes.

2 RECTIFIED PROBABILISTIC PACKET MARKING

ALGORITHM

The RPPM algorithm is designed to automatically deter-
mine when the algorithm should terminate. We aim at
achieving the following properties:
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Fig. 4. The relationship between the number of independent paths and

the average number of marked packets required.

Fig. 5. An increasing trend in the rate of change in the number of marked

packets required.
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1. The algorithm does not require any prior knowledge
about the network topology.

2. The algorithm determines the certainty that the
constructed graph is the attack graph when the
algorithm terminates.

Our goal is to devise an algorithm that guarantees that the
constructed graph is the same as the attack graph with
probability greater than P �, where we name P � the traceback
confidence level (it is analogous to the level of confidence that
the algorithmwants to achieve). To accomplish this goal, the
graph reconstruction procedure of the original PPM algo-
rithm is completely replaced, and we name the new
procedure the rectified graph reconstruction procedure. On the
other hand, we preserve the packet marking procedure so
that every router deployed with the PPM algorithm is not
required to change.

In the following section, we list the assumptions of our
solution. Then, we describe the flow of the rectified graph
reconstruction procedure.

2.1 Assumptions

2.1.1 Assumptions about the Router

For each router, we assume that it is equipped with the
ability to mark packets as in the original PPM algorithm.
We also assume that each router shares the same marking
probability. Specifically, a router can either be a transit
router or a leaf router. A transit router is a router that
forwards traffic from upstream routers to its downstream
routers (or the victim), whereas a leaf router is a router
whose upstream router is connected to client computers
(not routers) and forwards the clients’ traffic to its down-
stream routers (or the victim). Certainly, the clients are
mixed with honest and malicious parties. In addition, we
assume that all leaf routers in an attack graph are the
sources of the attack packets, and each leaf router sends out
a similar number of attack packets. Note that we are not
assuming that there is only one attacker, but we are
considering a multiple-attacker environment.

Furthermore, we assume that every router has only one
outgoing route toward the victim. For the ease of presenta-
tion, we name the “outgoing route toward the victim” the
victim route. The assumption can be justified by the fact that
modern routing algorithms favor the construction of
routing trees [16], [17]. This assumption is also reflected in
the structures of the constructed graph: every router in the
constructed graph has only one outgoing edge. However,
this assumption may not hold under abnormal situations.

For example, in Fig. 6, the failure of the router R1 forces the
routing table to completely change. Under such a scenario,
the constructed attack graph may become the one shown in
Fig. 6c. We argue that this result is not an undesirable one,
as long as the definition of a correct attack graph
construction still holds (because the new attack graph is
indeed composed of all the edges traversed by the packets).
In the remainder of this paper, we stay with this
assumption, and we will discuss the scenario when this
assumption is relaxed in Section 6.

2.1.2 Assumptions about the Victim

On the victim side,we assume that by the time that the victim
starts collecting marked packets, all routers in the network
have already invoked the packet marking procedure. In
addition, we assume that the victim does not have any
knowledge about the real network or the attack graph.
However, the victim knows the marking probability that the
routers are using.

2.2 Flow of the Rectified Graph Reconstruction
Procedure

The pseudocode of the rectified graph reconstruction
procedure is shown in Fig. 7, and the procedure is started
as soon as the victim starts collecting marked packets. When
a marked packet arrives at the victim, the procedure first
checks if this packet encodes a new edge. If so, the
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Fig. 6. The failure of the router R1 causes the route tables of R2, R3, and R4 to change. This results in a constructed graph with routers that have

multiple outgoing edges.

Fig. 7. The pseudocode of the rectified graph reconstruction procedure

of the RPPM algorithm.
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procedure accordingly updates the constructed graph Gc.
Next, if the constructed graph is connected, where connected
means that every router can reach the victim, the procedure
calculates the number of incoming packets required before
the algorithm stops, and we name this number the TPN.
The procedure then resets the counter for the incoming
packets to zero and starts counting the number of incoming
packets. In the meantime, the procedure checks if the
number of collected packets is larger than the TPN. If so, the
procedure claims that the constructed graph Gc is the attack
graph, with probability P �. Otherwise, the victim receives a
packet that encodes a new edge. Then, the procedure
updates the constructed graph, revisits the TPN calculation
subroutine, resets the counter for incoming packets, and
waits until a packet that encodes a new edge arrives or the
number of incoming packets is larger than the new TPN.

As suggested by the pseudocode, the termination
condition of the RPPM algorithm is that “the counter for
the incoming packets is larger than the TPN,” and this implies
that the calculation of the TPN during each update of the
constructed graph is the core of the RPPM algorithm. In the
next step, we provide a deeper understanding of the RPPM
algorithm through the introduction of the execution diagram.

2.3 Execution Diagram of the Rectified Probabilistic
Packet Marking Algorithm

According to the previous section, it is observed that the
TPN, the constructed graph, and the execution of the
rectified graph reconstruction procedure are closely related.
Such a relationship can be visualized by the construction of
the execution diagram, as shown in Fig. 8. The execution
diagram presents the dynamics of the execution of the
rectified graph reconstruction procedure.

2.3.1 Types of States

There are two types of states in the diagram: the execution state
and the termination state. When the procedure is running, we
say that “the rectified graph reconstruction procedure is in an
execution state.” Otherwise, we say that “the rectified graph
reconstruction procedure is in the termination state.” The
execution state also tells us the state of the constructed graph:
1) when the procedure is in the start state, labeled by “0,” it
means that the procedure has started running, and there are
no edges in the constructed graph. 2) When the procedure is
in a connected state, it means that the constructed graph is
connected. A connected state, labeled by Ci, means that the
constructed graph is connected and contains i edges. 3)When

the procedure is in a disconnected state, the constructed graph
is disconnected. A disconnected state, labeled by Di, means
that the constructed graph is disconnected and contains
i edges.Note that both the connectedanddisconnected states,
say, Ci and Di, respectively, refer to all the possible graphs
that have i edges. Last, when the procedure is in the
termination state, it means that the procedure has stopped.

2.3.2 Types of Transitions

There are two kinds of transitions in the execution diagram.
When the procedure takes a growth transition, it means that
a new edge is added to the constructed graph. When the
procedure takes a termination transition, it means that the
procedure is going to stop running.

The transition structure in Fig. 8 is derived from the
pseudocode of the rectified graph reconstruction procedure
in Fig. 7. We briefly describe the transition structure as
follows: 1) If a packet that encodes a new edge arrives
before the number of received packets is larger than the
TPN, then the procedure takes a growth transition and
proceeds to either a connected state or a disconnected state,
depending on the connectivity of the updated constructed
graph. 2) If the number of received packets is larger than the
TPN, then the procedure takes the termination transition
and proceeds to the termination state. 3) If the procedure is
in one of the disconnected states, then it is meaningless to
return such a graph as the correct constructed graph, and
there is no transition that connects the disconnected states
to the termination state. The procedure then keeps on
collecting packets until it proceeds to a connected state.

2.3.3 Worst-Case, Average-Case, and Best-Case

Scenarios

According to the execution diagram, one can classify three
kinds of execution scenarios of the RPPM algorithm. They
are the worst-case, the average-case, and the best-case
scenarios. This classification is based on the possibility that
the RPPM algorithm returns a correct graph.

If one assumes that the constructed graph is always
connected, then at every state, the victim has to calculate the
TPN and has to wait until the rectified graph reconstruction
procedure makes a transition to the next connected state or
the termination state. In other words, the procedure is
vulnerable, returning an incorrect result, because there is
always a nonzero probability that the procedure is
terminated. We name this scenario the worst-case scenario.
On the other hand, if the constructed graph is allowed to
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Fig. 8. An execution diagram of the rectified graph reconstruction procedure of the RPPM algorithm that constructs a graph with n edges.
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enter a disconnected state, then the procedure would not
always have the possibility of entering the termination state.
We name this scenario the average-case scenario.

In addition, there is a possibility that the rectified graph
reconstruction procedure is always in the disconnected
states (except for the state when the constructed graph
becomes the attack graph). Then, there is no chance for the
procedure to return an incorrect result. We name this
scenario the best-case scenario. Note that the best-case
scenario will always have a successful graph reconstruction.

2.4 Role of the Execution Diagram

The execution diagram provides a thorough understanding
of the relationship among the execution of the rectified
graph reconstruction procedure, the constructed graph, and
the TPN. Through the analysis of the execution diagram, it
can be observed that different execution scenarios of the
procedure would affect the probability that the procedure
returns a correct constructed graph.

It is observed that the worst-case scenario would be the
hardest case for the rectified graph reconstruction procedure
to returnacorrect graph.Therefore, it is an idealpoint forus to
derive the calculation of the TPN. Supposing that one could
successfully provide a guarantee of the correctness of the
constructed graph under theworst-case scenario, then such a
guarantee can also be provided in the average-case scenario.
Moreover, it is expected that the average-case scenario should
outperform theworst-case scenario in terms of the successful
rate of returning a correct constructed graph. Next, we will
move on to themodeling of the packetmarking process of the
packet marking procedure.

3 PACKET-TYPE PROBABILITY

As defined in Section 1.1.1, the packet marking procedure is
the source of different kinds of marked packets, and the
total number of possible marked packets is the number of
edges of the attack graph. However, it will be shown in the
next section that the probability for every kind of marked
packets that arrive at the victim plays a vital part in the
derivation of the termination packet number. In this section,
we present the definition and the derivation of such a set of
probabilities, and we name them the packet-type probabilities.

3.1 Encoded Edge Random Variable

By definition, an incoming packet may encode one of the
edges of the attack graph, or the incoming packet does not
encode any edges of the attack graph. We use a random
variable called the encoded edge random variable to represent
all possible encodings on an incoming packet. We formally
define the encoded edge random variable as follows:

Definition 1. Define T ðGÞ as the encoded edge random variable.
T ðGÞ ¼ e represents that a packet encoding the edge e arrives
at the victim, where e is in the set of edges of the attack graph
G. In addition, define T ðGÞ ¼ � if the packet that arrived at
the victim does not encode any edge.

For each value of the encoded edge random variable,
there is a corresponding probability for that value and it is
called the packet-type probability.

3.2 Calculating the Packet-Type Probability

Let the attack graph be G ¼ ðV ;EÞ. In addition, let Ri;Rj 2
V and ðRi;RjÞ 2 E. Suppose that we are interested in the
probability that a packet encodes the edge ðRi;RjÞ. Without

loss of generality, the proposed solution can also deal with
the edges in the form ðRi; vÞ, where v is the victim site. To
begin with, the packet-type probability P ðT ðGÞ ¼ ðRi;RjÞÞ
can be expressed as

P ðT ðGÞ ¼ ðRi;RjÞÞ ¼P ð}a packet passes through ðRi;RjÞ}
and ‘‘a packet encodes ðRi;RjÞ}Þ:

¼P ð}a packet passes through ðRi;RjÞ}Þ
� P ð}a packet encodes ðRi;RjÞ}
j}a packet passes through ðRi;RjÞ}Þ:

For the ease of presentation, we name the probability
P (“a packet passes through ðRi;RjÞ”) the via probability. In
addition, we name the probability P (“a packet encodes
ðRi;RjÞ” j “a packet passes through ðRi;RjÞ”) the conditional
encoding probability.

3.2.1 Via Probability

Let LðGÞ be the set of leaf routers in G and let jLðGÞj be the
number of leaf routers in LðGÞ. In addition, let PathðR; vÞ be
the set of paths that lead from the router R to the victim v
and let jPathðR; vÞj be the number of paths in PathðR; vÞ.
Moreover, we assume that every path will have an equal
chance to be chosen by a packet.

Let Rl be a leaf router in G. If there is only one path in the
set PathðRl; vÞ that contains ðRi;RjÞ, then the via prob-
ability under this specific case is given by

Via probability ðsingle-path caseÞ ¼ 1

jLðGÞj �
1

jPathðRl; vÞj :

ð2Þ
Furthermore, because the event that a packet passes through
one path is independent of the event that a packet passes
through another path, if there is more than one path that
contains theedge ðRi;RjÞ, theprobability that apacketpassed
through ðRi;RjÞ will be the sum of a collection of the
probabilities for the single path cases in (2). Let �ðr; ðRi;RjÞÞ
be a function such that if the path r contains the edge ðRi;RjÞ,
then it returns one; otherwise, it returns zero. Then, the via
probability is given as follows:

Via probability ¼
X

Rl2LðGÞ

X
r2PathðRl;vÞ

�ðr; ðRi;RjÞÞ

� 1

jLðGÞj �
1

jPathðRl; vÞj :
ð3Þ

3.2.2 The Conditional Encoding Probability

The conditional encoding probability is concerned with
how the packet’s markings can reach the victim without
being overwritten. The formulation of this probability relies
on the distance between the edge and the victim. We call the
distance function the edge distance function, and it is given by

dððRi;RjÞ; v; rÞ ¼ 1; Rj ¼ v;
d ðRj;RkÞ; v; r
� �þ 1; otherwise;

�
ð4Þ

whereRk is one hop closer to the victim thanRj on the path r.
For every path that contains the edge ðRi;RjÞ, if a packet

encodes the edge ðRi;RjÞ, then it means that Ri marked the
start field of the packet, whereas successive routers on that
path did not mark the start field. Then, the conditional
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encoding probability, given that the incoming packet

follows the path r, is

Conditional encoding probabilityðon path rÞ
¼ pmð1� pmÞdððRi;RjÞ;v;rÞ�1:

Finally, we have the packet-type probability of ðRi;RjÞ as

follows:

P ðT ðGÞ ¼ ðRi;RjÞÞ
¼

X
Rl2LðGÞ

X
r2PathðRl;vÞ

�ðr; ðRi;RjÞÞ � 1

jLðGÞj

� 1

jPathðRl; vÞj � pm � ð1� pmÞd ðRi;RjÞ;v;rð Þ�1:

ð5Þ

In addition, the packet-type probability of an unmarked

packet is given as follows:

P ðT ðGÞ ¼ �Þ ¼ 1�
X
e2E

P ðT ðGÞ ¼ eÞ; ð6Þ

where E is the edge set of G ¼ ðV ;EÞ.
Note that the above derivation of the packet-type

probability includes the presence of the unmarked packets.

If the victim considers only marked packets, a suitable

normalization should be applied as follows: Denote TmðGÞ as
the strict encoded edge random variable, which is the same as

the encoded edge random variable T ðGÞ, except that TmðGÞ
takes on only values of the edge set E of the graph G, that is,

without the value �. Then, the strict packet-type probability is

given as follows:

P ðTmðGÞ ¼ eÞ ¼ P ðT ðGÞ ¼ eÞ
1� P ðT ðGÞ ¼ �Þ ; 8e 2 E: ð7Þ

3.2.3 The Pseudocode of the Calculation of the

Packet-Type Probabilities

In Fig. 9, we provide an algorithm for calculating the
packet-type probability of every edge of an input graph.
The algorithm first constructs the paths that lead from every
leaf router to the victim. Then, for each path, the algorithm
calculates and accumulates the packet-type probability by
(5) for every edge in the path. Eventually, it returns the
packet-type probabilities of all edges of the input graph.
Note that the calculations of the packet-type probability for
an unmarked packet and the strict packet-type probabilities
are not included in the pseudocode, but one can calculate
these probabilities by using (6) and (7), together with the
results obtained by the algorithm.

After deriving the calculation of the packet-type prob-
ability, we are ready for the calculation of the termination
packet number. In the next section, we derive the calcula-
tion of the termination packet number.

4 DERIVATION OF THE TERMINATION PACKET

NUMBER

In this section, we present the calculation of the TPN at each
connected state (see Section 2.3) so that the RPPM algorithm
returns a correct constructed graph, with probability larger
than P �. As mentioned at the end of Section 2, we assume
that the constructed graph is always connected; that is, we
consider only the worst-case case scenario.

We denote P�iðCi ! Ciþ1Þ as the probability that the
rectified graph reconstruction procedure proceeds from
state Ci to state Ciþ1, with the TPN set to �i, and we name
this probability the state-change probability from Ci to Ciþ1. In
otherwords, it is theprobability that thevictimreceives anew
edge before the number of collectedmarked packets is larger
than the TPN �i. Note that we are not referring to any specific
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Fig. 9. The pseudocode of the packet-type probability calculation subroutine. It calculates the packet-type probability of every edge of the input

graph, specified by G.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.



constructed graphs. Instead, asmentioned in Section 2.3.1,Ci

represents all the possible connected graphs with i edges.
Since the probability that the RPPM algorithm that

returns a correct constructed graph is equivalent to the

probability that the RPPM algorithm makes a transition of

n� 1 steps from states C1 to Cn, mathematically, we have

the following:

P ðconstructed graph is correctÞ ¼
Yn�1

j¼1

P�jðCj ! Cjþ1Þ:

Then, our claim is correct, given that the product of the

state-change probabilities from states C1 to Cn should be

greater than P � and is given by

Yi
j¼1

P�jðCj ! Cjþ1Þ > P �:

For the sake of further presentation, we transform the above

equation as follows:

P�iðCi ! Ciþ1Þ > P �

Xi�1
; where Xi�1 ¼

Yi�1

j¼1

P�jðCj ! Cjþ1Þ:

ð8Þ
Note that Xi�1 in (8) is the product of the state-change

probabilities of the past states of the rectified graph

reconstruction procedure, and we named it the accumulated

state-change probability at state Ci. We will discuss how we

can calculate the accumulated state-change probability in

Section 4.1.4.

4.1 Termination Packet Number Derivation

According to the previous section, we know that the TPN at

each connected state can be found by (8), which is

expressed in terms of the state-change probability. In this

section, we derive the TPN by deriving the state-change

probability with the following steps:

1. To recall, the state-change probability is the prob-
ability that the constructed graph of state Ci evolves
into the constructed graph of state Ciþ1. Hence, the
first step in calculating the state-change probability
is to find all the graphs that could possibly be the
next constructed graph, and we name this set of
graphs the extended graphs.

2. In the second step, for each extended graph Ge, we
find theprobability that the current constructed graph
becomes the extended graph Ge. As a matter of fact,
the above probability is the state-change probability
fromCi toCiþ1, conditioned that the extended graphGe

is the next constructed graph, and we name this the
conditional state-change probability.

3. Fromtheconditional state-changeprobability,onecan
find the state-change probability (and, thus, the TPN)
through the definition of the condition probability.
Nevertheless, because the calculationof the exact TPN
violates the basic assumptions of the traceback
problem, the upper-bounded TPN would alternatively
be derived, and the relationship between the exact
TPN and the upper-bounded TPNwill be presented.

4.1.1 Extended Graphs

The extended graphs are the predictions of the future
constructed graph based on the current graph. Denote the
constructed graph in state Ci of the rectified graph recon-
struction procedure as Gi, where i � 1. By the assumption
that every router has only one victim route (stated in
Section 2.1) and the assumption that every constructed graph
is connected (which was made earlier in this section), when
the constructed graph evolves from Gi to Giþ1, there are
always one new edge and one new node inserted into Gi.

The example in Fig. 10 helps illustrate the above point. On
the left side of the figure, there is a constructedgraphwithone
edge that connects two nodes, and the victim and the router
are labeled by v and R1, respectively. On the right side of
the figure, a new edge is inserted in the constructed graph at
two possible locations: the graph on the left has the new
edge ðR2; R1Þ, and another one has the new edge ðR2; vÞ. We
name the introduced edges the extended edges. Formally, we
define the extended graphs of Gi in Definition 2, and we
define GðGiÞ as the set of extended graphs.

Definition 2. Let GðGiÞ be the set of extended graphs of the
constructed graph Gi ¼ ðVi; EiÞ in state Ci of the rectified
graph reconstruction procedure:

GðGiÞ ¼ fGe ¼ ðVe; EeÞ j 9ðu; tÞ =2Ei & u =2Vi & t 2 Vi

such that Ve ¼ Vi [ u and Ee ¼ Ei [ ðu; tÞg:

By the assumption that every constructed graph is
connected in this section, GðGiÞ has already included all
the possible candidates for the next constructed graph Giþ1.
Thus, in the next step, we assume that an extended graph
Ge is the next constructed graph Giþ1. Then, we calculate
the state-change probability, conditioned that Giþ1 ¼ Ge,
and we call it the conditional state-change probability. Last, by
using the definition of conditional probability

P�iðCi ! Ciþ1Þ ¼
X

Ge2GðGiÞ
P�iðCi ! Ciþ1 j Giþ1 ¼ GeÞ

� P ðGiþ1 ¼ GeÞ;
we have the state-change probability.

4.1.2 The Conditional State-Change Probability

The conditional state-change probability is calculated
according to the following rationale. If one assumes that
Giþ1 ¼ Ge, then one knows the topology of the next
constructed graph and also knows where the extended
edge is. Then, the state-change probability is equivalent to
the probability that a packet that encodes the extended edge
arrives at the victim before the number of collected packets
is larger than the TPN.

The probability that the extended edge e0 arrives at the

victim is exactly the packet-type probability P ðT ðGeÞ ¼ e0Þ.
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Fig. 10. An illustration of the concept of the extended graph.
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Because the marking process of each packet is independent,

the state-change probability, conditioned that Giþ1 ¼ Ge, is

therefore given by the following:

P�iðCi ! Ciþ1 j Giþ1 ¼ GeÞ ¼ 1�
�
1� P ðT ðGeÞ ¼ e0Þ

��i
: ð9Þ

Note that (9) is an increasing function with respect to �i,

because

d

dx
1�

�
1� P ðT ðGeÞ ¼ e0Þ

�x� �

¼ �
�
1� P ðT ðGeÞ ¼ e0Þ

�x

log
�
1� P ðT ðGeÞ ¼ e0Þ

�
> 0;

where x > 0 &P ðT ðGeÞ ¼ e0Þ 2 ð0; 1Þ.
To continue with the calculation of the state-change

probability, the probability P ðGiþ1 ¼ GeÞ has to be known.

However, this is prohibited by the assumption that the victim

does not have any information about the attack graph. As an

alternative, the upper-bounded TPNwill be derived instead.

4.1.3 Upper-Bounded TPN

Since the conditional state-change probability increases

with respect to �i (stated in the note of (9)), one can always

find a sufficiently large integer ��i such that

P��i ðCi ! Ciþ1 j Giþ1 ¼ GeÞ > P �

Xi�1
; 8 Ge 2 GðGiÞ: ð10Þ

By the above idea, we have

Hence, this shows that ��i can also be a TPN of state Ci,

because (8) is satisfied. By the above arguments, it is

required to confirm the existence of �� such that ��i is large

enough to satisfy (10). From (10), we have

P��
i
ðCi ! Ciþ1 j Giþ1 ¼ GeÞ > P �

Xi�1

) 1�
�
1� P ðT ðGeÞ ¼ e0Þ

���i
>

P �

Xi�1
ðby ð9ÞÞ

) ��i >
log 1� P �

Xi�1

� �
log

�
1� P ðT ðGeÞ ¼ e0Þ� :

Since the TPN is an integer, we have

��i ¼ YiðGeÞ þ 1b c; where YiðGeÞ ¼
log 1� P �

Xi�1

� �
log

�
1� P ðT ðGeÞ ¼ e0Þ� :

Furthermore, by the monotonic increasing property of the

logarithmic function, YiðGeÞ is monotonic decreasing with

respect to P ðT ðGeÞ ¼ e0Þ. Thus, by finding the value

minGe2GðGiÞ P ðT ðGeÞ ¼ e0Þ, the maximum value of ��i in the

set of extended graphs GðGiÞ can be found. Therefore,

��i ¼
log 1� P �

Xi�1

� �
logð1�pminÞ þ 1

6664
7775 ; where pmin¼ min

Ge2GðGiÞ
P ðT ðGeÞ¼e0Þ:

ð11Þ

Remark. The upper-bounded TPN derived in (11) may not
be the exact value of the TPN, because if the correspond-
ing extended graph of pmin in (11) is not the next
constructed graph Giþ1, then the true TPN should be
smaller (by the decreasing property of YiðGeÞ in the
proof). That is why we name ��i the upper-bounded TPN.

4.1.4 Calculation of the Accumulated State-Change

Probability

According to (8), the accumulated state-change probability
is given by

Xi�1¼
Yi�1

j¼1

P��i ðCj! Cjþ1Þ¼ Xi�2�P��
i�1
ðCi�1!CiÞ; i>1;

1; i¼1:

�

Since the state-change probability is not derived, we opt to
calculate the accumulated state-change probability after the
state of the rectified graph reconstruction procedure has
been changed.

Let us consider the scenario that the constructed graph is
changed from Gi�1 to Gi. After the state has been changed,
the probability P ðGi ¼ GeÞ becomes either one or zero for
every extended graph Ge, and this means that

P ðGi ¼ GeÞ ¼ 0; Ge 2 GðGi�1Þ � fGig;
1; Ge ¼ Gi:

�
ð12Þ

Then, the state-change probability P��i�1
ðCi�1 ! CiÞ becomes

P��
i�1
ðCi�1 ! CiÞ ¼X

Ge2GðGi�1Þ
P��

i�1
ðCi�1 ! Ci j Gi ¼ GeÞ � P ðGe ¼ GiÞ

¼ P��
i�1
ðCi�1 ! Ci j Gi ¼ GiÞ � P ðGi ¼ GiÞ ðby ð12ÞÞ

¼ 1�
�
1� P ðT ðGiÞ ¼ eiÞ

���i�1

; ðby ð9ÞÞ

where ei is the new edge added to Gi.
Hence, the accumulated state-change probabilityXi�1 can

beobtainedafter the rectifiedgraphreconstructionprocedure
has proceeded from states Ci�1 to Ci. The calculation of the
accumulated state-changeprobability ispresentedas follows:

Xi�1¼ Xi�2 � 1�
�
1� P ðT ðGiÞ¼eiÞ

���i�1

� �
; i > 1;

1; i ¼ 1:

8<
: ð13Þ

4.1.5 The Accumulated State-Change Probability for a

Disconnected State

We now consider the case when the assumption that the
constructed graph is always connected is removed, that is, a
normal execution of the RPPM algorithm. Supposing that the
rectified graph reconstruction procedure enters the discon-
nected state Diþ1 from the connected state Ci, the update of
the accumulated state-change probability has to be changed.

According to the previous discussion, the accumulated
state-change probability depends on the constructed graph
in state Diþ1, which is disconnected. Nevertheless, because
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the graph Gi is disconnected, the packet-type probability
P ðT ðGiÞ ¼ eiÞ cannot be found. As an alternative, we
choose minGe2GðGiÞ P ðT ðGeÞ ¼ e0Þ in (11) as the value of
P ðT ðGiþ1Þ ¼ eiþ1Þ in (13). The reason for the above choice is
given as follows:

��i >
log 1� P �

Xi�1

� �
log

�
1� pmin

� ) Xi�1 � 1� �
1� pmin

���i� �
> P �;

where pmin ¼ minGe2GðGiÞ P ðT ðGeÞ ¼ e0Þ.
Hence, the accumulated state-change probability is still

larger than the traceback confidence level P � by choosing
minGe2GðGiÞ P ðT ðGeÞ ¼ e0Þ as the value of P ðT ðGiþ1Þ ¼ eiþ1Þ
in (13). In the next section, we conclude this section and
provide the pseudocode of the TPN calculation subroutine.

4.2 Section Summary and Termination Packet
Number Calculation Subroutine

To summarize, we have presented how one can calculate
the TPN at every connected state of the graph construction
procedure so that the RPPM algorithm returns a correct
constructed graph with a specified probability P �.

Fig. 11 shows the subroutine that calculates theTPN, and it
is executed whenever the rectified graph reconstruction
procedure enters a new state. When the routine is visited for
the first time, the variable “X” that is used to store the
accumulated state-change probability is initialized to one.
Next, based on the connectivity of the current constructed
graph, the variable “X” is updated in different ways: 1) if the
current constructed graph is connected, the subroutine
calculates the packet-type probability of the new edge and
then updates the variable “X,” and 2) if the current
constructed graph is disconnected, the subroutine uses the

minimum packet-type probability of the extended edge that

was chosen from the extended graphs of the previous

constructed graph, that is, “p min” in the pseudocode in

Fig. 11.Next, if the current constructedgraph isdisconnected,

the TPN subroutine will not calculate the TPN, and one

should exit the subroutine. Otherwise, the subroutine

calculates the TPN based on (11). Finally, the subroutine

returns the calculated TPN.

5 SIMULATION RESULTS

In this section, we present the simulation results to show that

theRPPMalgorithm is able to guarantee the correctness of the

constructed graph, independent of the marking probability

and the structure of the attack graph. First, we describe the

simulation environment.

5.1 The Simulation Environment

Every simulation of the RPPM algorithm starts with a

testing network rooted at the victim, that is, the attack

graph. The configuration of the network follows the

assumption stated in Section 2.1. In addition, the network

has at least one leaf router, that is, a router with zero

incoming edges. Each edge between two routers is directed

and is assumed to have infinite capacity. Thus, no packet is

lost under this environment.
Next, we describe the properties of the simulated

packets. All packets are homogeneous in terms of type,

size, etc. Every packet’s destination is set to the victim, and

every packet starts its itinerary at one of the leaf routers of

the testing network chosen at random. Further, the paths

traversed by the packets are chosen at random.
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Fig. 11. The pseudocode of the TPN calculation subroutine.
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5.2 Simulation: Different Values of the Marking
Probability

In this set of simulations, the impact of the marking
probability on the successful rate of the RPPM algorithm
will be studied. As presented in Section 3, the marking
probability is one of the factors that determines the packet-
type probability and also the termination packet number.
As a matter of fact, the marking probability is closely
related to the occurrences of the different execution
scenarios described in Section 2.3.3.

Ahighvalue of themarkingprobability is analogous to the
worst-case scenario. If the value of themarking probability is
high, most of the arrived packets are encoding edges that are
close to the victim. Then, the constructed graph is always
connected with a very high probability, and thus, this case is
analogous to the worst-case scenario. On the contrary, the
execution of the RPPM algorithm is close to the best-case
scenario with a very low value of the marking probability.

We have conducted a set of simulations to verify the above
claims. In this set of simulations, the testing network is the
networkdepicted in Fig. 12. The simulations areperformedat
three different values of themarking probability: 0.1, 0.5, and
0.9. The RPPM algorithm is repeated 10,000 times in order to
generate one data point, and each data point is obtained by
dividing the number of successful executions by the total
number of executions of the RPPM algorithm.

The results of the simulations are shown in Fig. 13. In the
figure, in spite of the simulation results, there is an extra plot
in the figure named the “bottom line,” which represents the
function y ¼ x. Sinceweexpect that the successful rate should
be larger than the traceback confidence level, no data point
should appear below the bottom line. We now analyze the
simulation result. First, all the data points are above the
bottom line, and this shows that the RPPM algorithm can
guarantee the correctness of the constructed graph under
different values of the marking probability. Second, one can
observe that as the marking probability increases, the rate at
which theRPPMalgorithm returns a correct graphdecreases.

With pm ¼ 0:9, the plot is very close to the bottom line, which
implies the worst-case scenario. Through this set of simula-
tions, we showed that the RPPM algorithm can guarantee the
correctness of the constructed graphunderdifferent values of
the marking probability.

5.3 Simulation: Different Graph Structures

The second set of simulations tests if the RPPM algorithm
can guarantee the promised successful rate under different
graph structures. In this set of simulations, we execute the
simulations under both the worst-case and the average-case
scenarios. The worst-case scenario is forced to be happening
by restricting the packet generation process, whereas the
average-case scenario is a normal execution of the RPPM
algorithm without any constraints. In addition, for each
execution of the RPPM algorithm, the marking probability
is inclusively set to a random number from 0.1 to 0.9.

The simulation results for the linear network, the binary-
tree network, and the random-tree network that contain
14 routers and one victim are shown in Figs. 14, 15, and 16,
respectively. The topologies of the linear and the binary-tree
networks are self explanatory, and a random-tree network
means that the nodes are randomly connected with the
following constraints:
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Fig. 12. An example linear network with three edges.

Fig. 13. The simulations show that the larger the marking probability is,

the closer to the worst-case execution the simulation result becomes.

Fig. 14. RPPM algorithm simulation: 14-router linear network with

random marking probability.

Fig. 15. RPPM algorithm simulation: 14-router binary-tree network with

random marking probability.
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1. Every router can reach the victim in a nonzero
number of hops.

2. There must be no cycles in the graph.
3. The victim must not have any outgoing edges.
4. Every router can only have one outgoing edge.

In addition, as Paxson [18] suggested, the longest router in
the Internet is 32. Then, the maximum length of the paths of
the testing network is therefore 32.

All three results show that no matter what the network is,
all the data points are above the bottom line. Hence, this
shows that the RPPM algorithm guarantees the correctness
of the constructed graph, independent of the structure of the
real network graph. In addition, the simulation results
support the claim that the average-case scenario outper-
forms the worst-case scenario in terms of the successful rate.
Furthermore, we extend the simulations on the random-tree
network to larger network scales with 100, 500, and
1,000 routers, and the results are shown in Figs. 17, 18,
and 19, respectively. According to the results, the increasing
network scale does not affect the guarantee provided by the
RPPM algorithm.

In conclusion, the simulation results showed that the
RPPM algorithm guarantees the correctness of the con-
structed graph, independent of the marking probability and
the structure of the attack graph.

6 SUPPORTING ROUTERS WITH MULTIPLE VICTIM

ROUTES

In this section, we relax the assumption that every router
has only one outgoing route toward the victim. This change
may cause the attack packets to take more than one path
toward to the victim, and the routers in the constructed
graph may have more than one outgoing edge.

In the following, we first discuss the problem that
emerged when the RPPM algorithm is applied to routers
that have multiple victim routes. In addition, a set of
simulations is performed to illustrate the severity of the
problem. Second, we present the solution to the problem
caused by the relaxed assumption: the method introduces
an extra set of extended graphs. Last, we perform
simulations based on this solution and compare the results
with and without the support of multiple victim routes.

6.1 Problem of Multiple Victim Routes

Originally, without considering routers that have multiple
victim routes, the arrival of a new encoded edge will add
only a new node and a new edge to the constructed graph
(note that it is the worst-case execution scenario). However,
when we allow a router to have multiple victim routes, the
arrival of a marked packet that encodes a new edge can
result in two different scenarios: 1) a new node is added,
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Fig. 16. RPPM algorithm simulation: 14-router random-tree network with

random marking probability.

Fig. 17. RPPM algorithm simulation: 100-router random-tree network,

with marking probability ¼ 0:1.

Fig. 18. RPPM algorithm simulation: 500-router random-tree network,

with marking probability ¼ 0:1.

Fig. 19. RPPM algorithm simulation: 1,000-router random-tree network,

with marking probability ¼ 0:1.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.



that is, one node plus one edge and 2) no new node is
added, which means that the new edge connects two
existing nodes. Since the latter case is not considered by the
RPPM algorithm, one may then doubt the guarantee of the
successful rate of the RPPM algorithm. The following
simulation supports this doubt.

6.1.1 The Simulation Environment

The testing network is a random-tree networkwith 10 nodes:
onevictimplusnine routers.However, this time,weallow the
routers in the testing network to have more than one victim
route. Again, the marking probability is set to a random
number in [0.1: 0.9], and thevalues are the same for all routers.

6.1.2 The Simulation Result

Fig. 20 shows the simulation results for both the average-case
and the worst-case executions. For small values of the
traceback confidence level, the successful rates of both
execution modes are still over the bottom line. However, the
successful rate of the worst-case execution falls below the
bottom linewhen the traceback confidence level goes beyond
0.54,whereas the successful rateof theaverage-caseexecution
falls below the bottom line when the traceback confidence
level goes beyond 0.59.

One can conclude that the RPPM algorithm cannot
provide a guarantee of the successful rate in reconstructing
the attack graph when the routers have multiple outgoing
routes toward the victim.

6.2 Formulating an Extra Set of Extended Graphs

To solve the problem, we suggest introducing an extra set of
extended graphs. The new set of extended graphs is defined
as follows:

Definition 3. Let G0ðGiÞ be the set of extended graphs of the
constructed graph Gi ¼ ðVi; EiÞ that supports multiple out-
going routes toward the victim:

G0ðGiÞ ¼fG0
e ¼ ðVi; E

0
eÞ j 9ðu; vÞ =2Ei & u; v 2 Vi

such that E0
e ¼ Ei [ ðu; vÞg;

and all graphs in G0ðGiÞ must not have any cycles.

According to Definition 3, an extended graph in G0ðGiÞ
introduces an extra edge to the constructed graphwithout an
extra node. The edge connects any two existing nodes with
two restrictions: 1) no cycles and 2) a multigraph should not
be formed. Then, this definition creates a family of extended
graphs with routers that have multiple victim routes.

We illustrate the definition of the new set of extended
graphs through an example in Fig. 21. The upper part of the
figure shows a constructed graph with two routers R1 and
R2 and the victim v, and the lower part of the figure is the
new extended graph. For this example, there can only be
one extra edge ðR2; vÞ according to Definition 3.

6.3 Simulation: Support for Multiple Victim Routes

Definitions 2 and 3 together form an expanded set of
extended graphs. We conduct the previous simulation again
by using the expanded set of extended graphs, and the
results are shown in Fig. 22. In this figure, the RPPM
algorithm can guarantee the correctness of the constructed
graph, again, with the support of multiple victim routes.
Technically speaking, the introduction of the extra set of
extended graphs actually increases the value of the TPN. As
the TPN increases, the successful rate therefore increases.

6.4 Section Summary

In conclusion, we provided support for routers that have
multiple victim routes. Such support is done through an
expansion of the set of the extended graphs. We performed
simulations to contrast the performances of the RPPM
algorithm with and without such support.
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Fig. 20. When the routers have more than one victim route, the RPPM

algorithm cannot guarantee the correctness of the constructed graph

when the confidence level is larger than 0.59.

Fig. 21. An illustration of the extended graph with the support of multiple

victim routes.

Fig. 22. With the support for multiple victim routes, the RPPM algorithm

can provide the guarantee of the correctness of the constructed graph.
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The drawback of this support is computation. Let n be
the number of nodes and m be the number of edges of the
constructed graph. Originally, the number of extended
graphs is of order OðnÞ. With the mentioned support, the
order of the number of extended graphs becomes OðnmÞ.
Hence, more time is spent on calculating the TPN at each
connected state of the rectified graph reconstruction
procedure. This shows the trade-off in handling routers
with multiple victim routes.

7 DEPLOYMENT ISSUES OF THE RECTIFIED

PROBABILISTIC PACKET MARKING ALGORITHM

In this section, we discuss several issues in deploying the
RPPM algorithm. We first discuss the choice in the marking
probability. Then, we cover the trade-off of the RPPM
algorithm over the PPM algorithm. Last, we address the
scalability problem in the PPM and the RPPM algorithms.

7.1 Choice of the Marking Probability

It is not desirable to have a high value of the marking
probability. First, a high value of the marking probability
means a low value for the packet-type probabilities for the
majority of the types of packets. Hence, this implies that a
large number of marked packets are needed before the
RPPM algorithm stops. This also implies a long execution
time of the RPPM algorithm.

Let us take a linear network with three routers and one
victim (as shown in Fig. 12) as an example to illustrate the
relationship between the marking probability and the
number of packets required. Fig. 23 shows the result of a
simulation that aims at counting the average number of
marked packets required for a correct graph reconstruction
with different values of the marking probability. The result
shows that for small values of marking probability, the
number of required packets is small. Nevertheless, the
number of required packets dramatically increases for large
values of the marking probability.

Despite the above reason, according to Section 5, a high
value of the marking probability implies the presence of the
worst-case scenario of the RPPM algorithm. Although the
worst-case scenario can still guarantee the successful rate, it
would be more beneficial to set the value of the marking

probability to a lower value so as to gain a larger successful
rate than what is expected.

In conclusion, one should choose a small value for the
marking probability for a faster and more reliable graph
reconstruction. Note that there would be a large number of
unmarked packets if one chooses a too-small value of the
marking probability.

7.2 Execution Time Comparison between the PPM
and the RPPM Algorithms

In order to guarantee the correctness of the constructed
graph, the RPPM algorithm has to collect extra packets so as
to attain such a guarantee. Technically speaking, before the
moment that the constructed graph becomes the same as the
attack graph, the number of marked packets collected
should be the same for both the PPM and RPPM algorithms.
After the constructed graph has become the attack graph,
the RPPM algorithm has to wait until the number of
collected packets is larger than the TPN. In other words,
that extra sum of packets is the trade-off in deploying the
RPPM algorithm than the PPM algorithm.

However, it is difficult to determine a theoretical value or
bound of the TPN, because the TPN calculation depends on
the construction process of the constructed graph. The
construction process, in turn, depends on the sequence of
the arrivals of the marked packets, which is randomized.
Alternatively,we conduct an empirical study on the trade-off
of the RPPM algorithm.

In Fig. 24, we present the number of increased marked
packets when one compares the number of packets collected
by the RPPM algorithm to those collected by the PPM
algorithm (which is instructed to stop when the constructed
graph becomes the attack graph). Such a set of simulations is
performedusing amarkingprobability of 0.1 (as suggested in
Section 7.1) with increasing network scales: from a 15-node
random-tree network to a 1,000-node one. The RPPM
algorithm is operated under the average-case scenario.

Threemain observations can be concluded from this set of
simulations. First, when the traceback confidence level
increases, the trade-off of the RPPM algorithm increases.
Second, the number of collected packets by the RPPM
algorithm is larger than those collected by the PPMalgorithm
by several times for the small range of the traceback
confidence level (two to five times for the traceback
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Fig. 23. The plot of the average number of marked packets required for a

correct graph reconstruction against different values of the marking

probability.

Fig. 24. The percentage of number of packets increases when the

RPPM algorithm is compared to the PPM algorithm with different

network scales.
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confidence level below 0.8), and such an increase reaches
10 times for high values of the traceback confidence level.

Last, an interesting observation is that the trade-offs for
small networks are more significant than those for large
networks. This can be explained by the probability of
forming a disconnected graph. For a large network, such a
probability is much higher than that of a small network.
When a disconnected graph is formed, the TPN calculation
is skipped until the graph becomes connected. Hence, this
keeps the value of the TPN small during the ending states of
the RPPM algorithm.

On the other hand, according to Table 1, one can observe
that the time for the PPM algorithm to collect enough packets
is in the order of a few seconds in a 100BaseT Ethernet.1

Therefore, although the trade-off of the RPPM algorithm
could reach a multiple of 10, such a trade-off is acceptable.

7.3 Scalability

Scalability is one of the weaknesses of the PPM algorithm.
One can observe that as the path length between the victim
and the leaf router becomes longer, it becomes more
difficult to collect a complete set of the marked packets.
The case is that not only the path length affects the
traceback time but the size of the attack graph also matters.
In Fig. 25, one can observe that the number of marked
packets required to build the constructed graph increases
with the size of the graph, and the trend does not subside.
Therefore, the PPM algorithm itself has a scalability
problem. Nonetheless, as the RPPM algorithm inherits the
packet marking procedure from the PPM algorithm, the
RPPM algorithm also has the scalability problem.

As suggested in Section 7.2, for small networks, the
traceback process takes only a few seconds to complete.
However, for networks as large as the one in [19] (with
nearly 200,000 routers and more than 600,000 directed
links), the traceback process may take days to finish.

8 CONCLUSION AND FUTURE WORK

In this work, we have pinpointed that the PPM algorithm
lacks a proper definition of the termination condition.
Meanwhile, using the expected number of required marked
packets E½X� as the termination condition is not sufficient.
The above two outstanding problems only lead to an
undesirable outcome: there is no guarantee of the correctness
of the constructed graph produced by the PPM algorithm.

We have devised the rectified graph reconstruction proce-
dure to solve the above two problems, and we name the new
traceback approach the RPPM algorithm. The RPPM

algorithm, on one hand, does not require any previous

knowledge about the network graph. On the other hand, it

guarantees that the constructed graph is a correct one, with

a specified probability, and such a probability is an input

parameter of the algorithm.
We have carried out a series of simulations to show the

correctness and the robustness of the RPPM algorithm. The
simulation results show that the RPPM algorithm can
always satisfy our claim that the constructed graph is
correct with a given probability. In addition, the algorithm
is robust under different values of the marking probability
and different structures of the attack graphs. To conclude,
the RPPM algorithm is an effective means of improving the
reliability of the original PPM algorithm.

Since the RPPM algorithm is an extension of the PPM
algorithm, the RPPM algorithm inherits defects of the PPM
algorithm. Problems such as scalability and different attack
patterns will be future research directions.

ACKNOWLEDGMENTS

The authors would like to thank the editor and supporting
staff for coordinating the review process. They also thank
the anonymous reviewers for their insightful comments
and constructive suggestions. The work of M.H. Wong
was partially supported by the RGC Grant 4208/04E. The
work of John C.S. Lui was supported in part by the RGC
Grant 2150347.

REFERENCES

[1] ”CERT Advisory CA-2000-01: Denial-of-Service Developments,”
Computer Emergency Response Team, http://www.cert.org/-
advisories/-CA-2000-01.html, 2006.

[2] J. Ioannidis and S.M. Bellovin, “Implementing Pushback: Router-
Based Defense against DDoS Attacks,” Proc. Network and
Distributed System Security Symp., pp. 100-108, Feb. 2002.

[3] S. Bellovin, M. Leech, and T. Taylor, ICMP Traceback Messages,
Internet Draft Draft-Bellovin-Itrace-04.txt, Feb. 2003.

[4] K. Park and H. Lee, “On the Effectiveness of Route-Based Packet
Filtering for Distributed DoS Attack Prevention in Power-Law
Internets,” Proc. ACM SIGCOMM ’01, pp. 15-26, 2001.

[5] P. Ferguson and D. Senie, “RFC 2267: Network Ingress Filtering:
Defeating Denial of Service Attacks Which Employ IP Source
Address Spoofing,” The Internet Soc., Jan. 1998.

WONG ET AL.: A PRECISE TERMINATION CONDITION OF THE PROBABILISTIC PACKET MARKING ALGORITHM 15

TABLE 1
The Average Number of Packets and the Time Required

to Reconstruct a Correct Constructed Graph
in a 100BaseT Ethernet

Fig. 25. Scalability analysis: average number of marked packets

collected by the PPM algorithm versus the size of the attack graph.

1. Under a 100BaseT Ethernet, one can transmit at most 8,333 packets
(each with 1,500 bytes) in 1 s.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.



[6] D.K.Y. Yau, J.C.S. Lui, F. Liang, and Y. Yam, “Defending against
Distributed Denial-of-Service Attacks with Max-Min Fair Server-
Centric Router Throttles,” IEEE/ACM Trans. Networking, no. 1,
pp. 29-42, 2005.

[7] C.W. Tan, D.M. Chiu, J.C. Lui, and D.K.Y. Yau, “A Distributed
Throttling Approach for Handling High-Bandwidth Aggregates,”
IEEE Trans. Parallel and Distributed Systems, vol. 18, no. 7, pp. 983-
995, July 2007.

[8] S. Savage, D. Wetherall, A. Karlin, and T. Anderson, “Practical
Network Support for IP Traceback,” Proc. ACM SIGCOMM,
pp. 295-306, 2000.

[9] D. Dean, M. Franklin, and A. Stubblefield, “An Algebraic
Approach to IP Traceback,” ACM Trans. Information and System
Security, vol. 5, no. 2, pp. 119-137, 2002.

[10] D.X. Song and A. Perrig, “Advanced and Authenticated Marking
Schemes for IP Traceback,” Proc. IEEE INFOCOM ’01, pp. 878-886,
Apr. 2001.

[11] A.C. Snoeren, C. Partridge, L.A. Sanchez, C.E. Jones, F. Tcha-
kountio, S.T. Kent, and W.T. Strayer, “Hash-Based IP Traceback,”
Proc. ACM SIGCOMM ’01, pp. 3-14, Aug. 2001.

[12] K. Park and H. Lee, “On the Effectiveness of Probabilistic Packet
Marking for IP Traceback under Denial-of-Service Attacks,” Proc.
IEEE INFOCOM ’01, pp. 338-347, 2001.

[13] K.T. Law, J.C.S. Lui, and D.K.Y. Yau, “You Can Run, But You
Can’t Hide: An Effective Methodology to Traceback DDoS
Attackers,” IEEE Trans. Parallel and Distributed Systems, vol. 15,
no. 9, pp. 799-813, Sept. 2005.

[14] M. Adler, “Trade-Offs in Probabilistic Packet Marking for IP
Traceback,” J. ACM, vol. 52, pp. 217-244, Mar. 2005.

[15] H. von Schelling, “Coupon Collecting for Unequal Probabilities,”
Am. Math. Monthly, vol. 61, pp. 306-311, 1954.

[16] C. Hedrick, “RFC 1058: Routing Information Protocol,” The
Internet Soc., June 1988.

[17] J. Moy, “RFC 2328: Open Shortest Path First (OSPF) Version 2,”
The Internet Soc., Apr. 1998.

[18] V. Paxson, “End-to-End Routing Behavior in the Internet,” IEEE/
ACM Trans. Networking, vol. 5, pp. 601-615, Oct. 1997.

[19] “CAIDA Router-Level Topology Measurements,” Cooperative
Assoc. Internet Data Analysis, http://-www.caida.org/-tools/
measurement/skitter/router_topology/, 2006.

Tsz-Yeung Wong received the PhD, MPhil, and
BSc degrees all from the Department of Com-
puter Science and Engineering at the Chinese
University of Hong Kong in 2007, 2002, and
2000, respectively. He joined the Chinese
University of Hong Kong in August 2007 as an
instructor. His research interests include distrib-
uted algorithms, networking, and computer and
network security.

Man-Hon Wong received the BSc and MPhil
degrees from the Chinese University of Hong
Kong in 1987 and 1989, respectively, and the
PhD degree from the University of California at
Santa Barbara in 1993. He joined the Chinese
University of Hong Kong in August 1993 as an
assistant professor and was promoted as an
associate professor in 1998. His research
interests include transaction management, mo-
bile databases, data replication, distributed

systems, and computer and network security.

Chi-Shing (John) Lui received the PhD degree
in computer science from the University of
California, Los Angeles (UCLA). After his gra-
duation, he joined the IBM Almaden Research
Laboratory/San Jose Laboratory and partici-
pated in various R&D projects on file systems
and parallel I/O architectures. He later joined the
Department of Computer Science and Engineer-
ing, Chinese University of Hong Kong (CUHK).
He is an associate editor for the Performance

Evaluation Journal, the IEEE Transactions on Computers, and the IEEE
Transactions of Parallel and Distributed Systems. He was a TPC cochair
of ACM Sigmetrics 2005 and a general cochair of the 15th IEEE
International Conference on Network Protocols (ICNP 2007). His
research interests include system and in theory/mathematics, in
particular theoretic/applied topics in data networks, distributed multi-
media systems, network security, OS design issues, and mathematical
optimization and performance evaluation theory. His personal interests
include films and general reading. He is a member of the ACM, a senior
member of the IEEE, an elected member of the IFIP WG 7.3, and the
vice president of ACM Sigmetrics. He received various departmental
teaching awards and the CUHK Vice Chancellor’s Exemplary Teaching
Award. He is a corecipient of the Best Student Paper Award in the 24th
IFIP WG 7.3 International Symposium on Computer Performance,
Modeling, Measurements and Evaluation (Performance 2005) and the
IEEE/IFIP Network Operations and Management Symposium (NOMS).

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

16 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 5, NO. 1, JANUARY-MARCH 2008

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 36
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 36
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 36
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /FRA <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


